
More Advanced
OpenMP

• This is an abbreviated form of Tim
Mattson’s and Larry Meadow’s
(both at Intel) SC ’08 tutorial
located at
http://openmp.org/mp-documents/o
mp-hands-on-SC08.pdf

• All errors are my responsibility

http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

Topics (only OpenMP 3 in these
slides)

• Creating Threads

• Synchronization

• Runtime library calls

• Data environment

• Scheduling for and
sections

• Memory Model

• OpenMP 3.0 and
Tasks

OpenMP 4

• Extensions to tasking

• User defined reduction
operators

• Construct cancellation

• Portable SIMD
directives

• Thread affinity

Creating Tasks
• We already know about

• parallel regions (omp parallel)

• parallel sections (omp parallel
sections)

• parallel for (omp parallel for) or
omp for when in a parallel region

• We will now talk about Tasks

Tasks
• OpenMP before OpenMP 3.0 has always had tasks

• A parallel construct created implicit tasks, one per
thread

• A team of threads was created to execute the tasks

• Each thread in the team is assigned (and tied) to one
task

• Barrier holds the original master thread until all tasks
are finished (note that the master may also execute a
task)

Tasks
• OpenMP 3.0 allows us to explicitly create tasks.

• Every part of an OpenMP program is part of some task,
with the master task executing the program even if there
is no explicit task

task construct syntax

#pragma omp task [clause[[,]clause] ...]
structured-block

clauses:
if (expression)
untied
shared (list)
private (list)
firstprivate (list)
default(shared | none)

if (false) says execute the task by the
spawning thread
• different task with respect to

synchronization
• Data environment is local to the

thread
• User optimization for cache affinity

and cost of executing on a different
thread

untied says the task can be
executed by more than one thread,
i.e., different threads execute
different parts of the task

Blue options are as
before and
associated with
whether storage is
shared or private

When do we know a task is
finished?

• At explicit or implicit thread barriers

• All tasks generated in the current parallel region are
finished when the barrier for that parallel region
finishes

• Matches what you expect, i.e., when a barrier is
reached the work preceding the barrier is finished

• At task barriers

• Wait until all tasks defined in the current task are
finished

#pragma omp taskwait

• Applies to tasks T directly generated in the current
task, not to tasks generated by the tasks T

Example: parallel pointer
chasing with parallel region

#pragma omp parallel
{
 #pragma omp single private(p)
 {
 p = listhead ;
 while (p) {
 #pragma omp task
 workfct (p)
 p=next (p) ;
 }
 }
}

value of p passed is value
of p at the time of the
invocation. Saved
on the stack like with
any function call

workfct is an ordinary user
function.

Example: parallel pointer
chasing with for

#pragma omp parallel
{
 #pragma omp for private(p)
 for (int i =0; i <numlists ; i++) {
 p = listheads [i] ;
 while (p) {
 #pragma omp task
 workfct (p)
 p=next (p) ;
 }
 }
}

Example: parallel postorder graph
traversal

void postorder(node *p) {
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for descendants
 workfct(p->data);
}

Parent task
suspended until
child tasks finish

This is a task
scheduling point

Example: postorder graph
traversal in parallel

void postorder(node *p) { // p is
initially
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for
descendants
 workfct(p->data);
}

Postorder is called from
within an omp parallel
region

Postorder graph traversal in
parallel — task wait

void postorder(node *p) { // p is
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for
descendants
 workfct(p->data);
}

Postorder graph traversal in
parallel — task wait

void postorder(node *p) { // p is
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for
descendants
 workfct(p->data);
}

Postorder graph traversal in
parallel — task wait

void postorder(node *p) { // p is
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for
descendants
 workfct(p->data);
}

, , , ,

workfct workfct workfct workfct

Postorder graph traversal in
parallel — task wait

void postorder(node *p) { // p is
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for
descendants
 workfct(p->data);
}

workfct

Postorder graph traversal in
parallel — task wait

void postorder(node *p) { // p is
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for
descendants
 workfct(p->data);
}

workfct workfct

Postorder graph
traversal in parallel —

task waitvoid postorder(node *p) {
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
#pragma omp taskwait // wait for descendants
 workfct(p->data);
}

process process

process

• Certain constructs contain task
scheduling points (task constructs,
taskwait constructs, taskyield [#pragma
omp taskyield] constructs, barriers (implicit
and explicit), the end of a tied region)

• Threads at task scheduling points can
suspend their task and begin executing
another task in the task pool (task
switching)

• At the completion of the task or at
another task scheduling point it can
resume executing the original task

Task scheduling points

Example: task switching
#pragma omp single
{
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
}

• Many tasks rapidly generated -- eventually more
tasks than threads

• Generated tasks will have to suspend until a thread
can execute them

• With task switching, the executing thread can

• execute an already generated task, draining the
task pool

• execute the encountered task (could be cache
friendly)

Example: thread switching
#pragma omp single
{
 #pragma omp task untied
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task // tied
 process(item[i]);
}• Eventually too many tasks are generated

• Task that is generating tasks is suspended and the task
that is executed executes (for example) a long task

• Other threads execute all of the already generated tasks
and begin starving for work

• With thread switching the task that generates tasks can
be resumed by a different thread and generate tasks,
ending starvation

• Programmer must specify this behavior with untied

The task generating
other tasks is untied,
the tasks executing
process() are tied.

sharing data

• Supported, but you have to be
careful.

• Let p be a variable in a task T1

• Let task T1 spawn task T2

• Let T2 access p shared or
lastprivate

• If there is no taskwait, T1 can finish before
T2 does. When T1 finishes, p no longer
exists to be asscessed or copied back to.

Synchronization

• Locks

• Nested locks

Simple locks

• A simple lock is available if it is not
set

• Lock manipulation routines include:

• omp_init_lock(...)

• omp_set_lock(...)

• omp_unset_lock(...)

• omp_test_lock(...)

• omp_destroy_lock

Simple lock example

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{
 id = omp_get_thread_num();
 tmp = do_lots_of_work(id);
 omp_set_lock(&lck);
 printf(“%d %d”, id, tmp);
 omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

lck 0

1

0

lck

lck

lck

Consider the code below . . .

void* items[100000000]; init(items);
omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel for
{
 for (int i = 0; i < 100000000; i++) {
 omp_set_lock(&lck);
 update(items[i]);
 omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

void* items[100000000]; init(items);
#pragma omp parallel for
{
 for (int i = 0; i < 100000000; i++) {
 #pragma omp conflict
 update(items[i]);
}

Left and right code is
pretty much the same
and will essentially
serialize the for loop.

Let’s try and do this with
some actual parallelism

void* items[100000000]; init(items); // items[i] and items[j] may point to
 // the same thing
omp_lock_t lck[100000000];
for (int i = 0; i < 100000000; i++)
 omp_init_lock(&(lck[i]));
#pragma omp parallel for
{
 for (int i = 0; i < 100000000; i++) {
 omp_set_lock(&(lck[i]));
 update(items[i]);
 omp_unset_lock(&(lck[i]));
}
for (int i = 0; i < 100000000; i++)
 omp_destroy_lock(&(lck[i]));

This doesn’t work, why?

Hint: what is being changed by
update and what does the set
lock correspond to?

Why it is wrong
... u v

... u v
items

items• items[u] and items[v]
point to the same
storage/object

• two different locks
are acquired/set by
omp_set_lock(&(lck[u]));

omp_set_lock(&(lck[v]));

• Locks are not
providing exclusive
access to the object

• Also, there are
implementation limits
on the number of
locks

The right (or at least better)
way to do this

void* items[100000000]; init(items); // items[i] and items[j] may point
to
 // the same thing
omp_lock_t lck[101];
for (int i = 0; i < 101; i++)
 omp_init_lock(&(lck[i]));
#pragma omp parallel for private(tmp)
{
 for (int i = 0; i < 100000000; i++) {
 int tmp = (((int) items[i]) % 101));
 omp_set_lock(&(lck[tmp]));
 update(items[i]);
 omp_unset_lock(&(lck[tmp]));
}
for (int i = 0; i < 101; i++)
 omp_destroy_lock(&(lck[i]));

Why this works

• If pointers are
evenly distributed
then few collisions
on << 101 threads,
little serialization

• Balance the number
of locks to give an
acceptable chance
of collision on a lock

u v...items

...lck
0 100

pp

let (p % 101) ==
98

98

Why this works
... u v

...98
items

p pitems

• If pointers are
evenly distributed
then few collisions
on << 101 threads,
little serialization

• Balance the number
of locks to give an
acceptable chance
of collision on a lock

Let p%101 = 98

Nested locks
• A nested lock is available if it is not set or

it is set by the same thread attempting to
acquire it.

• Lock manipulation routines include:

• omp_init_nest_lock(...)

• omp_set_ nest_ lock(...)

• omp_unset_ nest_ lock(...)

• omp_test_ nest_ lock(...)

• omp_destroy_ nest_lock

OpenMP Memory
Model

Two issues, coherence and consistency.
Coherence: Behavior of the memory system when
a single address is accessed by multiple threads.
Consistency: Orderings of accesses to different
addresses by multiple threads.

Memory models
• Memory models define the

interactions of loads and stores
(reads and writes) in different
threads

• HW dependences (hazards) are
used to deal with reads and writes
within a thread to the same
memory location and are not
generally thought of as part of the
memory model.

• Stated differently, regardless of
of the memory model,
reads/writes, writes/writes and
writes/reads within a thread to
the same memory location will
be in-order

OpenMP Memory Model Basics

a b

Semantically
equivalent single
thread order

Compiler

private
view

private
view

thread 0 thread 1

thread
private

thread
private

a b

 a b

Commit order

Wa Wb Ra Rb . . .

Program Order

Source Code

Wb Rb Wa Ra . . .

Sequential Consistency
• An operation is sequentially

consistent (SC) if the operation
is in the same order in the
program order, code order and
commit order.

• An execution is SC if all
operations appear to be SC

• A consistency model where all
operations are SC is strict

• A consistency model where
some of these orders can be
violated is relaxed.

• Most languages and processors
have relaxed orders

Reordering Accesses

• Compiler reorders program order to code order

• Reordering happens because of the compiler doing
optimizations. In practice, compilers will maintain SC
if the program is well-synchronized, for reasons we
will see soon.

• Hardware reorders code order to commit order

• Reordering happens because of out-of-order
execution. Hardware will maintain SC if the code
order is SC and the program is well synchronized.

• The private view of memory can differ from shared
memory

• Consistency models are based on orderings of Reads
(R), Writes (W) and Synchronizations (S) within a thread

R→R, W→W, R→W, W→R, R→S, S→S, W→S

OpenMP’s consistency model
• Weak consistency

• S ops (synchronization operations)
must be executed in sequential order

• Within a thread cannot reorder S with
respect to W or S with respect R
(cannot move past a read or write)

• Guarantees S→W, S→R, R→S, W→S,
S→S

• R→R, W→W, R→W missing.
Obviously, if writes or read/writes to
the same location they are ordered
(dependences/hazards enforced) If
read or write not to same memory
location, can be moved around with
respect to one another

What is a race?

• Execute a parallel
program

• If a there is a read
or write to some v
in a thread, and a
write to it in
another thread,
and no enforced
ordering at runtime
between the two,
there is a race.

• Orderings come
from
synchronization

either blue or green
order must exist at
runtime

Operation on
non-shared data

Operation on
non-shared data

set lock(a)
v = . . .
unset lock(a)

set lock(a)
. . . = v
unset lock(a)

Operation on
non-shared data

Operation on
non-shared data

Green order occurs at
runtime

write to v must
occur after the
read -- cannot
be overlapping

Operation on
non-shared data

set lock(a)
v = . . .
unset lock(a)

Operation on
non-shared data

Operation on
non-shared data

set lock(a)
. . . = v
unset lock(a)

Operation on
non-shared data

Blue order occurs at runtime
Read and
write of V
cannot
overlap since
write must
occur before
read

Operation on
non-shared data

set lock(a)
v = . . .
unset lock(a)

Operation on
non-shared data

Operation on
non-shared data

set lock(a)
. . . = v
unset lock(a)

Operation on
non-shared data

A race exists – both accesses are
not enforce by a lock

Operation on
non-shared data

v = . . .

Operation on
non-shared data

Operation on
non-shared data

set lock(a)
. . . = v
unset lock(a)

Operation on
non-shared data

A race exists –
there is no
ordered path from
the read in one
thread to the write
in the other, or
vice versa

A race exists – the read and
write of v are not guarded by

the same lock
Operation on

non-shared data

set lock(a)
v = . . .
unset lock(a)

Operation on
non-shared data

Operation on
non-shared data

set lock(b)
. . . = v
unset lock(b)

Operation on
non-shared data

For an order to exist
between v= and =v it
must be that the fence in
the unset_lock() forces
any new value of v out
before the unset_lock
completes

The fence will not
complete until the value
to memory is committed

The value to memory will
not be committed before
any stale values of v are
invalidated

Operation on
non-shared data

Operation on
non-shared data

set lock(a)
v = . . .
unset lock(a)

set lock(a)
. . . = v
unset lock(a)

Operation on
non-shared data

Operation on
non-shared data

What about IBM’s Power processors?
Some Power fence’s
(called sync instructions)
can complete before the
value is committed to
memory. I.e., value may
be committed to shared
cache or local memory.

This makes for harder low-
level programming but
may make the machine
faster (sync’s execute
faster)

The OpenMP standard requires that OpenMP fences on
Power processors wait until new value visible to all and old
values invalidated

Operation on
non-shared data

Operation on
non-shared data

set lock(a)
v = . . .
unset lock(a)

set lock(a)
. . . = v
unset lock(a)

Operation on
non-shared data

Operation on
non-shared data

Remember that local view and shared memory
may not be the same

• flush forces a consistent view between the local and
shared memory by executing a fence

• flush() flushes all thread visible variables

• flush(list) flushes all variables in list

• A flush guarantees that

• all read and writes ops that read or write data in list
and that are before the flush() will complete before
the flush completes

• all read and writes ops that read or write data in list
and that are after the flush() will not start before
the flush completes

• flushes with overlapping lists (flush sets) cannot be
re-ordered with respect to one another in the same
thread

• Locks always execute a flush, as do barriers.

Flush Example

• The flush ensures
that other threads
can see A after the
flush executes

• Serves the function of
a fence in hardware
API’s

double A;
A = compute();
flush(A); // flush to memory to
 // make sure other
 // threads can pick up
 // the right value

I can’t think of a good use of
it in a non-racy program
since unlock essentially
does a flush

Compilers and flushes
• Compilers routinely reorder

instructions

• Compilers cannot move a read
or write past a barrier or a flush
whose flush set contains the
read or written variable

• Keeping track of what is
consistent can be confusing for
programmers, especially if
flush(list) is used

• flushes do not synchronize --
they make local and shared
memory consistent for the
thread executing flush

Runtime library calls

• omp_set_dynamic(true|false) (default is true)

• omp_get_dynamic() (test function)

• omp_num_procs()

• omp_in_parallel()

• omp_get_max_threads()

• omp_thread_limit

• double omp_get_wtime()

• double omp_get_wtick();

Nested parallelism
• You can nest parallelism constructs

• Calling omp_set_num_threads() within a
parallel construct sets the number
of threads available to the next
level of parallelism

• Can get info about execution
environment:

omp_get_active_level() // level of
// parallelism nesting

omp_get_ancestor(level) // thread ID of an
// ancestor

omp_get_teamsize(level) // number of
// threads executing an ancestor

Functions to control the level
of allowed nested parallelism

• Can set maximum active levels of
parallelism

OMP_MAX_ACTIVE_LEVELS (environment variable)
omp_set_max_active_levels()
omp_get_max_active_levels()

Loops
$omp parallel for schedule(static) nowait
for (i=0; i < n; i++) {
 a(i) =
}
$omp parallel for schedule(static)
for (j=0; j < n; j++) {
 ... = a(j)
}

Guarantees iterations for both
loops to execute on the same
threads

Loops
$omp parallel for collapse(2)
for (i=0; i < n; i++) {
 for (j=0; j < n; j++) {

 }
}

forms a single parallel
loop with n*n iterations

Loops (cont.)
• Schedule runtime (schedule(runtime)) made

more useful. Can set at runtime rather
than just reading from the environment

omp_set_schedule()
omp_get_schedule()

omp_set_schedule(omp_sched_static, 5);

AUTO schedule now supported --
runtime picks a schedule

C++ Random access iterators
can be used as control variables
in parallel loops

Portability
• Environment variables to control stack size added:

omp_stacksize

• Added environment variable to specify how to handle idle
threads: omp_wait_policy

ACTIVE: keep threads alive at barriers/locks

PASSIVE: try to release threads to the processor (i.e., don’t
use CPU cycles

• If not set, active for a while at barrier, then passive.

• Can specify maximum number of threads to use

OMP_THREAD_LIMIT

omp_get_thread_limit()

	Slide 1
	Topics (only OpenMP 3 in these slides)
	Creating Tasks
	Tasks
	Slide 6
	task construct syntax
	When do we know a task is finished?
	Example: parallel pointer chasing with parallel region
	Example: parallel pointer chasing with for
	Example: parallel postorder graph traversal
	Example: postorder graph traversal in parallel
	Postorder graph traversal in parallel — task wait
	Postorder graph traversal in parallel — task wait
	Postorder graph traversal in parallel — task wait
	Postorder graph traversal in parallel — task wait
	Postorder graph traversal in parallel — task wait
	Postorder graph traversal in parallel — task wait
	Task scheduling points
	Example: task switching
	Example: thread switching
	taskprivate data — this was wrong in the original slides
	Synchronization
	Simple locks
	Simple lock example
	Motivation for next lock example
	More complicated lock example (a)
	Slide 28
	More complicated lock example (a)
	Why this works
	Slide 31
	Nested locks
	OpenMP Memory Model
	Memory models
	Slide 35
	Sequential Consistency
	Reordering Accesses
	OpenMP’s consistency model
	Slide 39
	Green order occurs
	Blue order occurs
	A race exists
	A race exists
	Slide 44
	What about IBM’s Power processors?
	Remember that local view and shared memory may not be the same
	Flush Example
	Compilers and flushes
	Runtime library calls
	Nested parallelism
	Environment variables and functions
	Loops
	Loops
	Loops (cont.)
	Portability

