
More Advanced 
OpenMP

• This is an abbreviated form of Tim 
Mattson’s and Larry Meadow’s 
(both at Intel) SC ’08 tutorial 
located at 
http://openmp.org/mp-documents/o
mp-hands-on-SC08.pdf

• All errors are my responsibility

http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf


Topics (only OpenMP 3 in these 
slides)

• Creating Threads

• Synchronization

• Runtime library calls

• Data environment

• Scheduling for and 
sections

• Memory Model

• OpenMP 3.0 and 
Tasks

OpenMP 4

• Extensions to tasking

• User defined reduction 
operators

• Construct cancellation

• Portable SIMD 
directives

• Thread affinity



Creating Tasks
• We already know about 

• parallel regions (omp parallel)

• parallel sections (omp parallel 
sections)

• parallel for (omp parallel for) or 
omp for when in a parallel region

• We will now talk about Tasks



Tasks
• OpenMP before OpenMP 3.0 has always had tasks

• A parallel construct created implicit tasks, one per 
thread

• A team of threads was created to execute the tasks

• Each thread in the team is assigned (and tied) to one 
task

• Barrier holds the original master thread until all tasks 
are finished (note that the master may also execute a 
task)



Tasks
• OpenMP 3.0 allows us to explicitly create tasks.

• Every part of an OpenMP program is part of some task, 
with the master task executing the program even if there 
is no explicit task



task construct syntax

#pragma omp task [clause[[,]clause] ...]
structured-block

clauses:
if (expression)
untied
shared (list)
private (list)
firstprivate (list)
default( shared | none )

if (false) says execute the task by the 
spawning thread
• different task with respect to 

synchronization
• Data environment is local to the 

thread
• User optimization for cache affinity 

and cost of executing on a different 
thread

untied says the task can be 
executed by more than one thread, 
i.e., different threads execute 
different parts of the task

Blue options are as 
before and 
associated with 
whether storage is 
shared or private



When do we know a task is 
finished?

• At explicit or implicit thread barriers

• All tasks generated in the current parallel region are 
finished when the barrier for that parallel region 
finishes

• Matches what you expect, i.e., when a barrier is 
reached the work preceding the barrier is finished

• At task barriers

• Wait until all tasks defined in the current task are 
finished

#pragma omp taskwait

• Applies to tasks T directly generated in the current 
task, not to tasks generated by the tasks T



Example: parallel pointer 
chasing with parallel region

#pragma omp parallel
{
   #pragma omp single private(p)
   {
      p = listhead ;
      while (p) {
         #pragma omp task
                  workfct (p)
         p=next (p) ;
      }
   }
}

value of p passed is value 
of p at the time of the 
invocation.  Saved 
on the stack like with 
any function call

workfct is an ordinary user 
function.



Example: parallel pointer 
chasing with for

#pragma omp parallel
{
   #pragma omp for private(p)
   for ( int i =0; i <numlists ; i++) {
      p = listheads [ i ] ;
      while (p ) {
         #pragma omp task
                  workfct (p)
         p=next (p ) ;
      }
   }
}



Example: parallel postorder graph 
traversal

void postorder(node *p) {
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for descendants
   workfct(p->data);
}

Parent task 
suspended until 
child tasks finish

This is a task 
scheduling point



Example: postorder graph 
traversal in parallel

void postorder(node *p) { // p is 
initially 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for 
descendants
   workfct(p->data);
}

Postorder is called from 
within an omp parallel 
region



Postorder graph traversal in 
parallel — task wait

void postorder(node *p) { // p is 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for 
descendants
   workfct(p->data);
}



Postorder graph traversal in 
parallel — task wait

void postorder(node *p) { // p is 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for 
descendants
   workfct(p->data);
}



Postorder graph traversal in 
parallel — task wait

void postorder(node *p) { // p is 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for 
descendants
   workfct(p->data);
}
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Postorder graph traversal in 
parallel — task wait

void postorder(node *p) { // p is 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for 
descendants
   workfct(p->data);
}

workfct



Postorder graph traversal in 
parallel — task wait

void postorder(node *p) { // p is 
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for 
descendants
   workfct(p->data);
}

workfct workfct



Postorder graph 
traversal in parallel — 

task waitvoid postorder(node *p) {
   if (p->left)
      #pragma omp task
               postorder(p->left);
   if (p->right)
      #pragma omp task
               postorder(p->right);
#pragma omp taskwait // wait for descendants
   workfct(p->data);
}

process process

process



• Certain constructs contain task 
scheduling points (task constructs, 
taskwait constructs, taskyield [#pragma 
omp taskyield] constructs, barriers (implicit 
and explicit), the end of a tied region)

• Threads at task scheduling points can 
suspend their task and begin executing 
another task in the task pool (task 
switching)

• At the completion of the task or at 
another task scheduling point it can 
resume executing the original task

Task scheduling points



Example: task switching
#pragma omp single
{
   for (i=0; i<ONEZILLION; i++)
      #pragma omp task
               process(item[i]);
}

• Many tasks rapidly generated -- eventually more 
tasks than threads

• Generated tasks will have to suspend until a thread 
can execute them

• With task switching, the executing thread can

• execute an already generated task, draining the 
task pool

• execute the encountered task (could be cache 
friendly)



Example: thread switching
#pragma omp single
{
   #pragma omp task untied
      for (i=0; i<ONEZILLION; i++)
         #pragma omp task // tied
                  process(item[i]);
}• Eventually too many tasks are generated

• Task that is generating tasks is suspended and the task 
that is executed executes (for example) a long task

• Other threads execute all of the already generated tasks 
and begin starving for work

• With thread switching the task that generates tasks can 
be resumed by a different thread and generate tasks, 
ending starvation

• Programmer must specify this behavior with untied

The task generating 
other tasks is untied, 
the tasks executing 
process( ) are tied.



sharing data

• Supported, but you have to be 
careful.

• Let p be a variable in a task T1

• Let task T1 spawn task T2

• Let T2 access p shared or 
lastprivate

• If there is no taskwait, T1 can finish before 
T2 does.  When T1 finishes, p no longer 
exists to be asscessed or copied back to.



Synchronization

• Locks

• Nested locks



Simple locks

• A simple lock is available if it is not 
set

• Lock manipulation routines include:

• omp_init_lock(...)

• omp_set_lock(...)

• omp_unset_lock(...)

• omp_test_lock(...)

• omp_destroy_lock



Simple lock example

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{
   id = omp_get_thread_num();
   tmp = do_lots_of_work(id);
   omp_set_lock(&lck);
   printf(“%d %d”, id, tmp);
   omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

lck 0

1

0

lck

lck

lck



Consider the code below . . .

void* items[100000000]; init(items); 
omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel for
{
   for (int i = 0; i < 100000000; i++) {   
      omp_set_lock(&lck);
      update(items[i]);
      omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

void* items[100000000]; init(items); 
#pragma omp parallel for 
{
   for (int i = 0; i < 100000000; i++) {   
      #pragma omp conflict
      update(items[i]);
}

Left and right code is 
pretty much the same 
and will essentially 
serialize the for  loop.



Let’s try and do this with 
some actual parallelism

void* items[100000000]; init(items); // items[i] and items[j] may point to 
                                                             // the same thing
omp_lock_t lck[100000000];
for (int i = 0; i < 100000000; i++) 
   omp_init_lock(&(lck[i]));
#pragma omp parallel for
{
   for (int i = 0; i < 100000000; i++) {   
      omp_set_lock(&(lck[i]));
      update(items[i]);
      omp_unset_lock(&(lck[i]));
}
for (int i = 0; i < 100000000; i++)
   omp_destroy_lock(&(lck[i]));

This doesn’t work, why?

Hint: what is being changed by 
update and what does the set 
lock correspond to?



Why it is wrong
... u v

... u v
items

items• items[u] and items[v] 
point to the same 
storage/object

• two different locks 
are acquired/set by      
omp_set_lock(&(lck[u]));

omp_set_lock(&(lck[v]));  

• Locks are not 
providing exclusive 
access to the object

• Also, there are 
implementation limits 
on the number of 
locks



The right (or at least better) 
way to do this

void* items[100000000]; init(items); // items[i] and items[j] may point 
to 
                                                             // the same thing
omp_lock_t lck[101];
for (int i = 0; i < 101; i++) 
   omp_init_lock(&(lck[i]));
#pragma omp parallel for private(tmp)
{
   for (int i = 0; i < 100000000; i++) { 
      int tmp = (((int) items[i]) % 101));   
      omp_set_lock(&(lck[tmp]));
      update(items[i]);
      omp_unset_lock(&(lck[tmp]));
}
for (int i = 0; i < 101; i++)
   omp_destroy_lock(&(lck[i]));



Why this works

• If pointers are 
evenly distributed 
then few collisions 
on << 101 threads, 
little serialization

• Balance the number 
of locks to give an 
acceptable chance 
of collision on a lock

u v...items

...lck
0 100

pp

let (p % 101) == 
98

98



Why this works
... u v

...98
items

p pitems

• If pointers are 
evenly distributed 
then few collisions 
on << 101 threads, 
little serialization

• Balance the number 
of locks to give an 
acceptable chance 
of collision on a lock

Let p%101 = 98



Nested locks
• A nested lock is available if it is not set or 

it is set by the same thread attempting to 
acquire it.

• Lock manipulation routines include:

• omp_init_nest_lock(...)

• omp_set_ nest_ lock(...)

• omp_unset_ nest_ lock(...)

• omp_test_ nest_ lock(...)

• omp_destroy_ nest_lock



OpenMP Memory  
Model

Two issues, coherence and consistency.  
Coherence: Behavior of the memory system when 
a single address is accessed by multiple threads.  
Consistency: Orderings of accesses to different 
addresses by multiple threads.



Memory models
• Memory models define the 

interactions of loads and stores 
(reads and writes) in different 
threads

• HW dependences (hazards) are 
used to deal with reads and writes 
within a thread to the same 
memory location and are not 
generally thought of as part of the 
memory model.  

• Stated differently, regardless of 
of the memory model, 
reads/writes, writes/writes and 
writes/reads within a thread to 
the same memory location will 
be in-order



OpenMP Memory Model Basics

a   b

Semantically 
equivalent single 
thread order

Compiler

private 
view

private 
view

thread 0 thread 1

thread 
private

thread 
private

a   b

                      a                           b

Commit order

Wa   Wb   Ra   Rb   . . . 

Program Order

Source Code

Wb   Rb   Wa   Ra   . . . 



Sequential Consistency 
• An operation is sequentially 

consistent (SC) if the operation 
is in the same order in the 
program order, code order and 
commit order. 

• An execution is SC if all 
operations appear to be SC

• A consistency model where all 
operations are SC is strict

• A consistency model where 
some of these orders can be 
violated is relaxed.

• Most languages and processors 
have relaxed orders



Reordering Accesses

• Compiler reorders program order to code order

• Reordering happens because of the compiler doing 
optimizations.  In practice, compilers will maintain SC 
if the program is well-synchronized, for reasons we 
will see soon.

• Hardware reorders code order to commit order

• Reordering happens because of out-of-order 
execution.  Hardware will maintain SC if the code 
order is SC and the program is well synchronized.

• The private view of memory can differ from shared 
memory

• Consistency models are based on orderings of Reads 
(R), Writes (W) and Synchronizations (S) within a thread

R→R,  W→W,  R→W,  W→R, R→S,  S→S,  W→S



OpenMP’s consistency model
• Weak consistency

• S ops (synchronization operations) 
must be executed in sequential order

• Within a thread cannot reorder S with 
respect to W or S with respect R 
(cannot move past a read or write)

• Guarantees S→W, S→R, R→S, W→S, 
S→S

• R→R,  W→W,  R→W missing.  
Obviously, if writes or read/writes to 
the same location they are ordered 
(dependences/hazards enforced)  If 
read or write not to same memory 
location, can be moved around with 
respect to one another



What is a race?

• Execute a parallel 
program

• If a there is a read 
or write to some v 
in a thread, and a 
write to it in 
another thread, 
and no enforced 
ordering at runtime 
between the two, 
there is a race.

• Orderings come 
from 
synchronization

either blue or green 
order must exist at 
runtime

Operation on 
non-shared data

Operation on 
non-shared data

set lock(a)
v = . . .
unset lock(a)

set lock(a)
. . . = v
unset lock(a)

Operation on 
non-shared data

Operation on 
non-shared data



Green order occurs at 
runtime

write to v must 
occur after the 
read -- cannot 
be overlapping

Operation on 
non-shared data

set lock(a)
v = . . .
unset lock(a)

Operation on 
non-shared data

Operation on 
non-shared data

set lock(a)
. . . = v
unset lock(a)

Operation on 
non-shared data



Blue order occurs at runtime
Read and 
write of  V 
cannot 
overlap since 
write must 
occur before 
read

Operation on 
non-shared data

set lock(a)
v = . . .
unset lock(a)

Operation on 
non-shared data

Operation on 
non-shared data

set lock(a)
. . . = v
unset lock(a)

Operation on 
non-shared data



A race exists – both accesses are 
not enforce by a lock

Operation on 
non-shared data

v = . . .

Operation on 
non-shared data

Operation on 
non-shared data

set lock(a)
. . . = v
unset lock(a)

Operation on 
non-shared data

A race exists – 
there is no 
ordered path from 
the read in one 
thread to the write 
in the other, or 
vice versa



A race exists – the read and 
write of v are not guarded by 

the same lock
Operation on 

non-shared data

set lock(a)
v = . . .
unset lock(a)

Operation on 
non-shared data

Operation on 
non-shared data

set lock(b)
. . . = v
unset lock(b)

Operation on 
non-shared data



For an order to exist 
between v= and =v it 
must be that the fence in 
the unset_lock( ) forces 
any new value of v out 
before the unset_lock 
completes

The fence will not 
complete until the value 
to memory is committed

The value to memory will 
not be committed before 
any stale values of v are 
invalidated

Operation on 
non-shared data

Operation on 
non-shared data

set lock(a)
v = . . .
unset lock(a)

set lock(a)
. . . = v
unset lock(a)

Operation on 
non-shared data

Operation on 
non-shared data



What about IBM’s Power processors?
Some Power fence’s 
(called sync instructions) 
can complete before the 
value is committed to 
memory.  I.e., value may 
be committed to shared 
cache or local memory.

This makes for harder low-
level programming but 
may make the machine 
faster (sync’s execute 
faster)

The OpenMP standard requires that OpenMP fences on 
Power processors wait until new value visible to all and old 
values invalidated

Operation on 
non-shared data

Operation on 
non-shared data

set lock(a)
v = . . .
unset lock(a)

set lock(a)
. . . = v
unset lock(a)

Operation on 
non-shared data

Operation on 
non-shared data



Remember that local view and shared memory 
may not be the same 

• flush forces a consistent view between the local and 
shared memory by executing a fence

• flush( ) flushes all thread visible variables

• flush(list) flushes all variables in list

• A flush guarantees that 

• all read and writes ops that read or write data in list 
and that are before the flush( ) will complete before 
the flush completes

• all read and writes ops that read or write data in list 
and that are after the flush( ) will not start before 
the flush completes 

• flushes with overlapping lists (flush sets) cannot be 
re-ordered with respect to one another in the same 
thread

• Locks always execute a flush, as do barriers.



Flush Example

• The flush ensures 
that other threads 
can see A after the 
flush executes

• Serves the function of 
a fence in hardware 
API’s

double A;
A = compute();
flush(A); // flush to memory to 
               // make sure other
               // threads can pick up 
               // the right value

I can’t think of a good use of 
it in a non-racy program 
since unlock essentially 
does a flush



Compilers and flushes
• Compilers routinely reorder 

instructions

• Compilers cannot move a read 
or write past a barrier or a flush 
whose flush set contains the 
read or written variable

• Keeping track of what is 
consistent can be confusing for 
programmers, especially if 
flush(list) is used

• flushes do not synchronize  -- 
they make local and shared 
memory consistent for the 
thread executing flush



Runtime library calls

• omp_set_dynamic(true|false) (default is true)

• omp_get_dynamic( ) (test function)

• omp_num_procs( ) 

• omp_in_parallel( )

• omp_get_max_threads( )

• omp_thread_limit

• double omp_get_wtime( )

• double omp_get_wtick( );



Nested parallelism
• You can nest parallelism constructs

• Calling omp_set_num_threads( ) within a 
parallel construct sets the number 
of threads available to the next 
level of parallelism

• Can get info about execution 
environment:

omp_get_active_level() // level of 
// parallelism nesting

omp_get_ancestor(level) // thread ID of an
// ancestor

omp_get_teamsize(level) // number of
// threads executing an ancestor



Functions to control the level 
of allowed nested parallelism

• Can set maximum active levels of 
parallelism

OMP_MAX_ACTIVE_LEVELS (environment variable)
omp_set_max_active_levels()
omp_get_max_active_levels()



Loops
$omp parallel for schedule(static) nowait
for (i=0; i < n; i++) {
   a(i) = ....
}
$omp parallel for schedule(static)
for (j=0; j < n; j++) {
   ... = a(j)
}

Guarantees iterations for both 
loops to execute on the same 
threads



Loops
$omp parallel for collapse(2)
for (i=0; i < n; i++) {
   for (j=0; j < n; j++) {
      .....
   }
}

forms a single parallel 
loop with n*n iterations



Loops (cont.)
• Schedule runtime (schedule(runtime)) made 

more useful.  Can set at runtime rather 
than just reading from the environment

omp_set_schedule()
omp_get_schedule()

omp_set_schedule(omp_sched_static, 5);

AUTO schedule now supported -- 
runtime picks a schedule

C++ Random access iterators 
can be used as control variables 
in parallel loops



Portability
• Environment variables to control stack size added: 

omp_stacksize

• Added environment variable to specify how to handle idle 
threads: omp_wait_policy  

ACTIVE: keep threads alive at barriers/locks

PASSIVE: try to release threads to the processor (i.e., don’t 
use CPU cycles

• If not set, active for a while at barrier, then passive.

• Can specify maximum number of threads to use

OMP_THREAD_LIMIT

omp_get_thread_limit( )
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