
Cilk

Monday, April 24, 17

Design philosophy

• Integrate with C and C++, uses language extensions

• Target shared memory machines

• User identifies and specifies parallelism, Cilk manages it

• User identifies function invocations that can execute
independently - spawn

• Cilk generates the code to support the parallelism

• Synchronization is available to control parallel execution

• Cilk maintains a work queue to efficiently exploit parallelism

Monday, April 24, 17

frames or stack frames
Stack frames are essential to
modern (i.e. since the early 1960s)
function invocation

Allow storage to be created that is
• local to an invocation in

sequential programs
• automatically removed when the

invocation leaves

Allows separate invocations of a
function to have a unique identity

Supports recursion and clean returns
from deep chains of function calls

Monday, April 24, 17

Let’s look at a simple Cilk function
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

Cilk keyword identifies this as a Cilk function operating under Cilk rules

But before talking about how Cilk would execute this, let’s review how this would
be executed sequentially given the call fib(2);

Each invocation of fib has its own stack frame, and so there is a frame created for
fib(2)

Because of line 06, space is created on the frame for x and y

At line 08 a new frame is created and fib(1) is called

Execution begins for fib(1). After 03 is executed, the value of n (1) is placed into
fib(2)’s x variable

Execution continues to 09, the value 0 is placed into y, the values are added and
returned to the return variable at the call to fib(2)

Monday, April 24, 17

Let’s look at a simple Cilk function
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

Let’s now see how Cilk would execute this in parallel

Each invocation of fib has its own stack frame, and so there is a frame created for
fib(2)

When statement 08 is reached, the spawn keyword says that fib(1) can safely
execute in parallel with the rest of the program on a different processor

• Cilk runtime assigns invocation to a processor
• That processor creates a stack frame for fib(1)
• fib(1) executes in parallel with the rest of the code
• when fib(1) finishes it returns, placing 1 into x

While the red actions are happening, the green thread executes statement 09,
spawing fib(0)

• Actions analogous to what happened with fib(1) occur, except with 0 and y

Monday, April 24, 17

What synchs are for
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

After spawning fib(1) and fib(0) execution proceeds to the sync statement at
line 11.

The synch statement stops processing until all function invocations spawned by
this function (fib(2)) with this frame have reached it. It is a form of barrier.

The synch ensures that both spawns have returned before the return in
statement 13 is executed. Not doing this would create a race and an incorrect
program.

Monday, April 24, 17

How synchs work
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

After spawning fib(1) and fib(0) execution proceeds to the sync statement at
line 11.

The synch statement stops processing until all function invocations spawned by
this function (fib(2)) with this frame have reached it. It is a form of barrier.

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

spawn spawn

spawn spawn spawn spawn

spawn spawn
fib(1)

fib(1)

The synch in one invocation of fib(2)

The synch in another
invocation of fib(2)

Monday, April 24, 17

How synchs work
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

After spawning fib(1) and fib(0) execution proceeds to the sync statement at
line 11.

The synch statement stops processing until all function invocations spawned by
this function (fib(2)) with this frame have reached it. It is a form of barrier.

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

spawn spawn

spawn spawn spawn spawn

spawn spawn
fib(1)

fib(1)

The synch in fib(3)

Monday, April 24, 17

How synchs work
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

After spawning fib(1) and fib(0) execution proceeds to the sync statement at
line 11.

The synch statement stops processing until all function invocations spawned by
this function (fib(2)) with this frame have reached it. It is a form of barrier.

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

spawn spawn

spawn spawn spawn spawn

spawn spawn
fib(1)

fib(1)

The synch in fib(4)

Monday, April 24, 17

How synchs work
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

After spawning fib(1) and fib(0) execution proceeds to the sync statement at
line 11.

The synch statement stops processing until all function invocations spawned by
this function (fib(2)) with this frame have reached it. It is a form of barrier.

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

spawn spawn

spawn spawn spawn spawn

spawn spawn
fib(1)

fib(1)

Monday, April 24, 17

Inlets
Inlets are Cilk constructs that process return
values before they are returned.

Inlets always execute atomically

Cilk normally requires a procedure to be
spawned as a separate statement and continues
with its execution, this rule is relaxed for inlets

fib(n-1) is invoked;

the parent continues executing after the inlet

when fib(n-1) returns its thread passes control
to summer

When summer is finished, the thread that
executed it waits at the sync

cilk int fib (int n) {

 int x = 0;
 inlet void summer (int result) {
 x += result;
 return;
 }
 if (n<2) return n;
 else {
 summer(spawn fib (n-1));
 summer(spawn fib (n-2));
 sync;
 return (x);
}

Monday, April 24, 17

Implicit Inlets
Give a way of expressing reductions, etc. succinctly

Cannot be mixed with explicit inlets, i.e.

 x += summer(spawn(fib(n-1))
would not be legal

aborts

Cilk allows an abort statement to appear in an inlet -- it
kills all spawned threads of the parent procedure

They do not die instantly

They may terminate normally, and return a value

It is up to the user to handle these situations

cilk int fib (int n) {

 int x = 0;

 if (n<2) return n;
 else {
 x+= spawn fib (n-1));
 x += spawn fib (n-2));
 sync;
 return (x);
}

Monday, April 24, 17

Scheduling

• In a sequential execution, when executing a spawn, Cilk will

• push the frame and program counter of the parent onto a stack

• execute the spawned procedure

• dequeue the parent frame and continue its execution

Monday, April 24, 17

Scheduling - parallel execution
• Each processor maintains a deque or double ended queue

• When a function is spawned any frames that need to be suspended
are placed on the deque

• The processor owning the deque can only remove frames from the
end it inserted them

• Other processors may remove from the other end

Monday, April 24, 17

Scheduling - parallel execution

• When an function is spawned

• place the parent onto the bottom of the deque/“stack”

• execute the spawned function, which may place itself onto the
bottom of the stack if it spawns functions

• When the function returns, pop work off of the bottom (the frame
of the parent of the spawned function)

• If a thread is idle, take work off of the top of the deque

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

topbottom

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

top
bottom

1

active

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

topbottom

21

active

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

top bottom

321

active

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

topbottom

21

active

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

top bottom

321

active

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

topbottom

21

active

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

top
bottom

1

active

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

top
bottom

21

active

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

top
bottom

1

active

Monday, April 24, 17

Sequential stack example
01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

topbottomactive

Process this side next

Monday, April 24, 17

Work stealing example

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9

top bottom

321

active T0

If there is an idle thread Ti,
the Cilk scheduler will take
work off of the top of the
queue and give it to that
thread

T0 queue

Monday, April 24, 17

Work stealing example

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9
active T0

top bottom

321 T0 queue

topbottom

 T1 queue

Monday, April 24, 17

Work stealing example

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9
active T0

topbottom

32 T0 queue

top
bottom

 T1 queue

active T1

Monday, April 24, 17

Work stealing example

fib(4)

fib(3) fib(2)

fib(2) fib(0)

fib(1) fib(0)

fib(1)
fib(1)

1

2

3

4 5

6

7

8 9
active T0

topbottom

32 T0 queue

top
bottom

1 T1 queue

active T1

Monday, April 24, 17

Parallel Programming
with Cilk Plus

Arch D. Robison

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Load Balancing and Locality

7

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Race-Free  Deterministic

9

Deterministic

Parallel programs

Thread 1
m.lock();
x = 1;
m.unlock();

Thread 2
m.lock();
x = 2;
m.unlock();

Thread 1
x = 1;

Thread 2
x = 1;

Race free

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Deadlock

10

Thread 1
a.lock();
b.lock();
++A;
--B;
b.unlock();
a.unlock();

Thread 2
b.lock();
a.lock();
--B;
++A;
a.unlock();
b.unlock();

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Philosophy of Cilk Plus

14

Division of Responsibilities

Programmer Cilk Plus

Specify what can run in parallel. Make parallelism easy to express.

Enable clean composition.

Provide much more potential
parallelism than system can use.

Throttle actual parallelism.

• Make unused parallelism cheap.

• Balance load.

Express SIMD opportunities. Make SIMD easy to express.
Generate SIMD code.

Avoid races. Synchronize strands of execution.

Minimize use of locks. Provide hyperobjects.

Promote locality via cache-
oblivious style.

Depth-first serial execution.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Style Issue

23

// Bad Style
cilk_spawn f();

cilk_spawn g();

// nop

cilk_sync;

f(); g(); // nop

Wasted fork

// Preferred style

cilk_spawn f();

g();

// nop

cilk_sync;

f(); g();
// nop

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Serial Elision

Cilk keywords can be trivially eliminated:

Resulting program is called the serial elision

• It is a valid serial C/C++ program!

Likewise, the serial elision is always a valid
implementation of a Cilk program:

• Means a Cilk program can always run on a single thread.

• Fundamental requirement for avoiding oversubscription.

28

#define cilk_spawn
#define cilk_sync
#define cilk_for for

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

29

Races

Race

• Two unordered memory references and at least one
is a write.

Cilk program is deterministic if:

• It has no races

• It uses no locks

• Reducer operations are associative

Deterministic Cilk program has same effect as its
serial elision.

Will talk about automatic
race detection later.

Floating-point + and *
are almost associative.

29

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Effective Cilk Plus: Writing Scalable
Programs

Work-span model of complexity

Load balancing

Amortizing scheduling overhead

Hazards of locks

Hyperobjects revisited

Correctness tools survey

57

6/17/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

DAG Model of Computation

58

Program is a directed acyclic graph
(DAG) of tasks

The hardware consists of workers

Scheduling is greedy

• No worker idles while there is a task
available.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work-Span Model

60

TP = time to run with P workers

T1 = work

• time for serial execution

• sum of all work

T∞ = span

• time for critical path

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work-Span Example

61

T1 = work = 7
T∞ = span = 5

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Burdened Span

62

Includes extra cost for
synchronization

Often dominated by cache line
transfers.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Lower Time Bound on
Greedy Scheduling

63

max(T1/P, T∞) ≤ TP

Work-Span Limit

(Implies upper bound on speedup)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Upper Time Bound on
Greedy Scheduling

64

TP ≤ (T1-T∞)/P + T∞

Brent’s Lemma

(Implies lower bound on speedup)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

73

spawn

spawn

spawn

spawn

P

spawn

spawn

P

spawn

spawn

spawn

spawn

P

spawn

spawn

spawn

P

spawn

spawn Spawn! Spawn!
spawn

spawn

Spawn!

When each processor has work to do, a spawn is
roughly the cost of about 25 function calls.

Load Balancing by Work-stealing

Each processor has a deque of spawned tasks.

73

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

74

spawn

spawn

spawn

spawn

P

spawn

spawn

P

spawn

spawn

spawn

spawn

P

spawn

spawn

spawn

P

spawn

spawn

spawn

spawn

spawn

Spawn! Return!

Load Balancing by Work-stealing

6/17/2012

74

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Load Balancing by Work-stealing

75

spawn

spawn

spawn

spawn

P

spawn

P

spawn

spawn

spawn

spawn

P

spawn

spawn

spawn

P

spawn

spawn

spawn

spawn

Return!
spawn

75

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work-stealing task scheduler

76

spawn

spawn

spawn

spawn

P P

spawn

spawn

spawn

spawn

P

spawn

spawn

spawn

P

spawn

spawn

spawn

spawn

Steal!
spawn

76

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work-stealing task scheduler

77

spawn

spawn

spawn

spawn

P P

spawn

spawn

spawn

spawn

P

spawn

spawn

spawn

P

spawn

spawn

spawn

spawn

Spawn!
spawn

spawn

With sufficient parallelism, the steals are rare, and
we get linear speedup (ignoring memory effects).

77

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP Tactics to Unlearn
(Thanks to James Cownie for List)

1. Creating one work item per thread.

2. Anything involving omp_get_thread_num().

3. Fear of nested parallelism.

97

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Problem with One Work Item
Per Thread

Destroys composability

• No way to know if running as child or sibling of other
parallel work.

Hurts load balancing.

• Gives scheduler no parallel slack.

98

Advice: Choose grain size based on amortizing
scheduling overhead, not balancing load.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Problem with Using Thread Ids

Thus thread id can change
in surprising ways.

• Id after spawn can be
different than before spawn.

• Id after sync can be different
than before spawns.

99

Advice: Use hyperobjects
(reducers and holders).

...

#include <cilk/cilk_api.h>

std::vector<int> A;

void bar() {

 int j = __cilkrts_get_worker_number()

 A[j]++;

}

int main() {

 A.resize (__cilkrts_get_nworkers()]);

 int i = __cilkrts_get_worker_number();
 cilk_spawn f();

 A[i]++;

 cilk_sync;

}

Race, because i==j!

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Embrace Nested Parallelism

Cilk was designed for nested parallelism.

Unused nested parallelism is inexpensive.

• Execution is serial when all threads are busy.

101

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Performance Tools

Intel® Cilk™ View

• Automatic work-span analysis for Cilk™ Plus

Intel® Amplifier

• General threading analysis

• Good for spotting hardware-related bottlenecks

103

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Sample Cilk View Output

104

Work
Limit

Span
Limit

Brent’s
Lemma

Uses burdened span that estimates scheduling costs.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Two Race Detectors for Cilk Plus

Intel® Cilk Screen

• “Happens before’’ on strands + “Lock set”

• Theoretically efficient implementation that strict
fork-join nature of Cilk

Intel® Parallel Inspector

• “Happens before’’ on threads + “Lock set”

• Also detects potential deadlock

• Also has memory checker

• GUI integrates into Visual Studio

126

Both based on “Pin” dynamic instrumentation technology.

http://www.pintool.org/

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Cilk Screen Example

127

void f() {

 int x[10];

 cilk_for(int i=0; i<10; ++i)

 x[i] = pseudo_random();

}

$ icc -g randomfill.cpp
$ cilkscreen a.out
Cilkscreen Race Detector V2.0.0, Build 2516

Race condition on location 0x600b84
 write access at 0x40062b: (/tmp/randomfill.cpp:7, pseudo_random+0x19)
 read access at 0x40061a: (/tmp/randomfill.cpp:7, pseudo_random+0x8)
 called by 0x2b2156f08b07: (__$U0+0xc7)
 called by 0x2b2156f08848: (cilk_for_recursive<unsigned int, void (*)(void*, unsigned int,
unsigned int)>+0x128)
 called by 0x2b2156f086b8: (__$U1+0xb8)
 called by 0x2b2156f082c5: (cilk_for_root<unsigned int, void (*)(void*, unsigned int,
unsigned int)>+0x135)
 called by 0x2b2156f0818a: (__cilkrts_cilk_for_32+0xa)

int pseudo_random() {

 static int state = 1;

 return state = a*state+b;

}

5

6

7

8

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Philosophy of Cilk Plus

130

Division of Responsibilities

Programmer Cilk Plus

Specify what can run in parallel. Make parallelism easy to express.

Enable clean composition.

Provide much more potential
parallelism than system can use.

Throttle actual parallelism.

• Make unused parallelism cheap.

• Balance load.

Express SIMD opportunities. Make SIMD easy to express.
Generate SIMD code.

Avoid races. Synchronize strands of execution.

Minimize use of locks. Provide hyperobjects.

Promote locality via cache-
oblivious style.

Depth-first serial execution.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

URLs

Cilk Plus home page

• http://cilkplus.org

Cilk Plus Forum

• http://software.intel.com/en-us/forums/intel-cilk-plus/

Cilk Plus Specifications

• http://software.intel.com/en-us/articles/intel-cilk-plus-specification/

Intel® Cilk™ Plus Software Development Kit

• http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/

– Cilk Screen Race Detector

– Cilk View Scalability Analyzer

GCC 4.7 Branch

• http://gcc.gnu.org/svn/gcc/branches/cilkplus/

Intel ® Parallel Inspector

• http://software.intel.com/en-us/articles/intel-parallel-inspector/

139

6/17/2012

http://cilkplus.org/
http://software.intel.com/en-us/forums/intel-cilk-plus/
http://software.intel.com/en-us/forums/intel-cilk-plus/
http://software.intel.com/en-us/forums/intel-cilk-plus/
http://software.intel.com/en-us/forums/intel-cilk-plus/
http://software.intel.com/en-us/forums/intel-cilk-plus/
http://software.intel.com/en-us/forums/intel-cilk-plus/
http://software.intel.com/en-us/forums/intel-cilk-plus/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://software.intel.com/en-us/articles/intel-cilk-plus-software-development-kit/
http://gcc.gnu.org/svn/gcc/branches/cilkplus/
http://software.intel.com/en-us/articles/intel-parallel-inspector/
http://software.intel.com/en-us/articles/intel-parallel-inspector/
http://software.intel.com/en-us/articles/intel-parallel-inspector/
http://software.intel.com/en-us/articles/intel-parallel-inspector/
http://software.intel.com/en-us/articles/intel-parallel-inspector/
http://software.intel.com/en-us/articles/intel-parallel-inspector/
http://software.intel.com/en-us/articles/intel-parallel-inspector/

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

141

Where to get Cilk

• Cilk Arts was Charles Leiserson’s company to commercialize Cilk

• Acquired by Intel in 2009

• In September 2010 released by Intel as Intel Cilk Plus

• adds support for reductions

• simplifies the language

• debugger integration

• Spec published, and Intel is encouraging other vendors to support
the language

Monday, April 24, 17

	Cilk
	CilkPlus_Robison

