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Galois
Language assistance for 
runtime parallelization
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Programming language problems

• Programming languages cause valuable information to 
be lost when expressing an algorithm

• The programmer is forced to specify a sequential order 
on the execution of a program

• This order may be more restrictive than necessary

• Thus, when processing elements of an unordered set, 
an iterator will specify an overly stringent order

• Methods may be commutative and this is not expressed 
in common languages

• Two approaches: discover information at runtime 
(discussed), or have languages express needed 
information
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Programming language problems 
cause compiler problems

• Much of what compilers do is to decide if 
operations are independent and can be reordered

• Reverse engineering what may already be 
known by programmers

• That some data structure is a graph, tree, singly 
linked list, etc., is generally known to a 
programmer

• Incredibly hard for compiler to figure out

• Shape analysis does this, but does not work well 
with large, realistic programs
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Can languages overcome 
this?

• Note that Java, Pthreads and C++ have some or 
all of iterators, thread safe standard data 
structures, forks and joins, etc. 

• These are generally implemented as method 
calls

• Are opaque to compilers 

• And are very large and complex

• Do not have runtime support to allow 
speculative execution, which is necessary



ACACES 2013 © Midkiff, 
2013

Galois Project*

•Galois is one project that seeks to 
overcome these limits

• Provides abstractions to allow programmer 
to give information about ordering, 
commutativity

• Programmer writes a sequential program, 
compiler generates a parallel execution

• Similar to what databases provide

  Optimistic parallelism requires abstractions, Kulkarni, Pingali et al., CACM 
September 2009

*The Tao of Parallelism in Algorithms, Pingali et al., PLDI 2011
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A running example
Delauney mesh refinement

From Kulkarni, Pingali et al., CACM September 2009

• Some triangles on 
the mesh are bad 
(e.g., too large, 
bad angles)

• Affects of 
refinement on 
cavity must be 
taken into account

• Refinement can 
often happen in 
parallel

bad 
triangle cavitycavity

refined 
mesh
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Available parallelism
• If two bad triangles do not 

have overlapping cavities, they 
can be processed in parallel

• Kulkarni, et al. measured 

• a mesh of 100,000 triangles,

• ~50% bad

• ~256 independent bad 
triangles for most of 
execution

• Data structure is a graph that 
is modified repeatedly during 
execution

bad 
triangle cavitycavity
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Alternate solutions (1)
• Inspector/executor: traverse the structure and find 

independent work, then do the work

• Works best if inspector can be done once and 
executor done many times which happens only if 
the structure does not change during work, not 
true here

• Used for sparse matrix computations, but will 
not work here

• Shape analysis

• Graph has no particular structure, shape analysis 
will not enable parallelization
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Alternate solutions (2)
• Hudson's method*

1. compute cavities of all bad triangles

2. find maximal independent set of cavities

3. fix those cavities

4. repeat 1-3 until no bad triangles

• This works well, but appropriate only to this 
problem

• A more general technique is desirable - we want to 
solve lots of problems, not just mesh refinement

*Sparse parallel Delaunay mesh refinement, Hudson, Miller, Phillips, SPAA 
2007
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Goals
• Allow programmer to naturally express:

1. Operations that are ordered and unordered

2. Operations that commute with one another because of 
the application

3. Operations that commute with one another because of 
data structure semantics

• In a linked list representation of a set, the order of 
insertion is irrelevant

• Two different linked lists may result, but the set 
represented is identical

• 2 and 3 are instances of semantic commutativity  - not 
strictly commutative, but commutative because of the 
task semantics
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Semantic vs. concrete commutativity

• Semantic commutativity means that when operations 
commute the meaning of the resulting state is correct 
even though the values may be different

• Representation of a set by a linked list, mentioned 
previously, is an example of semantic commutativity

• Concrete commutativity means that when operations 
commute the result is the same

• In the set representation example, the resulting linked 
list, not just the represented set, would be identical

• Programmers often make use of semantic commutativity

• Compilers can only find concrete commutativity 

• Cannot intuit programmer's intention
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Galois language
Two iterators over sets are supplied

1.Unordered: for each e in set S do B(e)

• Body B executed on each element e

• Any serial order of executing iterations legal

• Iterations can add elements to S

2.Ordered: for each e in Poset S do B(e)

• like the unordered iterator, except it must 
respect orders specified by the partially ordered 
set S

• Iterations can add elements to S
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Parallel semantics
•Our old friend 

atomicity 
returns.

•Does S.contains?
(x) ever return 
true?

• Not if 
add/remove are 
atomic, can if 
they are not

Thread 1

S.contains?(x)

Thread 0

S.add(x)

S.remove(x)
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Parallel semantics
• Galois requires 

iterators give 
serial semantics, 
i..e, outcome is 
as if iterations 
ran serially in 
some order 
allowed by the 
program 
semantics.

Thread 1

S.contains?(x)

Thread 0

S.add(x)

S.remove(x)

This requires atomicity, not 
fine grained locks.  
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Parallel semantics
• Fine-grained 

locks allow 
more work 
to happen in 
parallel

• Allows a 
non-serial 
outcome.

Thread 1

S.contains?(x)

Thread 0

S.add(x)

S.remove(x)
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Parallel semantics

• Course-grained 
locks enforce 
serial outcomes, 
reduces work 
done in parallel. 

Thread 1

S.contains?(x)

Thread 0

S.add(x)

S.remove(x)

Thread 1

S.contains?(x)

We want our cake and to eat it to -- concurrency + 
serial semantics
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DeLaunay mesh w/set 
iterator

• Set elements can be 
picked by S4 in any 
order

1.Result must be as if 
body (S5 - S10) across 
different iterations 
executed serially in 
some order

2.Multiple loop bodies 
will likely execute in 
parallel

• Runtime forces 1 and 2 
to be consistent

S1   Mesh m = /* read in initial mesh */
S2   Set w1;
S3   w1.add(mesh.badTriangles( ));
S4   for each e in w1 do {
S5       if (e no longer in mesh) continue;
S6       Cavity c = new Cavity(e);
S7       c.expand( );
S8       c.retriangulate( );
S9       m.update (c);
S10     w1.add(c.badTriangles( ));
       }
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Specifying Abstract Data 
Type (ADT)  properties

• Allows 
specification of 
semantic 
commutativity, 
and limitations

• inverse operation 
to be used when 
computation 
needs to be 
undone 
(discussed later

class Set {
   // interface methods
   void add (Element x);
      [commute]
         - add(y) {y != x}
         - remove(y) {y != x}
         - contains(y) {y != x}
     [inverse] remove(x);
   
   void remove (Element x); 
    . . . 
   void contains (Element x);
     [commute]
         . . . 
         - contains(*) // any call to contains
     ...
}
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Galois library classes
•Galois objects, like Java objects, have a lock 

associated with them

•Galois uses these locks to support two 
kinds of classes:

• Catch-and-keep (default)

• Catch-and-release

•Different classes have different rollback 
policies

•We will explain these now
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Catch-and-keep classes

• A form of two phase locking strategy

• Phase 1 -- locks are acquired, and number of locks 
only increases or stays the same

• Phase 2 -- locks are released, and number of locks 
only decreases or stays the same

• Cannot, e.g., lock A, lock B, release B, lock C

• Can do work between locks

• Objects copied before lock on that object is acquired

• If a lock cannot be obtained, there is a conflict with 
another iteration, and the iteration is rolled back

• Rollback accomplished by using copy of possibly 
modified objects
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Catch-and-release classes
• Locking is not two-phase, locks can be acquired and released

• Can, e.g., lock A, lock B, release B, lock C, release C, release 
A

• Lock release allows interleaving of method executions in 
different threads

• Raises serializability issues -- which objects can be 
interleaved?

• Commutative method calls are allowed to interleave

• Conflicts among non-commutative methods force rollback

• Rollback cannot use a copy of the object before the method 
started

• This would enforce concrete commutativity, but we need 
semantic commutativity

• Use of inverse functions supports this rollback
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Galois runtime
• Runtime maintains commit pool

• Commit pool 

• Creates new iteration records to start an iteration

• Performs callbacks to inverse methods when necessary

• Performs commits based on priorities assigned in set 

• Decides when it is legal to commit an iteration and who 
to roll back

• When two iterations conflict, rolls back the lowest 
priority one.  

• When no conflicts and priority constraints met, 
commits the iteration
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Galois runtime
• Runtime maintains conflict logs

• Conflict logs used to detect conflicts and there is one per 
catch/release object

• When iteration i attempts to execute method1 on an object

• Checks logs for conflicting methods (i.e. methods that 
don't commute) on the same object. 

• If one found, abort process begins.  If ok, add call to 
log and invoke method

• When an iteration i aborts or commits all of its log 
entries are removed
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Galois performance
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Galois performance
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Summary
• Static compilation is insufficient for many 

programs

• Speculative techniques employing roll-back are 
useful

• Compiler/runtime and Language/compiler/runtime 
solutions are being studied

• Both show promise

• Language based solutions requires re-coding but 
has the potential to capture more information
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