
ACACES 2013 © Midkiff,
2013

Galois
Language assistance for
runtime parallelization

ACACES 2013 © Midkiff,
2013

Programming language problems

• Programming languages cause valuable information to
be lost when expressing an algorithm

• The programmer is forced to specify a sequential order
on the execution of a program

• This order may be more restrictive than necessary

• Thus, when processing elements of an unordered set,
an iterator will specify an overly stringent order

• Methods may be commutative and this is not expressed
in common languages

• Two approaches: discover information at runtime
(discussed), or have languages express needed
information

ACACES 2013 © Midkiff,
2013

Programming language problems
cause compiler problems

• Much of what compilers do is to decide if
operations are independent and can be reordered

• Reverse engineering what may already be
known by programmers

• That some data structure is a graph, tree, singly
linked list, etc., is generally known to a
programmer

• Incredibly hard for compiler to figure out

• Shape analysis does this, but does not work well
with large, realistic programs

ACACES 2013 © Midkiff,
2013

Can languages overcome
this?

• Note that Java, Pthreads and C++ have some or
all of iterators, thread safe standard data
structures, forks and joins, etc.

• These are generally implemented as method
calls

• Are opaque to compilers

• And are very large and complex

• Do not have runtime support to allow
speculative execution, which is necessary

ACACES 2013 © Midkiff,
2013

Galois Project*

•Galois is one project that seeks to
overcome these limits

• Provides abstractions to allow programmer
to give information about ordering,
commutativity

• Programmer writes a sequential program,
compiler generates a parallel execution

• Similar to what databases provide

 Optimistic parallelism requires abstractions, Kulkarni, Pingali et al., CACM
September 2009

*The Tao of Parallelism in Algorithms, Pingali et al., PLDI 2011

ACACES 2013 © Midkiff,
2013

A running example
Delauney mesh refinement

From Kulkarni, Pingali et al., CACM September 2009

• Some triangles on
the mesh are bad
(e.g., too large,
bad angles)

• Affects of
refinement on
cavity must be
taken into account

• Refinement can
often happen in
parallel

bad
triangle cavitycavity

refined
mesh

ACACES 2013 © Midkiff,
2013

Available parallelism
• If two bad triangles do not

have overlapping cavities, they
can be processed in parallel

• Kulkarni, et al. measured

• a mesh of 100,000 triangles,

• ~50% bad

• ~256 independent bad
triangles for most of
execution

• Data structure is a graph that
is modified repeatedly during
execution

bad
triangle cavitycavity

ACACES 2013 © Midkiff,
2013

Alternate solutions (1)
• Inspector/executor: traverse the structure and find

independent work, then do the work

• Works best if inspector can be done once and
executor done many times which happens only if
the structure does not change during work, not
true here

• Used for sparse matrix computations, but will
not work here

• Shape analysis

• Graph has no particular structure, shape analysis
will not enable parallelization

ACACES 2013 © Midkiff,
2013

Alternate solutions (2)
• Hudson's method*

1. compute cavities of all bad triangles

2. find maximal independent set of cavities

3. fix those cavities

4. repeat 1-3 until no bad triangles

• This works well, but appropriate only to this
problem

• A more general technique is desirable - we want to
solve lots of problems, not just mesh refinement

*Sparse parallel Delaunay mesh refinement, Hudson, Miller, Phillips, SPAA
2007

ACACES 2013 © Midkiff,
2013

Goals
• Allow programmer to naturally express:

1. Operations that are ordered and unordered

2. Operations that commute with one another because of
the application

3. Operations that commute with one another because of
data structure semantics

• In a linked list representation of a set, the order of
insertion is irrelevant

• Two different linked lists may result, but the set
represented is identical

• 2 and 3 are instances of semantic commutativity - not
strictly commutative, but commutative because of the
task semantics

ACACES 2013 © Midkiff,
2013

Semantic vs. concrete commutativity

• Semantic commutativity means that when operations
commute the meaning of the resulting state is correct
even though the values may be different

• Representation of a set by a linked list, mentioned
previously, is an example of semantic commutativity

• Concrete commutativity means that when operations
commute the result is the same

• In the set representation example, the resulting linked
list, not just the represented set, would be identical

• Programmers often make use of semantic commutativity

• Compilers can only find concrete commutativity

• Cannot intuit programmer's intention

ACACES 2013 © Midkiff,
2013

Galois language
Two iterators over sets are supplied

1.Unordered: for each e in set S do B(e)

• Body B executed on each element e

• Any serial order of executing iterations legal

• Iterations can add elements to S

2.Ordered: for each e in Poset S do B(e)

• like the unordered iterator, except it must
respect orders specified by the partially ordered
set S

• Iterations can add elements to S

ACACES 2013 © Midkiff,
2013

Parallel semantics
•Our old friend

atomicity
returns.

•Does S.contains?
(x) ever return
true?

• Not if
add/remove are
atomic, can if
they are not

Thread 1

S.contains?(x)

Thread 0

S.add(x)

S.remove(x)

ACACES 2013 © Midkiff,
2013

Parallel semantics
• Galois requires

iterators give
serial semantics,
i..e, outcome is
as if iterations
ran serially in
some order
allowed by the
program
semantics.

Thread 1

S.contains?(x)

Thread 0

S.add(x)

S.remove(x)

This requires atomicity, not
fine grained locks.

ACACES 2013 © Midkiff,
2013

Parallel semantics
• Fine-grained

locks allow
more work
to happen in
parallel

• Allows a
non-serial
outcome.

Thread 1

S.contains?(x)

Thread 0

S.add(x)

S.remove(x)

ACACES 2013 © Midkiff,
2013

Parallel semantics

• Course-grained
locks enforce
serial outcomes,
reduces work
done in parallel.

Thread 1

S.contains?(x)

Thread 0

S.add(x)

S.remove(x)

Thread 1

S.contains?(x)

We want our cake and to eat it to -- concurrency +
serial semantics

ACACES 2013 © Midkiff,
2013

DeLaunay mesh w/set
iterator

• Set elements can be
picked by S4 in any
order

1.Result must be as if
body (S5 - S10) across
different iterations
executed serially in
some order

2.Multiple loop bodies
will likely execute in
parallel

• Runtime forces 1 and 2
to be consistent

S1 Mesh m = /* read in initial mesh */
S2 Set w1;
S3 w1.add(mesh.badTriangles());
S4 for each e in w1 do {
S5 if (e no longer in mesh) continue;
S6 Cavity c = new Cavity(e);
S7 c.expand();
S8 c.retriangulate();
S9 m.update (c);
S10 w1.add(c.badTriangles());
 }

ACACES 2013 © Midkiff,
2013

Specifying Abstract Data
Type (ADT) properties

• Allows
specification of
semantic
commutativity,
and limitations

• inverse operation
to be used when
computation
needs to be
undone
(discussed later

class Set {
 // interface methods
 void add (Element x);
 [commute]
 - add(y) {y != x}
 - remove(y) {y != x}
 - contains(y) {y != x}
 [inverse] remove(x);

 void remove (Element x);
 . . .
 void contains (Element x);
 [commute]
 . . .
 - contains(*) // any call to contains
 ...
}

ACACES 2013 © Midkiff,
2013

Galois library classes
•Galois objects, like Java objects, have a lock

associated with them

•Galois uses these locks to support two
kinds of classes:

• Catch-and-keep (default)

• Catch-and-release

•Different classes have different rollback
policies

•We will explain these now

ACACES 2013 © Midkiff,
2013

Catch-and-keep classes

• A form of two phase locking strategy

• Phase 1 -- locks are acquired, and number of locks
only increases or stays the same

• Phase 2 -- locks are released, and number of locks
only decreases or stays the same

• Cannot, e.g., lock A, lock B, release B, lock C

• Can do work between locks

• Objects copied before lock on that object is acquired

• If a lock cannot be obtained, there is a conflict with
another iteration, and the iteration is rolled back

• Rollback accomplished by using copy of possibly
modified objects

ACACES 2013 © Midkiff,
2013

Catch-and-release classes
• Locking is not two-phase, locks can be acquired and released

• Can, e.g., lock A, lock B, release B, lock C, release C, release
A

• Lock release allows interleaving of method executions in
different threads

• Raises serializability issues -- which objects can be
interleaved?

• Commutative method calls are allowed to interleave

• Conflicts among non-commutative methods force rollback

• Rollback cannot use a copy of the object before the method
started

• This would enforce concrete commutativity, but we need
semantic commutativity

• Use of inverse functions supports this rollback

ACACES 2013 © Midkiff,
2013

Galois runtime
• Runtime maintains commit pool

• Commit pool

• Creates new iteration records to start an iteration

• Performs callbacks to inverse methods when necessary

• Performs commits based on priorities assigned in set

• Decides when it is legal to commit an iteration and who
to roll back

• When two iterations conflict, rolls back the lowest
priority one.

• When no conflicts and priority constraints met,
commits the iteration

ACACES 2013 © Midkiff,
2013

Galois runtime
• Runtime maintains conflict logs

• Conflict logs used to detect conflicts and there is one per
catch/release object

• When iteration i attempts to execute method1 on an object

• Checks logs for conflicting methods (i.e. methods that
don't commute) on the same object.

• If one found, abort process begins. If ok, add call to
log and invoke method

• When an iteration i aborts or commits all of its log
entries are removed

ACACES 2013 © Midkiff,
2013

Galois performance

ACACES 2013 © Midkiff,
2013

Galois performance

ACACES 2013 © Midkiff,
2013

Summary
• Static compilation is insufficient for many

programs

• Speculative techniques employing roll-back are
useful

• Compiler/runtime and Language/compiler/runtime
solutions are being studied

• Both show promise

• Language based solutions requires re-coding but
has the potential to capture more information

	Slide 1
	Programming language problems
	Programming language problems cause compiler problems
	Can languages overcome this?
	Galois Project*
	Slide 6
	Available parallelism
	Alternate solutions (1)
	Alternate solutions (2)
	Goals
	Semantic vs. concrete commutativity
	Galois language
	Parallel semantics
	Parallel semantics
	Parallel semantics
	Parallel semantics
	DeLaunay mesh w/set iterator
	Specifying Abstract Data Type (ADT) properties
	Galois library classes
	Catch-and-keep classes
	Catch-and-release classes
	Galois runtime
	Galois runtime
	Galois performance
	Galois performance
	Summary

