
ECE 563
Programming Parallel 

Machines



• The syllabus: 
https://engineering.purdue.edu/~s
midkiff/ece563/files/syllabus.pdf

https://engineering.purdue.edu/~smidkiff/ece563/files/syllabus.pdf
https://engineering.purdue.edu/~smidkiff/ece563/files/syllabus.pdf


http://www.purdue.edu/emergency_preparedness/flipchart/

counseling available at http://www.purdue.edu/caps/ 

Building information: 
https://www.purdue.edu/ehps/emergency_preparedness/bep/WANG--bep.html

https://www.purdue.edu/ehps/emergency_preparedness/bep/WANG--bep.html


What is our goal in this class?

• To learn how to write programs that run in 
parallel

• This requires partitioning, or breaking up the 
program, so that different parts of it run on 
different cores or nodes 

• different parts may be different iterations 
of a loop 

• different parts can be different textual 
parts of the program

• different parts can be both of the above



What can run in parallel?
Consider the loop:
for (i=1; i<n; i++) 
{

a[i] = b[i] + c[i];
c[i] = a[i-1]

}

i = 3
a[3] = b[3] + c[3]
c[3] = a[2]

Note that data is produced in one iteration 
and consumed in another.  

Let each iteration 
execute in parallel 
with all other 
iterations on its own 
processor

i = 1
a[1] = b[1] + c[1]
c[1] = a[0]

i = 2
a[2] = b[2] + c[2]
c[1] = a[0]

time



What can run in parallel?
Consider the loop:

for (i=1; i<n; i++) {
a[i] = b[i] + c[i];
c[i] = a[i-1]

}

What if the processor executing iteration i=2 is delayed 
for some reason?  Disaster - the value of a[2] to be read 
by iteration i=3 is not ready when the read occurs!

i = 3
a[3] = b[3] + c[3]
c[3] = a[2]

i = 2
a[2] = b[2] + c[2]
c[1] = a[0]

time

cores or processors



Cross-iteration dependences
Consider the loop:
for (i=1; i<n; i++) 
{

a[i] = b[i] + c[i];
c[i] = a[i-1]

}

A dependence that goes from one 
iteration to another is a cross 
iteration, or loop carried 
dependence

Orderings that must be 
enforced to ensure the 
correct order of reads 
and writes are called 
dependences.

i = 1
a[1] = b[1] + c[1]
c[1] = a[0]

i = 2
a[2] = b[2] + c[2]
c[1] = a[0]

time



Cross-iteration dependences
Consider the loop:
for (i=1; i<n; i++) 
{

a[i] = b[i] + c[i];
c[i] = a[i-1]

}

i = 1
a[1] = b[1] + c[1]
c[1] = a[0]

i = 2
a[2] = b[2] + c[2]
c[1] = a[0]

i = 3
a[3] = b[3] + c[3]
c[3] = a[2]

We will generally refer to a loop as parallel or 
parallelizable if dependences do not span the 
code that is to be run in parallel.

Loops with cross iteration 
dependences cannot be 
executed in parallel 
unless mechanisms are in 
place to ensure 
dependences are 
honored.

time



Where is parallelism found?

• Most work in most programs, especially 
numerical programs, is in a loop

• Thus effective parallelization generally 
requires parallelizing loops

• Amdahl’s law (discussed in detail later in 
the semester) says that, e.g., if we 
parallelize 90% of a program we will get, at 
most, a speedup of 10X, 99% a speedup of 
100X.  To effectively utilize 1000s of 
processors, we need to parallelize 99.9% or 
more of a program!



A short architectural 
overview

• Warning: gross 
simplifications to 
follow



A simple core/processor

Floating 
point 

registers

General
purpose 
registers

L1
Cache

L2
Cache

Floating
Point
unit

Arithmetic
logic
Point
unit

Program
counter

Instruction
Decode

unit

M
E
M
O
R
Y

C
O
N
T
R
O
L
L
E
R

To
L1 
Cache
or 
Memory



Registers
● Registers are usually directly referenced and accessed by 
machine code instructions

● On a RISC (Reduced Instruction Set Computer) almost all 
instructions are register-to-register or register to memory

Addi r1, r2, r3 // r3 = r1+r2, i.e., r3 gets the value of the sum 
of the contents of r2 and r3  

ld r1 (r2) // load register 1 with the value in the memory 
location whose address is in r2

Registers can be accessed in a single cycle and are the 
fastest storage.

Typically in a RISC machine there are ~64 registers, with 32 
general purpose, 32 floating point, plus some others

Intel IA86 has many fewer registers and can do memory to 
memory operations



Caches
• Processors are much faster than 

memory

• Core i7 Xeon 5500 (from 
https://software.intel.com/sites/products/collateral/hpc/v
tune/performance_analysis_guide.pdf

)

• fastest (L1) cache ~4 cycles

• next fastest (L2) cache ~10 cycles

• next fastest (L3) cache ~40 cycles

•DRAM 100ns or about 300 cycles

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf


Caches

Core 0
computation 

stuff

L1 
Cache

L2 Cache

Core 1
computation 

stuff

L1 
Cache

L2 Cache

Core 2
computation 

stuff

L1 
Cache

L2 Cache

Core 3
computation 

stuff

L1 
Cache

L2 Cache

L3 Cache

DRAM

bus



How is memory 
laid out?

a 2D array in memory looks like:

a(0,0) a(0,1) a(0,2) a(1,0) a(1,1) a(1,2) a(2,0) a(2,1) a(2,2)

a(0,0) a(0,1) a(0,2) a(1,0) a(1,1) a(1,2) a(2,0) a(2,1) a(2,2)

When you read one word, several words 
are brought into cache



Accessing 
Arrays

for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++) {
   . . . = a[j,i]
}



Accessing 
Arrays

for (int j = 0; j < n; j ++) {
   for (int i = 0; i < n; i ++) {
      . . . = a[j,i]
}

loop 
interchange



Accessing 
Arrays

for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++) {
      a[i,j] = a[j,i]
}



Accessing 
Arrays

for (int j = 0; j < n; j ++) {
   for (int i = 0; i < n; i ++) {
      a[i,j] = a[j,i]
} loop 

interchange 
doesn’t help



Tiling solves this 
problem

• This is discussed in detail in ECE 468/573, compilers

• Basically, extra loops are added to the code to allow blocks, or 
tiles, of the array that fit into cache to be accessed

• As much work as possible is done on a tile before moving to 
the next tile

• Accesses within a tile are done within the cache

• Because tiling changes the order elements are accessed it is 
not always legal to do



for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++) {
      a[i,j] = a[j,i]
}

for (tI = 0, tI < n; tI +=64) { 
   for (tJ = 0, TJ < n; TJ+=64) {
      for (i = tI; i < min(tI+63, n); i++) {
         for (j = tj; j < min(tj+63, n); j++) {
            a[i][j] = b[j][i]
         }
      }
   }
}

Tiling

a array



• For matrix multiply, you have O(N2) data 
and O(N3) operations

• Ideally, you would bring O(N2) data into 
cache

• Without tiling, you bring ~O(N3) data into 
cache, as array elements get bounced 
from cache and brought back in

• Tiling reduces cache missing by a factor of 
N



A simple core

Consider a 
simple core

fetch & decode 
instruction

arithmetic logic unit 
(ALU) -- execute 

instruction

programmable execution 
context (registers, 

condition codes, etc.)

processor managed 
execution context 

(cache, various buffers 
and translation tables)



A more realistic processor

Consider a more realistic 
core

Because programs often 
have multiple instructions 
that can execute at the 
same time, put in multiple 
ALUs to allow instruction 
level parallelism (ILP)

Average # instructions per 
cycle < 2, depends on the 
application and the 
architecture.

fetch & decode 
instruction

programmable 
execution 
context 

ALU 1 ALU 2 ALU 3

vector1 vector3 vector3

processor managed execution 
context (cache, etc) 



Multiprocessor 
(shared memory multiprocessor)

• Multiple CPUs with a shared memory (or multiple cores in the 
same CPU)

• The same address on two different processors points to the 
same memory location

• Multicores are a version of this

• If multiple processors are used, they are connected to a 
shared bus which allows them to communicate with one 
another via the shared memory

• Two variants:

• Uniform memory access: all processors access all memory 
in the same amount of time

• Non-uniform memory access: different processors may see 
different times to access some memory. 



A Uniform Memory Access  shared 
memory machine

All 
processor
s access 
global 

memory 
at the 
same 
speed

CPU

cache

bus

cache cache cache

I/O devices

CPUCPUCPU

Memory



Multicore machines usually have 
uniform memory access

All cores 
access 
global 

memory 
at the 
same 
speed

Core

cache

bus

CPU

Core Core Core

I/O devicesMemory



Multicore machines usually share 
at least one level of cache

All cores 
access 
global 

memory 
at the 
same 
speed

Core

cache

bus

CPU

Core Core Core

I/O devicesMemory



A NUMA (non-uniform memory 
access) shared memory machine

bus

CPU
cache

Memory

Global memory is spread across, and held in, the 
local memories of the different nodes of the 
machine
Processors will access their memory faster than 
their neighbors memory

CPU
cache

Memory

CPU
cache

Memory



Coherence is 
needed

bus

Memory
a=4; z=2, x=??

I/O 
devices

CPU

Cache
z=2

CPU

Cache

CPU

Cache

CPU

Cache

T0: z = a
(instruction to be 

executed)



bus

Memory
a=4; z=2, x=??

I/O 
devices

CPU

Cache
z=2

CPU

Cache

CPU

Cache

CPU

Cache

T0: z = a
Load a from memory



bus

Memory
a=4; z=2, x=??

I/O 
devices

CPU

Cache
z=2

CPU

Cache
a=4

CPU

Cache

CPU

Cache

T0: z = a
load reg2, from (a) // load a from memory
st reg2, into (z) 

a = 4



bus

Memory
a=4; z=2, x=??

I/O 
devices

CPU

Cache
z=2

CPU
reg2 = a

Cache
a=4

CPU

Cache

CPU

Cache

T0: z = a
load reg2, from (a) // load a from memory
st reg2, into (z) 

a = 4



bus

Memory
a=4; z=4, x=??

I/O 
devices

CPU

Cache
z=2

CPU
reg2 = 4

Cache 
a=4,z=4

CPU

Cache

CPU

Cache

T0: z = a
load reg2, from (a) // load a from memory
st reg2, into (z) // reg2

z = 4



bus

Memory
a=4; z=4, x=??

I/O 
devices

CPU

Cache
z=2

CPU
reg2 = 4

CPU

Cache

CPU

Cache

T0: z = a
load reg2, from (a) // load a from memory
st reg2, into (z) // reg2

z = 4
Invalidate!

Cache 
a=4,z=4



bus

Memory
a=4; z=4, x=??

I/O 
devices

CPU

Cache

CPU
reg2 = 4

CPU

Cache

CPU

Cache

T0: z = a
load reg2, from (a) // load a from memory
st reg2, into (z) // reg2

z = 4

Cache 
a=4,z=4



bus

Memory
a=4; z=4, x=??

I/O 
devices

CPU
reg2=4

Cache
z=4

CPU
reg2 = 4

CPU

Cache

CPU

Cache

Tn: x = z // instruction in rightmost CPU
load reg2, from (z)
st reg2, into (x)

Cache 
a=4,z=4



bus

Memory
a = 4; z = 4; 

x=4

I/O 
devices

CPU
reg2=4

CPU
reg2 = 4

CPU

Cache

CPU

Cache

Tn: x = z // instruction in rightmost CPU
load reg2, from (z)
st reg2, into (x)

x=4

Cache
Z=4,x=4

Cache 
a=4,z=4



Tn: x = z // instruction in rightmost CPU
load reg2, from (z)
st reg2, into (x)

Cache
Z=4,x=4

bus

Memory
a = 4; z = 4; 

x=4

I/O 
devices

CPU
reg2=4

CPU
reg2 = 4

CPU

Cache

CPU

Cache

x=4
Invalidate!

Cache 
a=4,z=4



Hardware makes sure a core/processor 
reads the latest value assigned to memory 

(cache coherence)

Cache
Z=4,x=4

bus

Memory
a = 4; z = 4; 

x=4

I/O 
devices

CPU
reg2=4

CPU
reg2 = 4

CPU

Cache

CPU

Cache

x=4
Invalidate!

Cache 
a=4,z=4



Hardware makes sure a core/processor 
reads the latest value assigned to memory 

(cache coherence)

Cache
Z=4,x=4

bus

Memory
a = 4; z = 4; 

x=4

I/O 
devices

CPU
reg2=4

CPU
reg2 = 4

CPU

Cache

CPU

Cache

What if x=z 
executes before 
z=a?

What happens if 
z at x=z is 
loaded while 
store of z is still 
in progress?  

Cache 
a=4,z=4



Software has to make sure operations 
occur in the right order across 

cores/processors

Cache

bus

Memory
a = 4; z = 4; 

x=4

I/O 
devices

CPU
reg2=4

CPU
reg2 = 4

Cache

CPU

Cache

CPU

Cache

Does x=z or 
z=4 execute 
first?  



Sequential Consistency 
(SC)

• Coherence says that a read will get the last value written for a 
variable

• Consistency is concerned with the interactions between writes 
to different variables

• Sequential consistency (see Lamport paper) is when ... the 
result of any execution is the same as if the operations of all 
the processors were executed in some sequential order, and the 
operations of each individual processor appear in this 
sequence in the order specified by its program.



Sequential Consistent (SC) 
executions

Instruction 1

Instruction 2

Instruction 3

Parallel stream 0

Instruction 4

Instruction 5

Instruction 6

Parallel stream 1 Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5
Instruction 6

SC

Instruction 1
Instruction 4
Instruction 2
Instruction 5
Instruction 3
Instruction 6

SC

Instruction 4
Instruction 5
Instruction 6
Instruction 1
Instruction 2
Instruction 3

SC
Instruction 1
Instruction 2
Instruction 5
Instruction 3
Instruction 4
Instruction 6

NOT SC



SC Example

Question: Is it legal for z == 1 and w == 0?

X = 0

Y = 0

X = 1

Y= 1

z = Y

w = X

print z, w

thread 0 thread 1



SC Example

Question: Is it legal for z == 1 and w == 0?
Answer: Not with sequential consistency

X = 0

Y = 0

X = 1

Y= 1

z = Y

w = X

print z, w

thread 0 thread 1



SC Example

Question: Is it legal for z == 1 and w == 0?
For z == 1, “Y=1” must execute before “z=Y”
For w == 0, “w = X” must execute before “X=1”

X = 0

Y = 0

X = 1

Y= 1

z = Y

w = X

print z, w

thread 0 thread 1



Sequential Consistency

Question: Is it legal for z == 
1 and w == 0?

Answer: NO. For z == 1 and 
w == 0, ordering in previous 
slide requires either “X=1” 
and “Y=1” to execute in a 
different order, or for “z=Y” 
or “w=X” to execute in a 
different order.

Relative execution
order implied by
assigned value X = 0

Y = 0

X = 1

Y= 1

z = Y

w = X

print z, w



Many languages violate SC by default

Question: Is it legal for z == 1 
and w == 0?

Answer: YES.  Java 
semantics allow “X=1” and 
“Y=1” to execute in a different 
order, or for “z=Y” or “w=X” to 
execute in a different order. 
This will be an illegal program 
in C/C++/Fortran.  We’ll 
discuss the reasons for this 
later.

X = 0

Y = 0

X = 1

Y= 1

z = Y

w = X

print z, w



Sequential Consistency 
(SC)

• Coherence says that a read will get the last value written for a 
variable

• Consistency is concerned with the interactions between writes 
to different variables, i.e., execution orders as seen in different 
threads are consistent with some definition of how orders 
should occur

• Sequential consistency (see Lamport paper) is when ... the 
result of any execution is the same as if the operations of all 
the processors were executed in some sequential order, and the 
operations of each individual processor appear in this 
sequence in the order specified by its program.



We generally want 
programs to be SC

• After we parallelize the program the executions of the 
program should all give an answer such that ... the result of 
any execution is the same as if the operations of all the 
processors were executed in some sequential order, and the 
operations of each individual processor appear in this 
sequence in the order specified by its program.

• Moreover, it is often good to have the program give the same 
answer as a sequential, one node, one core, one thread, etc. 
implementation of the algorithm

• It will be our responsibility as programmers to ensure this -- 
the hardware and software will not



We generally want programs 
to be SC

• It will be our responsibility as programmers to ensure this -- 
the hardware and software will not

• Hardware maintains coherence -- values read from a cache or 
memory will be the last value written

• Hardware typically maintains relaxed consistency -- within 
code running on a single thread, read orders with respect to 
writes for a single variable are maintained, write orders with 
respect to writes, for a single variable, are maintained.

• Instructions are provided to prevent re-orderings of other 
operations



Shared memory programming 
models

• Can either be a language, language extension, 
library or a combination

• Java is a language and associated virtual 
machine that provides runtime support 

• OpenMP is a language extension (for C/C++ 
and Fortran) and an associated library (or 
runtime)

• Pthreads (or Posix Threads) is a library with 
C/C++ and Fortran bindings



A programming model must 
provide a way of specifying 

• what parts of the program execute in parallel with 
one another 

• how the work is distributed across different cores

• the order that reads and writes to memory will take 
place

• that a sequence of accesses to a variable will occur 
atomically or without interference from other threads.

• And, ideally, it will do this while giving good 
performance and allowing maintainable programs to 
be written.



OpenMP

• Open Multi-Processor

• targets multicores and multi-
processor shared memory 
machines

• An open standard, not controlled 
by any manufacturer

• Allows loop-by-loop & region-by-
region parallelization of sequential 
programs.



What executes in parallel?

c = 57.0;
for (i=0; i < n; i+
+) {

a[i] = c[i] + 
a[i]*b[i]
}

c = 57.0
#pragma omp 
parallel for
for (i=0; i < n; i++) 
{

a[i] = c[i] + a[i]*b[i]
}• pragma appears like a comment to a 

non-OpenMP compiler
• pragma requests parallel code to be 

produced for the following for loop



processors, nodes, processes 
and threads

A processor is a physical 
piece of hardware with one 
or more cores that executes 
instructions



processors, nodes, processes and 
threads

A node is one or more processors 
along with associated devices (disk 
drive, memory, i/o cards, 
communication cards, etc.

One or more nodes form a system



• In the early days of 
computing and on 
specialized machines, one 
“program” runs on the 
machine at a time

• It has access to the raw 
hardware and 
communicates with the 
hardware directly

• This is not very useful -- 
only one person or job can 
use the machine at a time

processors, nodes, processes and threads

A Digital Equipment Corporation PDP-8 
(programmable data processor)
Early low-cost mass produced computer



• An operating system allows multiple jobs and/or 
users to access the machine at the same time

• The OS virtualizes the machine -- each job sees 
the machine as entirely its own

• The OS protects each job from other jobs

• Virtual memory allows each job to act as if it has 
access to the entire address space of memory.  
This is done by having the OS, with help from the 
hardware, map program addresses into small parts 
of real DRAM addresses.  Physical DRAM serves as 
a cache and disk as the backing store.

processors, nodes, processes and 
threads



Virtual memory
• An operating system 

allows multiple jobs and/
or users to access the 
machine at the same 
time

• The OS virtualizes the 
machine -- each job 
sees the machine as 
entirely its own

DRAM

OS

access 
address 
0X56 in 

job 0

Job 0

access 
address 
0X56 in  

job 1

Job N

0x1024

Virtual memory translation

0x597



• The keyboard, printers, disk drives, intra-
system network, inter-system network (the 
internet), etc.

• The name for a single job that has a single 
virtualized image of the system is a process

• Browser, email program, program you 
have written, Word, VI, emacs, are all 
processes, and all can be active and 
sharing the system

• Via time-sharing/multiplexing of processes, all 
can appear to us to be running 
simultaneously, even with a single core

processors, nodes, processes and 
threads



• For our purposes, the most important aspect of a 
process is that its address space is separate from 
other processes’ address spaces

• Cannot communicate directly with other processes

• this is not entirely accurate as unices and other 
OSes support shared memory segments among 
processes

• Not commonly used by programmers for 
parallel programming, more commonly used by 
systems programs

• Communication among processes requires sending 
messages via OS (often sockets are used)

• MPI (Message passing interface) is a common way 
to send messages

processors, nodes, processes and threads



• But sometimes we want multiple “things” running 
at the same time to be able to communicate and 
share memory locations, e.g., values of variables

• Threads allow this to happen

• Threads are usually managed by the OS, but a 
given thread is owned by a process

processors, nodes, processes and 
threads



• All threads owned by the process share the 
virtualized resources given to the process by the 
OS.  In particular, all threads owned by a process 
share the same address space.

• This allows threads to communicate via memory, 
which is usually faster than communicating via 
messages

• Threads run on a core

•  Every process has a main thread that runs the 
processes’ code

processors, nodes, processes and 
threads



Threads and processes -- 
summary

• Threads and processes are typically operating system 
entities and concepts

• A process has its own address space and owns a 
typically virtualized copy of the machine when 
executing 

• processes may own one or more threads



Threads and processes -- 
summary

• A thread shares its address space with its owning 
process and all other threads owned by the same 
process

• each thread has its own copy of registers

• local variables can be created that are accessible only 
by the thread

• threads are the fundamental building block of parallel 
shared memory programs



Two main levels of parallelism

• Thread level

• Parallelism is across threads

• Typically within a node
• We will look at systems later in the class that support 

thread level parallelism across nodes

• We will use OpenMP and Pthreads to exploit thread level 
parallelism 

• Process level parallelism
• Parallelism is across processes

• Typically across nodes

• We will use MPI (Message Passing Interface) to exploit 
thread level parallelism



join at end of omp 
parallel pragma

Typical thread level 
parallelism using 

OpenMP
master 
thread

Green is parallel execution
Red is sequential
Creating threads is not free 
-- would like to reuse them 
across different parallel 
regions

fork, e.g. omp 
parallel pragma



How is the work distributed across 
different cores?

c = 57.0
#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

• Split the loop into chunks of contiguous 
iterations with approximately t/n 
iterations per chunk

• Thus, if 4 threads and 100 iterations, 
thread one would get iterations 0:24, 
thread 2 25:49, and so forth

• Other scheduling strategies supported 
and will be discussed later.



Control over the order that reads 
and writes to memory occur

c = 57.0
#pragma omp parallel for schedule(static) 
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}
#pragma omp parallel for schedule(static) 
for (j=0; j < n; j++) {

a[j] = c[j] + a[j]*b[j]
}

• Within an iteration, access to data appears in-
order

• Across iterations, no order is implied.  Races lead 
to undefined programs

barrier



Control over the order that reads 
and writes to memory occur

c = 57.0
#pragma omp parallel for schedule(static) 
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}
#pragma omp parallel for schedule(static) 
for (j=0; j < n; j++) {

a[j] = c[j] + a[j]*b[j]
}

• Across loops, an implicit barrier prevents a loop from 
starting execution until all iterations and writes (stores) to 
memory in the previous loop are finished

• The barrier is associated with the green i loop
• Parallel constructs execute after preceding sequential 

constructs finish

barrier



Relaxing the order that reads and 
writes to memory occur

c = 57.0
#pragma omp parallel for schedule(static) nowait 
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}
#pragma omp parallel for schedule(static) 
for (j=0; j < n; j ++) {

a[j] = c[j] + a[j]*b[j]
}

The nowait clause allows a thread that finishes its 
part of the green i loop to begin executing its 
iterations of the blue j loop without waiting for 
other threads to finish their iterations of the green 
i loop.

No Barrier!



Accessing variables without 
interference from other threads

#pragma omp parallel for 
for (i=0; i < n; i++) {

a = a + b[i]
}

Dangerous -- all iterations 
are updating a at the 
same time -- a race (or 
data race). 

#pragma omp parallel for 
for (i=0; i < n; i++) {
#pragma omp critical

a = a + b[i];
}

Not particularly useful, but 
correct -- critical pragma 
allows only one thread to 
execute the next statement 
at a time.   Can be very 
inefficient!



Next -- OpenMP in 
more detail


	ECE 563 Programming Parallel Machines
	Slide 2
	Slide 3
	What is our goal in this class?
	What can run in parallel?_clipboard0
	What can run in parallel?
	Cross-iteration dependences
	Cross-iteration dependences
	Where is parallelism found?
	Slide 10
	Slide 11
	Slide 12
	Caches_clipboard0
	Caches
	How is memory laid out?_clipboard1
	Accessing Arrays_clipboard2
	Accessing Arrays_clipboard3
	Accessing Arrays_clipboard4
	Accessing Arrays
	Tiling solves this problem
	Slide 21
	Slide 22
	A simple core
	A more realistic processor
	Multiprocessor (shared memory multiprocessor)
	A Uniform Memory Access shared memory machine
	Multicore machines usually have uniform memory access
	Multicore machines usually share at least one level of cache
	A NUMA (non-uniform memory access) shared memory machine
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Sequential Consistency (SC)
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Sequential Consistency (SC)
	We generally want programs to be SC
	We generally want programs to be SC
	Shared memory programming models
	A programming model must provide a way of specifying
	OpenMP
	What executes in parallel?
	processors, nodes, processes and threads
	processors, nodes, processes and threads
	processors, nodes, processes and threads
	processors, nodes, processes and threads
	Virtual memory
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Threads and processes -- summary
	Slide 68
	Two main levels of parallelism
	Typical thread level parallelism using OpenMP
	How is the work distributed across different cores?
	The order that reads and writes to memory occur
	Slide 73
	Relaxing the order that reads and writes to memory occur
	Accessing variables without interference from other threads
	Next -- OpenMP in more detail

