
Isoefficiency 
analysis

• V2 typos fixed in matrix vector 
multiply



Measuring the parallel 
scalability of algorithms

• One of many parallel performance 
metrics

• Allows us to determine scalability with 
respect to machine parameters
• number of processors and their speed
• communication patterns, bandwidth 

and startup
• Give us a way of computing 
• the relative scalability of two 

algorithms 
• how much work needs to be 

increased when the number of 
processors is increased to maintain 
the same efficiency 



Amdahl’s law reviewed
As number of 
processors 
increase, serial 
overheads reduce 
efficiency

As problem size 
increases, 
efficiency returns

Efficiency of adding n numbers on an ancient machine
P=4 gives ε of .80 with 64 numbers
P=8 gives ε of .80 with 192 numbers
P=16 gives ε of .80 with 512 numbers (4X processors, 8X 
data)



• Consider a program that does O(n) work

• Also assume the overhead is O(log2 p), i.e. it does a 
reduction

• The total overhead, i.e. the amount of time processors are 
sitting idle or doing work associated with parallelism 
instead of the basic problem, is O(p log2 p)

Motivating example

P0 P7P6P5P4P3P2P1

P0

P0

P0

P2 P4 P6

P4

Naive Allreduce ~1/2 nodes are 
idle at any given time



Data to maintain efficiency
● As number of 

processors increase, 
serial overheads 
reduce efficiency

● As problem size 
increases,efficiency 
returns

P P log2 P
Data 
needed

per 
processor

2 2 1 GB

4 8 2 GB

8 24 3 GB

16 64 4

Isoefficiency analysis allows us to analyze 
the rate at which the data size must grow 
to mask parallel overheads to determine if 
a computation is scalable.



Amdahl Effect both increases speedup and 
move the knee of the curve to the right

Speedup

Number of processors

n=100000

n=10000

n=1000



Total overhead TO is the time spent

• Any work that is not part of the 
serial form of the program 

• Communication

• Idle time because of waiting 
for some processor that is 
executing serial code 

• Idle time waiting for data from 
another processor

• . . . 



Efficiency revisited

• Total time spent on all processors is the original sequential execution [best 
sequential implementation] time plus the parallel overhead

PTp = T1 + TO  (1)

• The time it takes the program to run in parallel is the total time spent on 
all processors divided by the number of processors.  This is true because 
TO includes the time processors are waiting for something to happen in a 
parallel execution.

Tp = (T1 + TO)/P  (1), which can be written T1  = P Tp - TO (1a)

• Speedup S is as before (T1/TP) , or by substituting (1, 1a) above, we get:

S = (P Tp - TO) / ((T1 + TO)/P) = (P2Tp - PTO)/(T1 + TO).  Using 1 we get

   = (P(T1 + TO) - PTO)/(T1 + TO) = P (T1 + TO - TO)/(T1 + TO

   = P T1 / (T1 + TO)



Efficiency revisited

• With speedup being

S = T1/TP = (P T1 )/(T1 + TO)

• Efficiency can be computed using the previous 
definition of the ratio of S to P as:

E = S/P = ((PT1)/(T1 + TO))/P = T1/(T1 + TO) 

    = 1/(1+ TO/T1) (2)



• Let
T1 be the single processor time
W be the amount of work in units of work)
tc be the time to perform each unit of work
• Then T1 = W t⋅t c

• TO is the total overhead, i.e. time spent 
doing parallel stuff but not the original 
work

• Then efficiency can be rewritten as
     (see Eqn. 2, previous page)

Efficiency as a function of work, 
data size and overhead

E = 1/(1+ TO/T1)



• Efficiency is

• For the same problem size on more processors, W is 
constant and TO is growing.  Thus efficiency 
decreases.

• Let θ(W) be some function that grow at the same or 
faster rate than W, i.e. θ(W) is an upper bound

• As P increases, TO will grow faster, the same, or slower 
than θ(W) 
• If faster, system has limited scalability
• If slower or the same, system is very scalable, can 

grow work the same or slower than processor growth

Some insights into Amdahl’s law 
and the Amdahl effect can be 
gleaned from this



The relationship of work and 
constant efficiency

Will use algebraic manipulations to 
(eventually) represent W as a 
function of P.  This indicates how W 
must grow as the number of 
processors grows to maintain the 
same efficiency.

This relationship holds when the efficiency is 
constant



Isoefficiency review

• The goal of isoefficiency 
analysis is co determine how 
fast work needs to increase to 
allow the efficiency to stay 
constant

• First step: divide the time 
needed to perform a parallel 
calculation (Tp) into the 
sequential time and the total 
overhead TO.

• Tp = (T1 + TO)/P; P Tp = T1 + TO



Tp = (T1 + TO)/P

P0 P7P6P5P4P3P2P1

P0

P0

P0

P2 P4 P6

P4

P

Tp Sum of all blue (hatched) times is 
T1.   Sum of all gray is T0 (plus 
communication time)



Let’s cast efficiency (E) in terms of 
T1 and TO so we can see how T1 , TO 

and E are related.

• With speedup being

S = T1/TP = (P T1 )/(T1 + TO)

• Efficiency can be computed using the previous definition of the ratio 
of S to P as:

E = S/P = ((PT1)/(T1 + TO))/P = T1/(T1 + TO) 

    = 1/(1+ TO/T1).  



Now look at how E is related to the 
work (W) in T1

• E = S/P = ((PT1)/(T1 + TO))/P = T1/(T1 + TO) 

   = 1/(1+ TO/T1).   

• Note that T1 is the number of operations times the 
amount of time to perform an operation, i.e., tC*W

• Then E = 1/(1+ TO/T1) = 1/(1+ TO/(tC*W)) or



Solve for W in terms of E and TO

Do the algebra, combine constants, and we 
have the Isoefficiency relationship.

For efficiency to be a constant, W must be equal 
to the overhead times a constant, i.e., W must 
grow proportionally to the overhead TO

If we can solve for KTO we can find out how 
fast W needs to grow to maintain constant 
efficiency with a larger number of 
processors.



What if TO is negative?

• Superlinear speedups can lead to 
negative values for TO 

• Appears to cause work to need to 
decrease

• Causes of superlinear speedup

• increased memory size in NUMA 
and hierarchical (i.e. caching) 
memory systems

• Search based problems

• We assume TO ≥ 0



Simple case superlinear speedup 
-- linear scan search for 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

To find an element takes O(pos) steps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

To find an element takes O(pos - offset) steps

Doubling processors leads to a 
speedup of ~9



Cache effects

• Moving data into cache is a hidden 
work item

• As P grows larger, total cache 
available also grows larger

• If P grows faster than data size, 
eventually all data fits in cache

• Thus cache misses due to capacity 
vanish, and the work associated with 
those misses vanishes, and the 
parallel program is doing less work, 
enabling superlinear speedups if 
everything else is highly efficient



There are no magical causes 
of superlinear speedup

• In the early days of 
parallel computing it was 
thought by some that 
there might be something 
else going one with 
parallel executions

• All cases of superlinear 
speedup observed to date 
can be explained by a 
reduction in overall work 
in solving the problem



How to define the problem size or 
amount of work

• Given an n x n matrix multiply, 
what is the problem size?
• Commonly called n

• How about adding two n x n 
matrices?
• Could call it the same n

• How about adding to vectors of 
length n?
• Could also call the problem size 

n
• Yet one involves n3 work, one n2 

work, and one n work



Same name, different amounts of 
work - this causes problems

• The goal of isoefficiency is to see how work should 
scale to maintain efficiency

• Let W=n for matrix multiply, matrix add and vector 
addition

• Let all three (for the sake of this example, even though 
not true) have a similar T0 that grows linearly with P

• Doubling n would lead to 8 times more operations for 
matrix multiply, 4 times for matrix add, and 2 times for 
vector add 

• Intuitively the vector add seems to be right, since 
number of operations and work (W) seem to be the same 
thing, not data size.

• We will normalize W in terms of operations in the best 
sequential algorithm, not some other metric of problem 
size



Isoefficiency of adding n numbers
• n-1 operations in sequential algorithm -- asymptotically 

is n and we will use n, and T1 = n t⋅t c

• Let each add take one unit of time, and each 
communication take one unit of time

• On P processors, n/P operations + log2 P communication 
steps + one add operation at each communication 
step

• TP = n/P + 2 log2 P

• TO = P (2 log2 P) since each processor is either doing this 
or waiting for this to finish on other processors

• S = T1 / TP = n/(n/P + 2 log2 P)

• E = S / P = n / (n + 2 P log2 P)



Isoefficiency analysis of adding n numbers

• From slide 12, W = K TO if same efficiency is to be maintained

• TO = P (2 log2 P) from the previous slide, then 

W = 2 K P log2 P 

and ignoring constants give an isoefficiency function of 

θ(P log2 P) 

• If the number of processors is increased to P’, then the work must 
be increased not by P’/P, but by

(P’ log2 P’) / (P log2 P) 

• Thus going from 4 to 16 processors requires having 

(16 log216) / (4 log2 4) or 8X as much work, spread over 4X as many 
processors, or 2X more work/processor.  Since data size grows 
proportional to work, we need 2X more data per processor! 



More complicated TO

• Consider TO = P3/2 + P3/4W3/4, and W = K TO, 
then 

W = P3/2 + P3/4W3/4 (again, ignoring constant 
K)

• Difficult to solve for W in terms of P 

• Note that we need ratio of W and TO to 
remain fixed for E (efficiency) to 
remain fixed

• Problem will scale well if no term of TO 
grows faster than W

• Thus we can examine terms 
independently



W = P3/2 + P3/4W3/4 

• Solve for first term, i.e. W = KP3/2 = θ(P3/2)

• Solve for second term, i.e. 

W = K P3/4W3/4

W1/4 = K P3/4

W = K4 P3 = θ(P3) 

• If problem size grows at least as fast as 
θ(P3/2) and θ(P3) then efficiency will not 
decrease as P increases.

• Thus the isoefficiency function for the 
system is θ(P3)



Cost optimality
• Parallel system is cost-optimal if product of PTP W, ∝W, 

i.e, is not growing faster than W

• Stated differently, the system is cost 
proportional to the execution time of the fastest 
known sequential algorithm on a single 
processor. 

• Because PTp = T1 + TO, then T1 + TO W∝W, 

• Since T1 = Wtc, we have Wtc + TO W∝W,  and therefore 
W T∝W, O.

• Suggests a parallel system is cost optimal if its 
overhead function and problem size are of the same 
order of magnitude, i.e. have same order of complexity.

• Conforming to the isoefficiency relationship keeps a 
system cost-optimal as it is scaled up



How small can an isoefficiency 
function be?

• Let a problem contain W basic operations

• Let problem size grow slower than θ(P)

• As P grows, eventually P > W

• At this time efficiency E must drop 
because there will be processors doing 
no work

• Thus, problem size must grow at least by 
θ(P) for the problem to scale

• θ(P) is the lower bound on the 
isoefficiency function

• θ(P) is the isoefficiency function of an 
ideally scalable system



Degree of concurrency C(W)

• Lower bound of θ(P) for some algorithm 
is imposed by the algorithm’s degree of 
concurrency

• If θ(P) is an algorithm’s degree of 
concurrency, at most θ(P) processors can 
be used to solve the problem

• Example: Gaussian elimination has θ(n3) 
amount of computation, but ...
• n variables must be eliminated one 

after the other (sequentially)
• n2 work per variable
• thus at most n2 processors can ever be 

effectively be used at a time.



Degree of concurrency, cont.
• If W=θ(n3) for this problem, degree of 

concurrency is θ(W2/3)
• Given a problem of size W, at most θ(W2/3) 

processors can be used
• For P processors, need θ(P3/2) work (W2/3 = P)
• Thus, because of concurrency, isoefficiency 

function for this operation is θ(P3/2)
• If algorithm’s degree of concurrency is <θ(W)θ(W), 

then
• isoefficiency function due to concurrency is 

worse than θ(P)
• In these cases, isoefficiency function is the 

max of the isoefficiency functions due to 
concurrency, communication, and other 
overheads 



Hypercubes: short aside

• Since hypercubes are mentioned in Grama’s 
paper, let's talk about them for a few minutes.

• Hypercubes were first developed as part of the 
Cosmic Cube project at CalTech (Seitz and 
Fox).  Commercial version came out as the 
Intel iPSC, with Cleve Moler as one of the 
designers.

• Cleve Moler went on to found Matlab, Jeff 
Fox now at IU CS, Seitz won 2011 IEEE 
Computer Society Seymour Cray Computer 
Engineering Award

• The original Cosmic Cube was a plot device 
used in Marvel Comics



Hypercube

• Direct topology (one 
switch node/processor)

• 2 x 2 x … x 2 mesh

• Number of nodes a 
power of 2, denoted k

• Node addresses 0, 1, …, 
2k-1

• Node i connected to k 
nodes whose addresses 
differ from i in exactly 
one bit position



Hypercube labeling

00
01

00
11

01
01

01
11

00
00

00
10

01
00

01
10

00
01

00
11

01
01

01
11

00
00

00
10

01
00

01
10

Pairs of adjacent nodes differ by 1 bit in their 
label -- result of gray code numbering



Hypercube labeling

00
01

00
11

01
01

01
11

00
00

00
10

01
00

01
10

10
01

10
11

11
01

11
11

10
00

10
10

11
00

11
10

A large hypercube is made up of smaller hypercubes.  
1. Add 1 (high-order) bit to labels
2. Make bit 1 for one small hypercube, 0 for the other
3. Add edge to nodes whose labels differ in one bit



Labeling leads to routing

00
01

00
11

01
01

01
11

00
00

00
10

01
00

01
10

10
01

10
11

11
01

11
11

10
00

10
10

11
00

11
10

Given a source a destination label, always move 
one bit closer to the destination label with each 
hop.



Labeling leads to routing

00
01

00
11

010
1

01
11

00
00

00
10

01
00

01
10

10
01

10
11

11
01

11
11

10
00

101
0

11
00

11
10

Go from 0101 to 1010, want to change source 
0’s to 1’s, and 1’s to 0’s, i.e., change source bits 
to match destination bits.



00
01

00
11

010
1

01
11

00
00

00
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01
00

01
10

10
01

10
11

11
01

11
11

10
00

101
0

11
00

11
10

Go from 0101 to 0001, on the way to 1010.  Note 
that since every bit needs to change, and every 
bit link changes one bit, we have four choices.  In 
general, B choices, where B is the number of bits 
to change.  

Cross links 
from left to 

right not 
shown for 

clarity



Labeling leads to 
routing
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At 0001, on route from 0101 to 1010.  Three bits 
differ, three choices, pick one (1001)
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At 1001, on route from 0101 to 1010.  Two bits 
differ, two choices, pick one (1011)



how do we 
know not to go 

to here?

00
01

00
11

010
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11
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At 1001, on route from 0101 to 1010.  Two bits 
differ, two choices, pick one (1011)
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0

11
00

11
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At 1011, on route from 0101 to 1010.  One bit 
differs, only one choice, pick it (1010)
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01
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00
01



Comparing matrix vector 
algorithms - sequential alg.

• Consider matrix vector 
multiply, i.e. an n x n matrix 
times an n x 1 matrix

• Number of basic operations 
(W) is n2, with tc the time for a 
single floating multiply-add

• Sequential time is n2 tc, i.e. 

       T1 = n2 tc



With striped, data starts out like this, 
e.g., from reading matrix and vector 

from disks

P0

P1

. . .

Pp-1



Every process sends its n/P elements 
of the vector to every other process

Do this with an 
all-to-all 
broadcast

ts log P+tw n(P-1)/P

P0

P1

. . .

Pp-1

startup time 
(ts is startup 
time of the 

network

comm. time -- 
tw is the time 
to send one 

word



After communication 
every process has a copy 

of the vector

P0

P1

. . .

Pp-1



Row-striped parallel alg.

• n/p matrix rows and vector 
elements to each processor

• Costs:

• all-to-all broadcast of vector 
elements so that each processor 
has a copy: 

ts log P+tw n(P-1)/P

or, as P grows large, simply 

ts log P+tw n 

where ts is startup time, tw is per-word 
transfer time



Row-striped parallel alg.

• n/p matrix rows and vector elements to each processor

• Each node does tc n2/p work multiplying n/p rows times 
the vector

• TP = tc n2/P + ts log P+tw n

Using the relation TO = P TP -T1, we get TO = ts P log P+tw n P

TO =P(tc n2/P + ts log P+tw n) - n2 tc

     = tc n2 + ts P log P+tw P n - n2 tc

        = ts P log P+tw n P



Isoefficiency relationship

• TO = ts P log P+tw n P

• Balance the first term of TO  by 
rewriting W = K TO using only first 
term  TO = ts P log P to get W = K ts P log P

• Balancing the second term of TO (tw n P 
due to per-word transfer time) 
against the problem size W and in 
terms of P we get

        n2 = K tw n P

        n = K tw P (solve for n in terms of K and 
tw (constants) and P)

        W = n2 = K2 tw
2 P2 

• To maintain efficiency, work must 
increase proportional to P2 



Checkerboard partitioning - data is originally 
in the last processor of each column

• Divide data into n/√p x n/√p 
squares and place on the 
last column of processes

• Each process w/data sends 
it to the diagonal of its row 
(a)

• Column-wise one-to-all 
broadcast of n/√p elements 
(b)



Checkerboard partitioning - data is originally 
in the last processor of each column

• Each processor performs 
n2/p multiplications, and 
locally adds n/√p sets of 
products.  (c)

• n/√p partial sums to be 
accumulated along each 
row (c)

State at end of 
computation (d)



Checkerboard partitioning - data is originally 
in the last processor of each column



Checkerboard partitioning analysis
1. Divide data into n/√p x n/√p squares, send along rows
ts + tw(n/√p) log √p

2. Column-wise one-to-all broadcast of n/√p elements
takes (ts + tw n/√p) log √p time on a hypercube with store-and-
forward routing, or ts log √p + tw n/√p log √p time.
3. Adding the numbers: Each processor performs n2/p 

multiplications, and locally adds n/√p sets of products.  
takes tc n2/p time 

4. n/√p partial sums to be accumulated along each row (a 
reduction)

also takes takes (ts + tw n/√p) log √p time on a hypercube with 
store-and-forward routing using a reduction

5. total parallel time is 
TP = tc(n2/p) + ts + 2 ts log √p + 3 tw (n/√p) log √p



• Can approximate

TP = tc(n2/p) + ts + 2 ts log √p + 3 tw (n/√p) log √p

with (substituting (log p)/2 for log √p), ignoring non-p 
terms

TP = tc(n2/P) + ts log p + (3/2) tw (n/√p) log p

• will use this expression to find isoefficiency, in 
particular, using pTP = T0 + T1, we find 

    TO = pTP - T1 or 

TO = tcn2 + ts p log p + (3/2) tw (n √p) log p - tcn2

• and thus TO = ts p log p + (3/2) tw (n √p) log p

Simplify

serial work



Simplify and analyze
TO = ts p log p + (3/2) tw n√p log p

• Solve for isoefficiency resulting from the tw 

term 
Equate each term of TO with the problem size W 
in terms of P and constants
n2tc = K (3/2) tw n√p log p
n = K (3/2) (tw/tc) √p log p
W = n2 = K (9/4) (t2

w/t2
c) p log2 p

• The isoefficiency due to tw is θ( p log2 p)  

• This is also overall isoefficiency, since it 
dominates the θ(p log p) term involving ts

constants for a
 given problem and 

machine



What we can conclude

• For the striped model 

W = n2 = K2 tw
2 P2

and to maintain efficiency, work 
must increase proportional to P2 

• For the checkerboard model, 
θ( p log2 p) and p log2 p <θ(W) P2

• Therefore, the checkerboard model 
will scale better than the striped 
model 

• The fundamental reason for this is 
that the communication is over a 
smaller number of processors



Isoefficiency and concurrency

• Some algorithms with low 
overhead also have limited 
concurrency

• This has a negative effect on 
isoefficiency, as we will see from 
Dijkstra’s all-pairs shortest-path 
algorithm

• One instance of Dijkstra’s 
algorithm computes the shortest 
distance between a single node 
s and all other nodes



Edgar Dijkstra
• Dutch computer scientist, eventually worked to UT Austin, didn't 

particularly like computers, considered fairly cranky (but very smart and 
dedicated to teaching) by those who worked with him.

The job [of operating or using a computer] was actually beyond the 
electronic technology of the day, and, as a result, the question of how to 
get and keep the physical equipment more or less in working condition 
became in the early days the all-overriding concern. As a result, the topic 
became —primarily in the USA— prematurely known as "computer 
science" —which, actually is like referring to surgery as "knife science"— 
and it was firmly implanted in people's minds that computing science is 
about machines and their peripheral equipment. Quod non [Latin: "Which 
is not true"]

“And I don’t need to waste my time with a computer just because I’m a 
computer scientist. [Medical researchers are not required to suffer from the 
diseases they investigate.]” EWD 1305



Edgar Dijkstra

I think anthropomorphism is worst of 
all. I have now seen programs "trying 
to do things", "wanting to do things", 
"believing things to be true", "knowing 
things" etc. Don't be so naive as to 
believe that this use of language is 
harmless. It invites the programmer to 
identify himself with the execution of 
the program and almost forces upon 
him the use of operational semantics.



Edgar Dijkstra
We could, for instance, begin with cleaning 
up our language by no longer calling a bug a 
bug but by calling it an error. It is much 
more honest because it squarely puts the 
blame where it belongs, viz. with the 
programmer who made the error. The 
animistic metaphor of the bug that 
maliciously sneaked in while the 
programmer was not looking is intellectually 
dishonest as it disguises that the error is the 
programmer's own creation... My next 
linguistically suggestion is more rigorous. It 
is to fight the "if-this-guy-wants-to-talk-to-
that-guy" syndrome: never refer to parts of 
programs or pieces of equipment in 
anthropomorphic terminology...



EMD books, Dijkstra font



EMD books, Dijkstra font
I came across a comment on Reddit by someone that had Dijkstra as a 
professor. Here’s what it said:

I’ve always had horrible handwriting. When I was a computer science 
student I was in a class taught by Edsger Dijkstra. During the class he 
asked us to occasionally turn in our notes, because he wanted to see 
what we thought was important.

The final was an oral final and after going through a few questions to 
his satisfaction he said “You seem competent, but your handwriting is 
horrible…” The remaining 30 mins of my final exam by Dijkstra was 
me writing phrases repeatedly on a pad of paper while he said, ‘no, you 
need to round the o’s a bit more, the A is misformed, etc…’.. 
https://joshldavis.com/2013/05/20/the-path-to-dijkstras-handwriting/



Contributions

Fault-tolerant systems
Self-stabilizing distributed systems
Deadly embrace
Shunting-yard algorithm
Banker's algorithm
Dining philosophers problem
Predicate transformer semantics
Guarded Command Language
Weakest precondition calculus
Smoothsort
Separation of concerns
Software architecture[1]

Dijkstra's algorithm
DJP algorithm
First implementation of ALGOL 60
Structured programming
Semaphore
THE multiprogramming system
Multithreaded programming
Concurrent programming
Principles of distributed computing
Mutual exclusion
Call stack



Structured programming
• Created the phrase 

structured programming

• His March, 1968 letter to 
the Communications of the 
ACM, entitled Go To 
Statement Considered 
Harmful was a major 
turning point in structured 
programming

• By the early 1970s, 
structured programming 
was firmly engrained in 
practice



Dijkstra’s algorithm
// di is the distance from ds to di

// V is the set of N vertices
// T is the set of unprocessed nodes

1.procedure sequential_dijkstra
2.ds = 0
3.di = ∞, i≠s,i  V∈ V
4.T=V             
5.for i=0 to N-1
6.   find vm  T ∈ V with minimum dm

7.   for each edge (vm, vt) with vt  T∈ V
8.      if (dt > dm + length((vm, vt))) then 
9.         dt = dm + length((vm, vt))
10.   T = T - vm

To find the shortest path from a 
vertex s to all other vertices

At each step

pick the node to be processed 
(a member of T) vm that is 
closest to s (this is vm on the first 
iteration)

for every other node vt that is to 
be processed
   see if there is a edge from vm 
to vt that leads 
   to a shorter distance from s to 
vt 

remove vm from the set T of 
unprocessed nodes

at each step i, finds shortest 
paths from vs to nodes of length 
i
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A parallel Dijkstra’s algorithm for all paths

• Replicate the graph N times (N is the 
number of vertices), with each processor 
getting N/P vertices to treat as s vertices, 
i.e., N/P vertices to find shortest paths 
from it to other vertices

• Each node computes the shortest 
distances from the N/P  vertices it owns 
to all other N vertices

• No communication needed
• Seems like the perfect algorithm, but it 

isn’t
• O(N3) work, but only O(N) parallelism

• W is θ(N3), P=N, W must grow as θ(P3) 
to scale and the isoefficiency is high 



Cooley-Tukey FFT Algorithm – the iso-efficiency relationship 
depends on the machine parameters for bandwidth and 
operation time



Machine specific parameters
• Sequential complexity 

is θ(n log n)

• Parallel version based 
on the binary 
exchange  method for 
a d-dimensional (P=2d) 
hypercube

• partition vectors into 
block of n/p contiguous 
elements, n=2r

• 1 block of 2r-d elements 
assigned per 
processor

r = log2 16, r = 4
4 dimensional hypercube, d = 2 



Machine specific parameters
• vector elements on 

different processors 
combined during first d 
iterations, pairs on the 
same processors 
combined in the last r-d 
iterations

• interprocessor 
communication in only d 
= log P of the r = log n 
iterations

• Each communication 
exchanges n/P words

• Communication time is 
(ts + tw n/P) log P

• During each iteration a 
processor updates n/P elements 
of vector r

• Let each complex multiply take 
time tc



Machine specific parameters
Always talk to 

adjacent node in 
a hypercube

differ in high 
order bit differ in next 

to low order bit

differ in next to 
high order bit

differ in low
 order bit



• On a hypercube communicating nodes are always 
adjacent, i.e. a single hop to communicate

• Allows each communication to happen in time                
  ts + tw n/P time

• With d communicating steps, hypercube will 
communicate over each adjacent edge during 
computation

00 01

10 11

00 01

10 11

00 01

10 11

1st step 2nd step
3rd and 4th

steps

No comm w/4 nodes



Parallel execution time
• TP = tc(n/P) log n + ts log P + tw (n/P) log P

• TO =P(ts + tw n/P) log P = ts P log P + tw n log P

• W = n log n

Computation
time

startup times for 
log p communications

startup times for 
log p communications



Solve for different terms

• First term (ts), W P t∝W, s log P, isoefficiency 
function is P log P

• Second term, n log n = K tw n log P

log n = Ktw log P

n = PK(tw/tc)

n log n = K tw PKtw log P

Substituting for K

W=E/(1-E) (tw/tc)PE/(1-E)(tw/tc) log P



Isoefficiency a function of E
• W=E/(1-E) (tw/tc)PE/(1-E)(tw/tc) log P (from the 

previous slide)

• Consider if exponent of P, tw E/(tc (1-E)) <θ(W) 1

W grows slower than P log P

Overall isoefficiency is θ(P log P) (from ts term 
the previous page)

• Consider if tw E/(tc (1-E)) >1

isoefficiency a function of relative values of 

E/(1-E), tw, tc

• Consider if tw E/(tc (1-E)) =1

Isoefficiency is P log P, a lower threshold for a 
hypercube



effect of tw E/(tc (1-E)) on isoefficiency

•  if tw = tc, isoefficiency is W=E/(1-E)PE/(1-E)log P

• Now for E/(1-E) ≤ 1, E ≤ 0.5 

isoefficiency is θ(P log P)

• For E/(1-E), E ≥ 0.5

If E=0.9, E/(1-E)=9, isoefficiency is P9 log P

• Effect of tw and tc: let’s make the bandwidth lower

if tw=2tc then the threshold efficiency is 0.333

Isoefficiency for E=0.333 is θ(P log P)

Isoefficiency for E=0.5 is θ(P 2 log P) and for 

E=0.9 is θ(p18 log p)  (twE/(tc(1-E)) = 2E(1-E) = 1.8/0.1)

• What can we conclude from this?



Conclusions for FFT

• Balance of bandwidth and CPU is 
important for this problem - scalability is 
good on a balanced system

• Making bandwidth higher helps

• Increasing CPU performance without 
increasing bandwidth reduces scalability

• On modern systems . . .



From a talk by Horst Simon





FFT is unique in this property

• But, the ratios of tw and tc can 
be high

• May result in tc term being 
important in small machine 
sizes, and the tw or ts terms 
dominating for larger 
machines

• Again, need to apply 
intelligence, and again, using 
isoefficiency gives insights 
into what is required to have 
an app scale



Summary

• Data structure contention also must be considered if it 
is the dominating term

• In summary: 
• Want to increase problem size to maintain 

efficiency
• Must have enough memory to hold larger problem 

size
• Rate of growth of problem size is a limit on the 

number of processors we can run on
• Thus rate of growth of problem size is a limit on 

how scalable the algorithm is if we want to maintain 
constant efficiency

• Isoefficiency functions provide a way of 
determining the rate of growth of the problem size
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