
Isoefficiency
analysis

• V2 typos fixed in matrix vector
multiply

Measuring the parallel
scalability of algorithms

• One of many parallel performance
metrics

• Allows us to determine scalability with
respect to machine parameters
• number of processors and their speed
• communication patterns, bandwidth

and startup
• Give us a way of computing
• the relative scalability of two

algorithms
• how much work needs to be

increased when the number of
processors is increased to maintain
the same efficiency

Amdahl’s law reviewed
As number of
processors
increase, serial
overheads reduce
efficiency

As problem size
increases,
efficiency returns

Efficiency of adding n numbers on an ancient machine
P=4 gives ε of .80 with 64 numbers
P=8 gives ε of .80 with 192 numbers
P=16 gives ε of .80 with 512 numbers (4X processors, 8X
data)

• Consider a program that does O(n) work

• Also assume the overhead is O(log2 p), i.e. it does a
reduction

• The total overhead, i.e. the amount of time processors are
sitting idle or doing work associated with parallelism
instead of the basic problem, is O(p log2 p)

Motivating example

P0 P7P6P5P4P3P2P1

P0

P0

P0

P2 P4 P6

P4

Naive Allreduce ~1/2 nodes are
idle at any given time

Data to maintain efficiency
● As number of

processors increase,
serial overheads
reduce efficiency

● As problem size
increases,efficiency
returns

P P log2 P
Data
needed

per
processor

2 2 1 GB

4 8 2 GB

8 24 3 GB

16 64 4

Isoefficiency analysis allows us to analyze
the rate at which the data size must grow
to mask parallel overheads to determine if
a computation is scalable.

Amdahl Effect both increases speedup and
move the knee of the curve to the right

Speedup

Number of processors

n=100000

n=10000

n=1000

Total overhead TO is the time spent

• Any work that is not part of the
serial form of the program

• Communication

• Idle time because of waiting
for some processor that is
executing serial code

• Idle time waiting for data from
another processor

• . . .

Efficiency revisited

• Total time spent on all processors is the original sequential execution [best
sequential implementation] time plus the parallel overhead

PTp = T1 + TO (1)

• The time it takes the program to run in parallel is the total time spent on
all processors divided by the number of processors. This is true because
TO includes the time processors are waiting for something to happen in a
parallel execution.

Tp = (T1 + TO)/P (1), which can be written T1 = P Tp - TO (1a)

• Speedup S is as before (T1/TP) , or by substituting (1, 1a) above, we get:

S = (P Tp - TO) / ((T1 + TO)/P) = (P2Tp - PTO)/(T1 + TO). Using 1 we get

 = (P(T1 + TO) - PTO)/(T1 + TO) = P (T1 + TO - TO)/(T1 + TO

 = P T1 / (T1 + TO)

Efficiency revisited

• With speedup being

S = T1/TP = (P T1)/(T1 + TO)

• Efficiency can be computed using the previous
definition of the ratio of S to P as:

E = S/P = ((PT1)/(T1 + TO))/P = T1/(T1 + TO)

 = 1/(1+ TO/T1) (2)

• Let
T1 be the single processor time
W be the amount of work in units of work)
tc be the time to perform each unit of work
• Then T1 = W t⋅t c

• TO is the total overhead, i.e. time spent
doing parallel stuff but not the original
work

• Then efficiency can be rewritten as
 (see Eqn. 2, previous page)

Efficiency as a function of work,
data size and overhead

E = 1/(1+ TO/T1)

• Efficiency is

• For the same problem size on more processors, W is
constant and TO is growing. Thus efficiency
decreases.

• Let θ(W) be some function that grow at the same or
faster rate than W, i.e. θ(W) is an upper bound

• As P increases, TO will grow faster, the same, or slower
than θ(W)
• If faster, system has limited scalability
• If slower or the same, system is very scalable, can

grow work the same or slower than processor growth

Some insights into Amdahl’s law
and the Amdahl effect can be
gleaned from this

The relationship of work and
constant efficiency

Will use algebraic manipulations to
(eventually) represent W as a
function of P. This indicates how W
must grow as the number of
processors grows to maintain the
same efficiency.

This relationship holds when the efficiency is
constant

Isoefficiency review

• The goal of isoefficiency
analysis is co determine how
fast work needs to increase to
allow the efficiency to stay
constant

• First step: divide the time
needed to perform a parallel
calculation (Tp) into the
sequential time and the total
overhead TO.

• Tp = (T1 + TO)/P; P Tp = T1 + TO

Tp = (T1 + TO)/P

P0 P7P6P5P4P3P2P1

P0

P0

P0

P2 P4 P6

P4

P

Tp Sum of all blue (hatched) times is
T1. Sum of all gray is T0 (plus
communication time)

Let’s cast efficiency (E) in terms of
T1 and TO so we can see how T1 , TO

and E are related.

• With speedup being

S = T1/TP = (P T1)/(T1 + TO)

• Efficiency can be computed using the previous definition of the ratio
of S to P as:

E = S/P = ((PT1)/(T1 + TO))/P = T1/(T1 + TO)

 = 1/(1+ TO/T1).

Now look at how E is related to the
work (W) in T1

• E = S/P = ((PT1)/(T1 + TO))/P = T1/(T1 + TO)

 = 1/(1+ TO/T1).

• Note that T1 is the number of operations times the
amount of time to perform an operation, i.e., tC*W

• Then E = 1/(1+ TO/T1) = 1/(1+ TO/(tC*W)) or

Solve for W in terms of E and TO

Do the algebra, combine constants, and we
have the Isoefficiency relationship.

For efficiency to be a constant, W must be equal
to the overhead times a constant, i.e., W must
grow proportionally to the overhead TO

If we can solve for KTO we can find out how
fast W needs to grow to maintain constant
efficiency with a larger number of
processors.

What if TO is negative?

• Superlinear speedups can lead to
negative values for TO

• Appears to cause work to need to
decrease

• Causes of superlinear speedup

• increased memory size in NUMA
and hierarchical (i.e. caching)
memory systems

• Search based problems

• We assume TO ≥ 0

Simple case superlinear speedup
-- linear scan search for 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

To find an element takes O(pos) steps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

To find an element takes O(pos - offset) steps

Doubling processors leads to a
speedup of ~9

Cache effects

• Moving data into cache is a hidden
work item

• As P grows larger, total cache
available also grows larger

• If P grows faster than data size,
eventually all data fits in cache

• Thus cache misses due to capacity
vanish, and the work associated with
those misses vanishes, and the
parallel program is doing less work,
enabling superlinear speedups if
everything else is highly efficient

There are no magical causes
of superlinear speedup

• In the early days of
parallel computing it was
thought by some that
there might be something
else going one with
parallel executions

• All cases of superlinear
speedup observed to date
can be explained by a
reduction in overall work
in solving the problem

How to define the problem size or
amount of work

• Given an n x n matrix multiply,
what is the problem size?
• Commonly called n

• How about adding two n x n
matrices?
• Could call it the same n

• How about adding to vectors of
length n?
• Could also call the problem size

n
• Yet one involves n3 work, one n2

work, and one n work

Same name, different amounts of
work - this causes problems

• The goal of isoefficiency is to see how work should
scale to maintain efficiency

• Let W=n for matrix multiply, matrix add and vector
addition

• Let all three (for the sake of this example, even though
not true) have a similar T0 that grows linearly with P

• Doubling n would lead to 8 times more operations for
matrix multiply, 4 times for matrix add, and 2 times for
vector add

• Intuitively the vector add seems to be right, since
number of operations and work (W) seem to be the same
thing, not data size.

• We will normalize W in terms of operations in the best
sequential algorithm, not some other metric of problem
size

Isoefficiency of adding n numbers
• n-1 operations in sequential algorithm -- asymptotically

is n and we will use n, and T1 = n t⋅t c

• Let each add take one unit of time, and each
communication take one unit of time

• On P processors, n/P operations + log2 P communication
steps + one add operation at each communication
step

• TP = n/P + 2 log2 P

• TO = P (2 log2 P) since each processor is either doing this
or waiting for this to finish on other processors

• S = T1 / TP = n/(n/P + 2 log2 P)

• E = S / P = n / (n + 2 P log2 P)

Isoefficiency analysis of adding n numbers

• From slide 12, W = K TO if same efficiency is to be maintained

• TO = P (2 log2 P) from the previous slide, then

W = 2 K P log2 P

and ignoring constants give an isoefficiency function of

θ(P log2 P)

• If the number of processors is increased to P’, then the work must
be increased not by P’/P, but by

(P’ log2 P’) / (P log2 P)

• Thus going from 4 to 16 processors requires having

(16 log216) / (4 log2 4) or 8X as much work, spread over 4X as many
processors, or 2X more work/processor. Since data size grows
proportional to work, we need 2X more data per processor!

More complicated TO

• Consider TO = P3/2 + P3/4W3/4, and W = K TO,
then

W = P3/2 + P3/4W3/4 (again, ignoring constant
K)

• Difficult to solve for W in terms of P

• Note that we need ratio of W and TO to
remain fixed for E (efficiency) to
remain fixed

• Problem will scale well if no term of TO
grows faster than W

• Thus we can examine terms
independently

W = P3/2 + P3/4W3/4

• Solve for first term, i.e. W = KP3/2 = θ(P3/2)

• Solve for second term, i.e.

W = K P3/4W3/4

W1/4 = K P3/4

W = K4 P3 = θ(P3)

• If problem size grows at least as fast as
θ(P3/2) and θ(P3) then efficiency will not
decrease as P increases.

• Thus the isoefficiency function for the
system is θ(P3)

Cost optimality
• Parallel system is cost-optimal if product of PTP W, ∝W,

i.e, is not growing faster than W

• Stated differently, the system is cost
proportional to the execution time of the fastest
known sequential algorithm on a single
processor.

• Because PTp = T1 + TO, then T1 + TO W∝W,

• Since T1 = Wtc, we have Wtc + TO W∝W, and therefore
W T∝W, O.

• Suggests a parallel system is cost optimal if its
overhead function and problem size are of the same
order of magnitude, i.e. have same order of complexity.

• Conforming to the isoefficiency relationship keeps a
system cost-optimal as it is scaled up

How small can an isoefficiency
function be?

• Let a problem contain W basic operations

• Let problem size grow slower than θ(P)

• As P grows, eventually P > W

• At this time efficiency E must drop
because there will be processors doing
no work

• Thus, problem size must grow at least by
θ(P) for the problem to scale

• θ(P) is the lower bound on the
isoefficiency function

• θ(P) is the isoefficiency function of an
ideally scalable system

Degree of concurrency C(W)

• Lower bound of θ(P) for some algorithm
is imposed by the algorithm’s degree of
concurrency

• If θ(P) is an algorithm’s degree of
concurrency, at most θ(P) processors can
be used to solve the problem

• Example: Gaussian elimination has θ(n3)
amount of computation, but ...
• n variables must be eliminated one

after the other (sequentially)
• n2 work per variable
• thus at most n2 processors can ever be

effectively be used at a time.

Degree of concurrency, cont.
• If W=θ(n3) for this problem, degree of

concurrency is θ(W2/3)
• Given a problem of size W, at most θ(W2/3)

processors can be used
• For P processors, need θ(P3/2) work (W2/3 = P)
• Thus, because of concurrency, isoefficiency

function for this operation is θ(P3/2)
• If algorithm’s degree of concurrency is <θ(W)θ(W),

then
• isoefficiency function due to concurrency is

worse than θ(P)
• In these cases, isoefficiency function is the

max of the isoefficiency functions due to
concurrency, communication, and other
overheads

Hypercubes: short aside

• Since hypercubes are mentioned in Grama’s
paper, let's talk about them for a few minutes.

• Hypercubes were first developed as part of the
Cosmic Cube project at CalTech (Seitz and
Fox). Commercial version came out as the
Intel iPSC, with Cleve Moler as one of the
designers.

• Cleve Moler went on to found Matlab, Jeff
Fox now at IU CS, Seitz won 2011 IEEE
Computer Society Seymour Cray Computer
Engineering Award

• The original Cosmic Cube was a plot device
used in Marvel Comics

Hypercube

• Direct topology (one
switch node/processor)

• 2 x 2 x … x 2 mesh

• Number of nodes a
power of 2, denoted k

• Node addresses 0, 1, …,
2k-1

• Node i connected to k
nodes whose addresses
differ from i in exactly
one bit position

Hypercube labeling

00
01

00
11

01
01

01
11

00
00

00
10

01
00

01
10

00
01

00
11

01
01

01
11

00
00

00
10

01
00

01
10

Pairs of adjacent nodes differ by 1 bit in their
label -- result of gray code numbering

Hypercube labeling

00
01

00
11

01
01

01
11

00
00

00
10

01
00

01
10

10
01

10
11

11
01

11
11

10
00

10
10

11
00

11
10

A large hypercube is made up of smaller hypercubes.
1. Add 1 (high-order) bit to labels
2. Make bit 1 for one small hypercube, 0 for the other
3. Add edge to nodes whose labels differ in one bit

Labeling leads to routing

00
01

00
11

01
01

01
11

00
00

00
10

01
00

01
10

10
01

10
11

11
01

11
11

10
00

10
10

11
00

11
10

Given a source a destination label, always move
one bit closer to the destination label with each
hop.

Labeling leads to routing

00
01

00
11

010
1

01
11

00
00

00
10

01
00

01
10

10
01

10
11

11
01

11
11

10
00

101
0

11
00

11
10

Go from 0101 to 1010, want to change source
0’s to 1’s, and 1’s to 0’s, i.e., change source bits
to match destination bits.

00
01

00
11

010
1

01
11

00
00

00
10

01
00

01
10

10
01

10
11

11
01

11
11

10
00

101
0

11
00

11
10

Go from 0101 to 0001, on the way to 1010. Note
that since every bit needs to change, and every
bit link changes one bit, we have four choices. In
general, B choices, where B is the number of bits
to change.

Cross links
from left to

right not
shown for

clarity

Labeling leads to
routing

00
01

00
11

010
1

01
11

00
00

00
10

01
00

01
10

10
01

10
11

11
01

11
11

10
00

101
0

11
00

11
10

At 0001, on route from 0101 to 1010. Three bits
differ, three choices, pick one (1001)

00
01

00
11

010
1

01
11

00
00

00
10

01
00

01
10

10
01

10
11

11
01

11
11

10
00

101
0

11
00

11
10

At 1001, on route from 0101 to 1010. Two bits
differ, two choices, pick one (1011)

how do we
know not to go

to here?

00
01

00
11

010
1

01
11

00
00

00
10

01
00

01
10

10
01

10
11

11
01

11
11

10
00

101
0

11
00

11
10

At 1001, on route from 0101 to 1010. Two bits
differ, two choices, pick one (1011)

10
01

10
11

11
01

11
11

10
00

101
0

11
00

11
10

At 1011, on route from 0101 to 1010. One bit
differs, only one choice, pick it (1010)

00
11

010
1

01
11

00
00

00
10

01
00

01
10

00
01

Comparing matrix vector
algorithms - sequential alg.

• Consider matrix vector
multiply, i.e. an n x n matrix
times an n x 1 matrix

• Number of basic operations
(W) is n2, with tc the time for a
single floating multiply-add

• Sequential time is n2 tc, i.e.

 T1 = n2 tc

With striped, data starts out like this,
e.g., from reading matrix and vector

from disks

P0

P1

. . .

Pp-1

Every process sends its n/P elements
of the vector to every other process

Do this with an
all-to-all
broadcast

ts log P+tw n(P-1)/P

P0

P1

. . .

Pp-1

startup time
(ts is startup
time of the

network

comm. time --
tw is the time
to send one

word

After communication
every process has a copy

of the vector

P0

P1

. . .

Pp-1

Row-striped parallel alg.

• n/p matrix rows and vector
elements to each processor

• Costs:

• all-to-all broadcast of vector
elements so that each processor
has a copy:

ts log P+tw n(P-1)/P

or, as P grows large, simply

ts log P+tw n

where ts is startup time, tw is per-word
transfer time

Row-striped parallel alg.

• n/p matrix rows and vector elements to each processor

• Each node does tc n2/p work multiplying n/p rows times
the vector

• TP = tc n2/P + ts log P+tw n

Using the relation TO = P TP -T1, we get TO = ts P log P+tw n P

TO =P(tc n2/P + ts log P+tw n) - n2 tc

 = tc n2 + ts P log P+tw P n - n2 tc

 = ts P log P+tw n P

Isoefficiency relationship

• TO = ts P log P+tw n P

• Balance the first term of TO by
rewriting W = K TO using only first
term TO = ts P log P to get W = K ts P log P

• Balancing the second term of TO (tw n P
due to per-word transfer time)
against the problem size W and in
terms of P we get

 n2 = K tw n P

 n = K tw P (solve for n in terms of K and
tw (constants) and P)

 W = n2 = K2 tw
2 P2

• To maintain efficiency, work must
increase proportional to P2

Checkerboard partitioning - data is originally
in the last processor of each column

• Divide data into n/√p x n/√p
squares and place on the
last column of processes

• Each process w/data sends
it to the diagonal of its row
(a)

• Column-wise one-to-all
broadcast of n/√p elements
(b)

Checkerboard partitioning - data is originally
in the last processor of each column

• Each processor performs
n2/p multiplications, and
locally adds n/√p sets of
products. (c)

• n/√p partial sums to be
accumulated along each
row (c)

State at end of
computation (d)

Checkerboard partitioning - data is originally
in the last processor of each column

Checkerboard partitioning analysis
1. Divide data into n/√p x n/√p squares, send along rows
ts + tw(n/√p) log √p

2. Column-wise one-to-all broadcast of n/√p elements
takes (ts + tw n/√p) log √p time on a hypercube with store-and-
forward routing, or ts log √p + tw n/√p log √p time.
3. Adding the numbers: Each processor performs n2/p

multiplications, and locally adds n/√p sets of products.
takes tc n2/p time

4. n/√p partial sums to be accumulated along each row (a
reduction)

also takes takes (ts + tw n/√p) log √p time on a hypercube with
store-and-forward routing using a reduction

5. total parallel time is
TP = tc(n2/p) + ts + 2 ts log √p + 3 tw (n/√p) log √p

• Can approximate

TP = tc(n2/p) + ts + 2 ts log √p + 3 tw (n/√p) log √p

with (substituting (log p)/2 for log √p), ignoring non-p
terms

TP = tc(n2/P) + ts log p + (3/2) tw (n/√p) log p

• will use this expression to find isoefficiency, in
particular, using pTP = T0 + T1, we find

 TO = pTP - T1 or

TO = tcn2 + ts p log p + (3/2) tw (n √p) log p - tcn2

• and thus TO = ts p log p + (3/2) tw (n √p) log p

Simplify

serial work

Simplify and analyze
TO = ts p log p + (3/2) tw n√p log p

• Solve for isoefficiency resulting from the tw

term
Equate each term of TO with the problem size W
in terms of P and constants
n2tc = K (3/2) tw n√p log p
n = K (3/2) (tw/tc) √p log p
W = n2 = K (9/4) (t2

w/t2
c) p log2 p

• The isoefficiency due to tw is θ(p log2 p)

• This is also overall isoefficiency, since it
dominates the θ(p log p) term involving ts

constants for a
 given problem and

machine

What we can conclude

• For the striped model

W = n2 = K2 tw
2 P2

and to maintain efficiency, work
must increase proportional to P2

• For the checkerboard model,
θ(p log2 p) and p log2 p <θ(W) P2

• Therefore, the checkerboard model
will scale better than the striped
model

• The fundamental reason for this is
that the communication is over a
smaller number of processors

Isoefficiency and concurrency

• Some algorithms with low
overhead also have limited
concurrency

• This has a negative effect on
isoefficiency, as we will see from
Dijkstra’s all-pairs shortest-path
algorithm

• One instance of Dijkstra’s
algorithm computes the shortest
distance between a single node
s and all other nodes

Edgar Dijkstra
• Dutch computer scientist, eventually worked to UT Austin, didn't

particularly like computers, considered fairly cranky (but very smart and
dedicated to teaching) by those who worked with him.

The job [of operating or using a computer] was actually beyond the
electronic technology of the day, and, as a result, the question of how to
get and keep the physical equipment more or less in working condition
became in the early days the all-overriding concern. As a result, the topic
became —primarily in the USA— prematurely known as "computer
science" —which, actually is like referring to surgery as "knife science"—
and it was firmly implanted in people's minds that computing science is
about machines and their peripheral equipment. Quod non [Latin: "Which
is not true"]

“And I don’t need to waste my time with a computer just because I’m a
computer scientist. [Medical researchers are not required to suffer from the
diseases they investigate.]” EWD 1305

Edgar Dijkstra

I think anthropomorphism is worst of
all. I have now seen programs "trying
to do things", "wanting to do things",
"believing things to be true", "knowing
things" etc. Don't be so naive as to
believe that this use of language is
harmless. It invites the programmer to
identify himself with the execution of
the program and almost forces upon
him the use of operational semantics.

Edgar Dijkstra
We could, for instance, begin with cleaning
up our language by no longer calling a bug a
bug but by calling it an error. It is much
more honest because it squarely puts the
blame where it belongs, viz. with the
programmer who made the error. The
animistic metaphor of the bug that
maliciously sneaked in while the
programmer was not looking is intellectually
dishonest as it disguises that the error is the
programmer's own creation... My next
linguistically suggestion is more rigorous. It
is to fight the "if-this-guy-wants-to-talk-to-
that-guy" syndrome: never refer to parts of
programs or pieces of equipment in
anthropomorphic terminology...

EMD books, Dijkstra font

EMD books, Dijkstra font
I came across a comment on Reddit by someone that had Dijkstra as a
professor. Here’s what it said:

I’ve always had horrible handwriting. When I was a computer science
student I was in a class taught by Edsger Dijkstra. During the class he
asked us to occasionally turn in our notes, because he wanted to see
what we thought was important.

The final was an oral final and after going through a few questions to
his satisfaction he said “You seem competent, but your handwriting is
horrible…” The remaining 30 mins of my final exam by Dijkstra was
me writing phrases repeatedly on a pad of paper while he said, ‘no, you
need to round the o’s a bit more, the A is misformed, etc…’..
https://joshldavis.com/2013/05/20/the-path-to-dijkstras-handwriting/

Contributions

Fault-tolerant systems
Self-stabilizing distributed systems
Deadly embrace
Shunting-yard algorithm
Banker's algorithm
Dining philosophers problem
Predicate transformer semantics
Guarded Command Language
Weakest precondition calculus
Smoothsort
Separation of concerns
Software architecture[1]

Dijkstra's algorithm
DJP algorithm
First implementation of ALGOL 60
Structured programming
Semaphore
THE multiprogramming system
Multithreaded programming
Concurrent programming
Principles of distributed computing
Mutual exclusion
Call stack

Structured programming
• Created the phrase

structured programming

• His March, 1968 letter to
the Communications of the
ACM, entitled Go To
Statement Considered
Harmful was a major
turning point in structured
programming

• By the early 1970s,
structured programming
was firmly engrained in
practice

Dijkstra’s algorithm
// di is the distance from ds to di

// V is the set of N vertices
// T is the set of unprocessed nodes

1.procedure sequential_dijkstra
2.ds = 0
3.di = ∞, i≠s,i V∈ V
4.T=V
5.for i=0 to N-1
6. find vm T ∈ V with minimum dm

7. for each edge (vm, vt) with vt T∈ V
8. if (dt > dm + length((vm, vt))) then
9. dt = dm + length((vm, vt))
10. T = T - vm

To find the shortest path from a
vertex s to all other vertices

At each step

pick the node to be processed
(a member of T) vm that is
closest to s (this is vm on the first
iteration)

for every other node vt that is to
be processed
 see if there is a edge from vm
to vt that leads
 to a shorter distance from s to
vt

remove vm from the set T of
unprocessed nodes

at each step i, finds shortest
paths from vs to nodes of length
i

s s

0

∞

∞ ∞

∞
10

7

5

s 3 2
9

1

6 4

2

t

y z

x

step 1
vm = s
dm = 0

0

10

5 ∞

∞
10

7

5

s 3 2
9

1

6 4

2

t

y z

x

http://www.reddit.com/r/AskReddit/comments/8rheh/any_tips_to_improve_handwriting_neatness_my/c0a7hoy
https://joshldavis.com/2013/05/20/the-path-to-dijkstras-handwriting/

0

8

5 7

14
10

7

5

s 3 2
9

1

6 4

2

t

y z

x

vm

step 2
vm = y
dy = 5

0

10

5 ∞

∞
10

7

5

s 3 2
9

1

6 4

2

t

y z

x

vm

https://en.wikipedia.org/wiki/Fault-tolerant_systems
https://en.wikipedia.org/wiki/Self-stabilization
https://en.wikipedia.org/wiki/Deadly_embrace
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Banker%27s_algorithm
https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Guarded_Command_Language
https://en.wikipedia.org/wiki/Weakest_precondition_calculus
https://en.wikipedia.org/wiki/Smoothsort
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/DJP_algorithm
https://en.wikipedia.org/wiki/Programming_language_implementation
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/THE_multiprogramming_system
https://en.wikipedia.org/wiki/Multithreaded_programming
https://en.wikipedia.org/wiki/Concurrent_programming
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Call_stack

0

8

5 7

13
10

7

5

s 3 2
9

1

6 4

2

t

y z

x

step 3
vm = z
dz = 7

0

8

5 7

9
10

7

5

s 3 2
9

1

6 4

2

t

y z

x

step 4
vm = t
dt = 8

0

8

5 7

9
10

7

5

s 3 2
9

1

6 4

2

t

y z

x

step 5
vm = t
dm = 8

A parallel Dijkstra’s algorithm for all paths

• Replicate the graph N times (N is the
number of vertices), with each processor
getting N/P vertices to treat as s vertices,
i.e., N/P vertices to find shortest paths
from it to other vertices

• Each node computes the shortest
distances from the N/P vertices it owns
to all other N vertices

• No communication needed
• Seems like the perfect algorithm, but it

isn’t
• O(N3) work, but only O(N) parallelism

• W is θ(N3), P=N, W must grow as θ(P3)
to scale and the isoefficiency is high

Cooley-Tukey FFT Algorithm – the iso-efficiency relationship
depends on the machine parameters for bandwidth and
operation time

Machine specific parameters
• Sequential complexity

is θ(n log n)

• Parallel version based
on the binary
exchange method for
a d-dimensional (P=2d)
hypercube

• partition vectors into
block of n/p contiguous
elements, n=2r

• 1 block of 2r-d elements
assigned per
processor

r = log2 16, r = 4
4 dimensional hypercube, d = 2

Machine specific parameters
• vector elements on

different processors
combined during first d
iterations, pairs on the
same processors
combined in the last r-d
iterations

• interprocessor
communication in only d
= log P of the r = log n
iterations

• Each communication
exchanges n/P words

• Communication time is
(ts + tw n/P) log P

• During each iteration a
processor updates n/P elements
of vector r

• Let each complex multiply take
time tc

Machine specific parameters
Always talk to

adjacent node in
a hypercube

differ in high
order bit differ in next

to low order bit

differ in next to
high order bit

differ in low
 order bit

• On a hypercube communicating nodes are always
adjacent, i.e. a single hop to communicate

• Allows each communication to happen in time
 ts + tw n/P time

• With d communicating steps, hypercube will
communicate over each adjacent edge during
computation

00 01

10 11

00 01

10 11

00 01

10 11

1st step 2nd step
3rd and 4th

steps

No comm w/4 nodes

Parallel execution time
• TP = tc(n/P) log n + ts log P + tw (n/P) log P

• TO =P(ts + tw n/P) log P = ts P log P + tw n log P

• W = n log n

Computation
time

startup times for
log p communications

startup times for
log p communications

Solve for different terms

• First term (ts), W P t∝W, s log P, isoefficiency
function is P log P

• Second term, n log n = K tw n log P

log n = Ktw log P

n = PK(tw/tc)

n log n = K tw PKtw log P

Substituting for K

W=E/(1-E) (tw/tc)PE/(1-E)(tw/tc) log P

Isoefficiency a function of E
• W=E/(1-E) (tw/tc)PE/(1-E)(tw/tc) log P (from the

previous slide)

• Consider if exponent of P, tw E/(tc (1-E)) <θ(W) 1

W grows slower than P log P

Overall isoefficiency is θ(P log P) (from ts term
the previous page)

• Consider if tw E/(tc (1-E)) >1

isoefficiency a function of relative values of

E/(1-E), tw, tc

• Consider if tw E/(tc (1-E)) =1

Isoefficiency is P log P, a lower threshold for a
hypercube

effect of tw E/(tc (1-E)) on isoefficiency

• if tw = tc, isoefficiency is W=E/(1-E)PE/(1-E)log P

• Now for E/(1-E) ≤ 1, E ≤ 0.5

isoefficiency is θ(P log P)

• For E/(1-E), E ≥ 0.5

If E=0.9, E/(1-E)=9, isoefficiency is P9 log P

• Effect of tw and tc: let’s make the bandwidth lower

if tw=2tc then the threshold efficiency is 0.333

Isoefficiency for E=0.333 is θ(P log P)

Isoefficiency for E=0.5 is θ(P 2 log P) and for

E=0.9 is θ(p18 log p) (twE/(tc(1-E)) = 2E(1-E) = 1.8/0.1)

• What can we conclude from this?

Conclusions for FFT

• Balance of bandwidth and CPU is
important for this problem - scalability is
good on a balanced system

• Making bandwidth higher helps

• Increasing CPU performance without
increasing bandwidth reduces scalability

• On modern systems . . .

From a talk by Horst Simon

FFT is unique in this property

• But, the ratios of tw and tc can
be high

• May result in tc term being
important in small machine
sizes, and the tw or ts terms
dominating for larger
machines

• Again, need to apply
intelligence, and again, using
isoefficiency gives insights
into what is required to have
an app scale

Summary

• Data structure contention also must be considered if it
is the dominating term

• In summary:
• Want to increase problem size to maintain

efficiency
• Must have enough memory to hold larger problem

size
• Rate of growth of problem size is a limit on the

number of processors we can run on
• Thus rate of growth of problem size is a limit on

how scalable the algorithm is if we want to maintain
constant efficiency

• Isoefficiency functions provide a way of
determining the rate of growth of the problem size

	Slide 1
	Measuring the parallel scalability of algorithms
	Amdahl’s law reviewed
	Slide 4
	Data to maintain efficiency
	Slide 6
	Total overhead TO is the time spent
	Efficiency revisited
	Efficiency revisited
	Efficiency as a function of work, data size and overhead
	Slide 11
	The relationship of work and constant efficiency
	Isoefficiency review
	Slide 16
	Slide 17
	Now look at how E is related to the work (W) in T1
	Solve for W in terms of E and TO
	What if TO is negative?
	Simple case superlinear speedup -- linear scan search for 9
	Cache effects
	There are no magical causes of superlinear speedup
	How to define the problem size or amount of work
	Same name, different amounts of work - this causes problems
	Adding n numbers
	Isoefficiency analysis of adding n numbers
	More complicated TO
	W = P3/2 + P3/4W3/4
	Cost optimality
	How small can an isoefficiency function be?
	Degree of concurrency C(W)
	Degree of concurrency, cont.
	Hypercubes: short aside
	Hypercube
	Hypercube labeling
	Hypercube labeling
	Labeling leads to routing
	Labeling leads to routing
	Labeling leads to routing
	Labeling leads to routing
	Labeling leads to routing
	Labeling leads to routing
	Labeling leads to routing
	Comparing matrix vector algorithms - sequential alg.
	Slide 47
	Slide 48
	After communication every process has a copy of the vector
	Row-striped parallel alg.
	Row-striped parallel alg.
	Isoefficiency relationship
	Slide 53
	Slide 54
	Slide 55
	Checkerboard partitioning analysis
	Simplify
	Simplify and analyze
	What we can conclude
	Isoefficiency and concurrency
	Edgar Dijkstra
	Edgar Dijkstra
	Edgar Dijkstra
	EMD books, Dijkstra font
	Slide 66
	Contributions
	Structured programming
	Dijkstra’s algorithm
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	A parallel Dijkstra’s algorithm for all paths
	Slide 75
	Machine specific parameters
	Slide 77
	Slide 78
	Slide 79
	Slide 81
	Solve for different terms
	Isoefficiency a function of E
	effect of tw E/(tc (1-E)) on isoefficiency
	Conclusions for FFT
	Slide 86
	Slide 87
	FFT is unique in this property
	Summary

