
Introduction to MPI



Topics to be 
covered

• MPI vs shared memory

• Initializing MPI

• MPI concepts -- communicators, 
processes, ranks

• MPI functions to manipulate these

• Timing functions

• Barriers and the reduction collective 
operation



Shared and distributed memory
• Shared memory 
• automatically maintained a 

consistent image of memory 
according to some memory 
model

• fine grained communication 
possible via loads, stores, and 
cache coherence

• model and multicore 
hardware support well aligned

• Programs can be converted 
piece-wise



Shared and distributed memory
• Distributed memory

• Program executes as a collection of 
processes, all communication 
between processors explicitly 
specified by the programmer

• Fine grained communication in 
general too expensive -- programmer 
must aggregate communication

• Conversion of programs is all-or-
nothing

• Cost scaling of machines is better 
than with shared memory -- well 
aligned with economics of 
commodity rack mounted blades



Message Passing Model

network - 
ethernet or 
proprietary 

(vendor 
specific, 

infinitband, 
etc.)
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• This drawing 

implies that all 
processor are 
equidistant from 
one another

• This is often not 
the case -- the 
network topology 
and multicores 
make some 
processors closer 
than others

• programmers 
have to exploit 
this manually



Message Passing Model

• This drawing implies 
that all processor 
are equidistant from 
one another

• This is often not the 
case -- the network 
topology and 
multicores make 
some processors 
closer than others

• programmers have 
to exploit this 
manually
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Message Passing Model

• In reality, processes 
run on cores, and are 
closer to other 
processes on the 
same processor

• Across processors, 
some can be reached 
via a single hop on 
the network, others 
require multiple hops

• Not a big issue on 
small (several 
hundred processors), 
but it needs to be 
considered on large 
machines.
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Message Passing Model

• In reality, processes 
run on cores, and are 
closer to other 
processes on the 
same processor

• Across processors, 
some can be reached 
via a single hop on 
the network, others 
require multiple hops

• Not a big issue on 
small (several 
hundred processors), 
but it needs to be 
considered on large 
machines.
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Cray-1 80 mhz, 138 – 250 MPFLOPs 



Some Seymour Cray quotes

If you were plowing a field, 
which would you rather 
use? Two strong oxen or 
1024 chickens?

As long as we can 
make them smaller, we 
can make them faster.

Anybody can build a 
fast CPU, the trick is to 
build a fast system.

Parity is for farmers.



131,072 cores BG/L (5.6 
GFLOPS)



Tianhe-2, 40,960 processors, 
10,649,600 cores, 33.9 PFLOPS  

TaihuLight has 125 
PFLOPS peak 
performance, 93 
PFLOPS on 
Linpack.



Why use message passing
• Allows control over data layout, locality 

and communication -- very important on 
large machines

• Portable across all machines including 
shared memory machines -- it’s a 
universal parallel programming model.  
Sometimes called the assembly language 
of paralle programming

• Easier to write deterministic programs

• simplifies debugging

• easier to understand programs

• Style needed for efficient messages can 
lead to better performance than shared 
memory programs, even on shared 
memory systems.



Why not use it?

• All or nothing program development - 
generally need to make the entire 
program parallel to make any part 
parallel

• Information needed for messages 
low-level and sometimes hard to 
program

• Subtle bugs in message passing code 
can lead to performance problems 
and deadlock

• Message passing code disrupts the 
flow of algorithms



SPMD execution is often used 
with MPI

• Single Program Multiple Data

• Multiple copies of the same 
program operating on different 
parts of the data (typically 
different sections of an array)

• Each program copy executes 
in a process

• Different processes can 
execute different paths 
through the program



SPMD execution

for (i=0; i <= n-1; i++) {  // n = 100
a[i] = i + 1;

}
for (i=0, i <= n-1; i++) {

... = a[i-1];
}

0 1 ... n/2-1 n/2

1 2 ... 49 50

for (i=0; i <= n-1; i++) { 
a[i] = i + 1;

}
for (i=0, i <= n-1; i++) {

... = a[i-1];
}

0 1 ... n/2-1 n/2

1 2 ... 49 50

for (i=0; i <= (n-1)/2; i++) { 
a[i] = i + 1;

}
for (i=0, i <= n-1; i++) {

... = a[i-1];
}

Global index

Local index

The original 
program



Work is done by processes
• Each process has a 

unique rank or process 
id (often called pid in 
programs) that is set 
when program begins 
executing

• The rank does NOT 
change during the 
execution of the 
program 

• Each process has a 
unique identifier (often 
called pid) that is 
known to the program

• Typical program 
pattern is 

Compute

communicate 

compute 

communicate ...



An simple MPI program: Radix sort

• Radix sort works well to 
sort lists of numbers

• Will assume integers 
have values from 0 to 
65,535

• Have N >> 65,535 
numbers to sort



A sequential radix sort

for (i=0; i < 65535; i++) {
sorted[i] = 0;

}

for (i=0; i < n; i++) {
sorted[data[i]]++;

}

for (i=0; i<65535; i++) {
for (j=0; j < sort[i]; j+

+) {
fprint(“%i\n”, i);

}}

Want to convert to SPMD 
message passing code



A sequential radix sort

for (i=0; i < 65535; i++) {
sorted[i] = 0;

}

for (i=0; i < n; i++) {
sorted[data[i]]++;

}

for (i=0; i<65535; i++) {
for (j=0; j < sort[i]; j+

+) {
fprint(“%i\n”, i);

}}

Note that data input not shown -- 
this can require some thought

Data often spread across 
multiple files to accommodate 
parallel I/O on large problems



Determining a data layout

data[0:N/4-1]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

Process pid = 0

Process pid = 2

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

Process pid = 1

Process pid = 2

Global indices are 
shown.  The local 
indices used on each 
processor are, for 
data, 
pid*n/4:(pid+1)*n/4-1
For replicated data, 
global and local 
indices are the same



Change the program to SPMD

all processors execute this (replicated execution)
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}

each processor executes N/4 iterations (assume N mod 4 = 0)
for (i=0; i < N/4; i++) {

sorted[data[i]]++;
}

this becomes a sum reduction over the sorted arrays on each processor,
i.e. communication.  This code does not show that yet.
for (i=0; i<65535; i++) {

for (j=0; j < sort[i]; j++) {
fprint(“%i\n”, i);

}}

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]



Data management

• All declared variables exist within each process
• There is a global and local logical index space for 

arrays
• globally, data has N elements pid*N:(pid+1)*N/4-1
• locally, each process has N/4 elements numbered 

0:N/4-1(if N mod 4 == 0, otherwise 
N/4⎡N/4⎤ ⎤or N/4⎣N/4⎦ ⎦elements per processors with some 

processors having more or fewer elements than 
other processors

• The concatenation of the local partitions of data 
arrays forms the global array data

• The array data is block distributed over the 
processors

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]



Data bounds for 
block

• Two “obvious” ways to compute

• Let n be the array size, P the 
number processors



First method
•Let P be the number of processes, n the number of array elements, 0 ≤ p ≤ P-1  is a 
process id

•r = n mod P, r = 0, all blocks are the same size, otherwise, first r blocks 
have  n/P  ⎡N/4⎤ ⎤ elements, last P-r have n/P  ⎣N/4⎦ ⎦ elements

•First element on a process p is p⎣n/P⎦+ min(p,r)

•Last element on process p is (p+1)⎣n/P⎦+ min(p+1,r) - 1

•process with element i is min( i/( n/P + 1) , i-r) / n/P )⎣N/4⎦ ⎣N/4⎦ ⎦ ⎦ ⎣N/4⎦ ⎣N/4⎦ ⎦⎦

•Example -- 12 elements over 5 processors, 2 = 12 mod 5

• Example -- 12 elements over 7 processors, 5 = 12 mod 7



Second method
• First element controlled (or owned) by process p is p n/P  ⎣N/4⎦ ⎦

(first element and first process id p is 0

• Last element controlled by process p is one less that the 
first element controlled by process p+1 (the next process)

  ⎣N/4⎦ (p+1) n/P  - 1⎦

• Process controlling element i is (P(i+1)-1)/n⎣N/4⎦ ⎦

• Example -- 12 elements over 5 processors, r = 2 = 12 mod 5

• Example -- 17 elements over 5 processors, r = 2 = 17 mod 5



Global vs local indices

• Each part of an array within a process must 
be indexed as a local element of that array 
using the local index.

• Logically, each local element is a part of the 
global array, and within the problem domain 
has a global index

• It is the MPI programmer’s responsibility (that 
means you) to maintain that mapping.

0 1 0 1 20 1 20 10 1

7 8 9 1
0

1
1

4 5 62 30 1

local index:

global 
index:



Use macros to access 
bounds

• Macros or functions can be used to compute 
these.

• Block lower bound: LB(pid, P, n) = (pid*n/P)

• Block upper bound: UB(pid, P, n) = LB(pid+1, P, n)-1

• Block size: LB(pid+1, P, n) - LB(pid, P, n) + 1

• Block owner: Owner(i, P, n) = (P*(i+1)-1)/n 

0 1 0 1 20 1 20 10 1

7 8 9 1
0

1
1

4 5 62 30 1

local index:

global 
index:



Comparison of the two methods

Operations First 
Method

Second 
Method

Low index 4 2

High index 6 4

Owner 7 4

Assumes floor is free (as it is with integer 
division although integer division itself may 

be expensive)



The cyclic distribution

• Let A be an array with N elements.  
• Let the array be cyclically distributed over P 

processes
• Process p gets elements p, p+P, p+2*P, 

p+3*P, ...
• In the above 
• process 0 gets elements 0, 4, 8, 12, ... of data
• process 1 gets elements 1, 5, 9, 13, ... of data
• process 2 gets elements 2, 6, 10, 14, ... of 

data
• process 3 gets elements 3, 7, 11, 15, ... of 

data

Data[1:N:4]
I,j

Sorted[0:65353

Data[2:N:4]
I,j

Sorted[0:65353

Data[3:N:4]
I,j

Sorted[0:65353

Data[0:N:4]
I,j

Sorted[0:65353

P0 P1 P2 P3



The block-cyclic distribution

• Let A be an array with N elements
• Let the array be block-cyclically distributed over P 

processes, with blocksize B
• Block b, b = 0 ...,  on process p gets elements 
             b*B*P+p*B: b*B*P + (p+1)*B)-1 elements
• With P=4, B=3
• process 0 gets elements [0:2], [12:14], [24:26] of 

data
• process 1 gets elements [3:5], [15:17],[27:29] of 

data
• process 2 gets elements [6:8], [18:20],[30:32] of 

data
• process 3 gets elements [9:11], [21:23],[33:35] of 

data



System initialization

data[pid*n/4:pid*N/4-1]
i,j

Sorted[0:65353]

#include <mpi.h> /* MPI library prototypes, etc. */
#include <stdio.h>
// all processors execute this (replicated execution)
int main(int argc, char * argv[ ]) {
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv); // get N from the arg vector
int sorted[65536]; int data[N/4];
MPI_INIT(&argc, &argv); // argc and argv need to be passed in
for (i=0; i < 65535; i++) {
sorted[i] = 0;
}}



MPI_INIT
• Initialize the MPI runtime

• Does not have to be the first executable 
statement in the program, but it must be 
the first MPI call made

• Initializes the default MPI communicator 
(MPI_COMM_WORLD which includes all 
processes)

• Reads standard files and environment 
variables to get information about the 
system the program will execute on

• e.g. what machines executes the 
program?



The MPI environment

MPI_COMM_WORLD

0
6

1 2

4

3

7

5

The communicator  name 
(MPI_COMM_WORLD is 

the default communicator name

A 
communicator 
defines a 
universe of 
processes that 
can exchange  
messages

A 
process

A rank



Include files

#include <mpi.h> /* MPI library prototypes, etc. */
#include <stdio.h>

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[0:N:4]
I,j

Sorted[0:65353

P0 P1 P2 P3

using mpi // Fortran 90
include “mpi.h” // Fortran 77

These may not be shown on later 
slides to make room for more 
interesting stuff



Communicator and process info

// all processors execute this (replicated execution)
int main(int argc, char * argv[ ]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int *data; 
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

P0 P1 P2 P3

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

P0 P1 P2 P3



Getting the pid for each process

// all processors execute this (replicated execution)
int main(int argc, char * argv[ ]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data; 
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

P0 P1 P2 P3



Getting the pid for each process

// all processors execute this (replicated execution)
int main(int argc, char * argv[ ]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data; 
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

P0 P1 P2 P3



Allocating local storage

int main(int argc, char * argv[ ]) {
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data; 
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
Lb = LB(pid, numP, N); ub = LB(pid, numP, N)-1; 
data = malloc(sizeof(int)*(ub-lb+1)
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

P0 P1 P2 P3



Terminating the MPI program

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[0:N:4]
I,j

Sorted[0:65353

P0 P1 P2 P3

int main(int argc, char * argv[ ]) {
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data; 
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
Lb = LB(pid, numP, N); ub = LB(pid, numP, N)-1; 
data = malloc(sizeof(int)*(ub-lb+1)
for (i=0; i < 65535; i++) {
   sorted[i] = 0;

   MPI_Finalize( );
}



Time to do something useful

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[0:N:4]
I,j

Sorted[0:65353

P0 P1 P2 P3

int main(int argc, char * argv[ ]) {
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data; 
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
Lb = LB(pid, numP, N); ub = LB(pid, numP, N)-1; 
data = malloc(sizeof(int)*(ub-lb+1)
for (i=0; i < 65535; i++) {
   sorted[i] = 0;

    sort(data, sort, ub-lb+1);
   MPI_Finalize( );}



The sequential radix sort

void sort (sort[ ], data[ ], int N) {
for (i=0; i < N; i++) {

sorted[data[i]]++;
}

   for (i=0; i<65535; i++) {
   for (j=0; j < sort[i]; j++) {

   fprint(“%i\n”, i);
   }

   }
}



The parallel radix sort

void sort (sort[ ], data[ ], int localN) {
for (i=0; i < N; i++) {

sorted[data[i]]++;
}
// pid == 0 only has its results!  We
// need to combine the results here.

   If (pid == 0) {
      for (i=0; i<65535; i++) {

      for (j=0; j < sort[i]; j++) {
      fprint(“%i\n”, i);

      }
  }

}

Each process sorts the 
local N elements that it 
owns.  The results from 
each process need to be 
combined and sent to a 
single process for 
printing, say, the process 
with pid==0.



MPI_Reduce(...)
MPI_Reduce(
   void *opnd,  // data to be reduced
   void *result, // result of the reduction 
   int count,     // # of elements to be reduced
   MPI_Datatype type, // type of the elements 
                                   // being reduced
   MPI_Operator op, // reduction operation
   int root, // pid of the process getting the 
                 // result of the reduction
   MPI_Comm comm // communicator over
                                // which the reduction is
                                // performed
);



MPI_Datatype

Defined as constants in the mpi.h header file 

Types supported are

MPI_CHAR MPI_DOUBLE

MPI_FLOAT MPI_INT

MPI_LONG MPI_LONG_DOUBLE

MPI_SHORT MPI_UNSIGNED_CHAR

MPI_UNSIGNED MPI_UNSIGNED_LONG

MPI_UNSIGNED_SHORT



MPI_Datatype
Defined as constants in the mpi.h header file 

Types supported are

MPI_CHAR
MPI_FLOAT
MPI_LONG
MPI_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_SHORT
MPI_DOUBLE
MPI_INT
MPI_LONGDOUBLE
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_LONG



MPI_Op
• Defined as constants in the mpi.h header file 

• Types supported are

MPI_BAND
MPI_EXOR
MPI_LAND
MPI_LXOR
MPI_MAXLOC
MPI_MINLOC
MPI_SUM
MPI_BOR
MPI_BXOR
[MPI_LOR
MPI_MAX
MPI_MIN
MPI_PROD



Example of reduction

MPI_Reduce(MPI_IN_PLACE, sorted, 8, MPI_INT, 
MPI_SUM, 0, MPI_COMM_WORLD);

3 5 2 9 8 11 20 4
sorted, p=0

8 3 6 8 38 5 27 6
sorted, p=1

1 0 9 0 2 1 2 40
sorted, p=2

13 15 12 19 18 21 42 3
sorted, p=3

25 23 39 36 64 38 91 53
sorted, p=0



Example of reduction

MPI_Reduce(data, res, 1, 
                    MPI_INT, 

   MPI_SUM, 2,     
   MPI_COMM_WORLD);

1 12 3 4P0 data

2 14 6 8P1 data

3 16 9 12P2 data

4 18 12 16P3 data

1P0 res

10 1P2 res

1

1P1 res

P3 res



Example of reduction

MPI_Reduce(data, res, 3, 
                    MPI_INT, 

   MPI_SUM, 0,     
   MPI_COMM_WORLD);

1 12 3 4P0 data

2 14 6 8P1 data

3 16 9 12P2 data

4 18 12 16P3 data 1P0 res

10 120 30P0 res

1P1 res

1P2 res



Example of reduction

MPI_Reduce(MPI_IN_PLACE, data, 3, 
                    MPI_INT, 

   MPI_SUM, 0,     
   MPI_COMM_WORLD);

1 12 3 4P0 data

2 14 6 8P1 data

3 16 9 12P2 data

4 18 12 16P3 data

Before reduction After reduction

10 120 30 4P0 data

2 14 6 8P1 data

3 16 9 12P2 data

4 18 12 16P3 data



Add the reduction
void sort (sort[ ], data[ ], int pid, int numP) {

for (i=0; i < N; i++) {
sorted[data[i]]++;

}
// can merge all of the “sorted” arrays here
if (pid == 0) {

MPI_Reduce(MPI_IN_PLACE, sorted, 65353, MPI_INT,
                       MPI_SUM, 0, MPI_COMM_WORLD);

} else {
MPI_Reduce(sorted, (void *) null, 65353, MPI_INT, 
                      MPI_SUM, 0, MPI_COMM_WORLD);

    // print out the sorted array on process pid==0
Alternatively, could allocate a buffer for final 
sorted result.  Buffer would be the same size as 
sorted.



Measure program runtime
• MPI_Barrier - barrier 

synchronization

• MPI_Wtick - returns 
the clock resolution 
in seconds

• MPI_Wtime - current 
time

int main(int argc, char * argv[ ]) {
double elapsed;
int pid; 
int numP;
int N;
. . .
MPI_Barrier( );
elapsed = -MPI_Wtime( );
sort(data, sort, pid, numP);
elapsed += MPI_Wtime( );
if (pid == 0) printSort(final);
MPI_Finalize( );

}

Wtick( ) returns a double that holds 
the number of seconds between 
clock ticks - 10-3 is milliseconds



Wtick( ) gives the 
clock resolution

MPI_WTick returns the resolution of MPI_WTime in 
seconds. That is, it returns, as a double precision 
value, the number of seconds between successive 
clock ticks.

double tick = MPI_WTick( );

Thus, a millisecond resolution timer will return 10-3

This can be used to convert elapsed time to seconds



Sieve of Erosthenes

• Look at block 
allocations

• Performance tuning

• MPI_Bcast function



Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes
1.start with two, mark all 

multiples
2.find the next unmarked 

u -- it is a prime
3.mark all multiples of u 

between k2 and n until k2 

> n 
4.repeat 2 & 3 until 

finished



Mark off multiples of primes
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes

3 is prime

mark all multiples 
of 3 >  9



10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes

5 is prime

mark all multiples 
of 5 > 25



10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes

7 is prime

mark all multiples 
of 7 > 49



10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes

11 is prime

mark all multiples 
of 11 > 121



10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes

1, 2, 3, 5, 7, 13, 17, 
19, 23, 29, 31, 37, 
41, 43, 47, 53, 59, 
61, 67, 71, 73, 79, 
83, 89 and 97 are 
prime.  



Want to parallelize this

• Because we are message 
passing, obvious thing to 
look at it domain 
decomposition, i.e. how can 
we break up the domain 
being operated on over 
multiple processors

• partition data across 
processors

• associate tasks with data

• In general, try to find 
fundamental operations and 
associate them with data



Find the fundamental operation(s)?

• Marking of the 
multiples of the 
last prime found

• if v a multiple of 
k then v mod k 
== 0

• min-reduction to 
find the next 
prime (i.e. 
smallest 
unmarked value) 
across all 
processes

forall (v = k; v < n+1; v++) {
if (v mod k != 0) a[v] = 1;

}

• broadcast the value to 
all tasks



To make this efficient . . . 

• Combine as many tasks as 
possible onto a single process

• Make the amount of work done 
by each process similar, i.e. load 
balance

• Make the communication 
between tasks efficient



Combining work/data partitioning
• Because processes work on 

data that they own (the owners 
compute rule, Rogers and 
Pingali), the two problems are 
tightly inter-related.

• Each element is owned by a 
process

• It is the process that owns the 
consistent, i.e., up-to-date 
value of a variable

• All updates to the variable are 
made by the owner

• All requests for the value of the 
variable are to the owner



Combining work/data partitioning 

• Because processes update the data that 
they own

• Cyclic distributions have the property that 
for all elements i on some process p, i mod p 
= c holds, where c is some integer value

• Although cyclic usually gives better load 
balance, it doesn’t in this case

• Lesson -- don’t apply rules-of-thumb 
blindly

• Block, in this case, gives a better load 
balance

• computation of indices will be harder



Interplay of decomposition and 
implementation

• Decomposition affects how we design the 
implementation

• More abstract issues of parallelization can affect the 
implementation

• In the current algorithm, let Φ be the highest possible 
prime

• At most, only first √Φ Φ values may be used to mark off 
(sieve) other primes 

• if P processes, n elements to a process, then if  n/P  > √Φ  Φ 
only elements in p=0 will be used to sieve.  This means we 
only need to look for lowest unmarked elements in p=0 
and only p=0 needs to send this out, saving a reduction 
operation.



Use of block partitioning affects 
marking

• Can mark j, j+k, j+2k, ... where j is 
the first prime in the block

• Using the parallel method 
described in earlier psuedo-
code, would need to use an 
expensive mod

 for all e in the block
if e mod k = 0, mark e

• We would like to eliminate this.



Sketch of the algorithm

1. Create list of possible primes

2. On each process, set k = 2

3. Repeat

1. On each process, mark all multiples of k

2. On process 0, find smallest unmarked number u, 
set k=u

3. On process 0, broadcast k to all processes

4. Until k2 > Φ (the highest possible prime)

5. Perform a sum reduction to determine the number 
of primes



Data layout, primes up to 28

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8i =

11 12 13 14 15 16 17 18 19P=1
0 1 2 3 4 5 6 7 8i =

20 21 22 23 24 25 26 2 28P=2
0 1 2 3 4 5 6 7 8i =

number being 
checked for 
"primeness"

array element



Algorithm 1/4#include <mpi.h>
#include <math.h>
#include <stdio.h>
#include "MyMPI.h"
#define MIN(a,b)  ((a)<(b)?(a):(b))

int main (int argc, char *argv[])
{
   ...
   MPI_Init (&argc, &argv);
   MPI_Barrier(MPI_COMM_WORLD);
   elapsed_time = -MPI_Wtime();
   MPI_Comm_rank (MPI_COMM_WORLD, &id);
   MPI_Comm_size (MPI_COMM_WORLD, &p);
   if (argc != 2) {
      if (!id) printf ("Command line: %s <m>\n", argv[0]);
      MPI_Finalize(); exit (1);
   }



Figure out if too 
many processes 

for √Φ candidates Φ candidates 
on p=0 

Algorithm, 2/4

allocate array 
to use to 

mark primes

   n = atoi(argv[1]);
   low_value = 2 + BLOCK_LOW(id,p,n-1);
   high_value = 2 + BLOCK_HIGH(id,p,n-1);
   size = BLOCK_SIZE(id,p,n-1);
   proc0_size = (n-1)/p;
   if ((2 + proc0_size) < (int) sqrt((double) n)) {
      if (!id) printf ("Too many processes\n");
      MPI_Finalize();
      exit (1);
   }

   marked = (char *) malloc (size);
   if (marked == NULL) {
      printf ("Cannot allocate enough memory\n");
      MPI_Finalize();
      exit (1);
   }

Get min and max 
possible prime on 
p in global space 



11 12 13 14 15 16 17 18 19P=1
9 10 11 12 13 14 15 16 17i =

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8i =

20 21 22 23 24 25 26 2 28P=2

18 19 20 21 22 23 24 25 26i =

Block Low Block hIGH

Low value High value



Algorithm 3/4 (a)

   for (i = 0; i < size; i++) marked[i] = 0; // initialize marking array
   if (!id) index = 0; // p=0 action, find first prime
   prime = 2;
   do { // prime = 2 first time through, sent by bcast on later iterations
        Find first element to mark on each procesor
        Mark that element and every kth element on the processor
        Find the next unmarked element on P0.  This is the next prime

   Send that prime to every other processor 
   } while (prime * prime <= n);



Algorithm 3/4 (b)
Initialize array and find first prime
    // Find first element to mark on each procesor
   do { // prime = 2 first time through, sent by bcast on later iterations
      if (prime * prime > low_value) // find first value to mark
         first = prime * prime - low_value; // first item in this block
      else {
         if (!(low_value % prime)) first = 0; // first element divisible 
                                                                  // by prime
         else first = prime - (low_value % prime);
      }
       Find first element to mark on each procesor
       Mark that element and every kth element on the processor
       Find the next unmarked element on P0.  This is the next prime

  Send that prime to every other processor
   } while (prime * prime <= n);



Algorithm 3/4 (c)

Initialize array and find first prime
   do { // prime = 2 first time through, sent by bcast on later iterations
        Find first element to mark on each procesor
       // Mark that element and every kth element on the processor
      for (i = first; i < size; i += prime) marked[i] = 1; // mark every kth item
       Find the next unmarked element on P0.  This is the next prime

  Send that prime to every other processor
   } while (prime * prime <= n);



Algorithm 3/4 (d)
Initialize array and find first prime
   do { // prime = 2 first time through, sent by bcast on later iterations
        Find first element to mark on each procesor
       Mark that element and every kth element on the processor
       // Find the next unmarked element on P0.  This is the next prime

  
      if (!id) { // p=0 action, find next prime by finding unmarked element
         while (marked[++index]);
         prime = index + 2;
      }
      // Send that prime to every other processor
      MPI_Bcast (&prime,  1, MPI_INT, 0, MPI_COMM_WORLD);
   } while (prime * prime <= n);



Algorithm 3/4 full code

   for (i = 0; i < size; i++) marked[i] = 0; // initialize marking array
   if (!id) index = 0; // p=0 action, find first prime
   prime = 2;
   do { // prime = 2 first time through, sent by bcast on later iterations
      if (prime * prime > low_value) // find first value to mark
         first = prime * prime - low_value; // first item in this block
      else {
         if (!(low_value % prime)) first = 0; // first element divisible by prime
         else first = prime - (low_value % prime);
      }
      for (i = first; i < size; i += prime) marked[i] = 1; // mark every kth item
      if (!id) { // p=0 action, find next prime by finding unmarked element
         while (marked[++index]);
         prime = index + 2;
      }
      MPI_Bcast (&prime,  1, MPI_INT, 0, MPI_COMM_WORLD);
   } while (prime * prime <= n);



First prime index = 0
prime = 2

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local  =

2 * 2 > 2
first = 2 * 2 - 2
first = 2

not 2 * 2 > 11
11 % 2 == 1
first = 2 - (l1 % 2)
first = 1

not 2 * 2 > 20
20 % 2 == 0
first = 0



third prime index = 3
prime = 5

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local  =

5 * 5 > 2
first = 5 * 5 - 2
first = 23

5 * 5 > 11
first = 5 * 5 - 11
first = 16

5 * 5 > 20
first = 5 * 5 - 20
first = 5



Mark every prime elements 
starting with first index = 0

prime = 2

2 * 2 > 4
first = 2 * 2 - 2
first = 2

not 2 * 2 > 11
11 % 2 == 1
first = 2 - (l1 % 2)
first = 1

not 2 * 2 > 20
20 % 2 == 0
first = 0

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local  =



Algorithm 4/4

   // on each processor count the number of primes, then reduce this total 
   count = 0;
   for (i = 0; i < size; i++) if (!marked[i]) count++;
   MPI_Reduce (&count, &global_count, 1, MPI_INT, MPI_SUM,
                           0, MPI_COMM_WORLD);
   elapsed_time += MPI_Wtime();
   if (!id) {
      printf ("%d primes are less than or equal to %d\n", 
                 global_count, n);
      printf ("Total elapsed time: %10.6f\n", elapsed_time);
   }
   MPI_Finalize ();
   return 0;
}



index = 0
prime = 2

2 3 4 5 6 7 8 9 10P=0

11 12 13 14 15 16 17 18 19P=0

20 21 22 23 24 25 26 27 28P=0

count = 1

count = 4

count = 2

global_count = 1 + 4 + 2



Other MPI environment 
management routines

• MPI_Abort (comm, errorcode)
• Aborts all processors associated with 

communicator comm
• MPI_Get_processor_name(&name,

 &length)
• MPI version of gethostname, but what it 

returns is implementation dependent.  
gethostname may be more portable.

• MPI_Initialized(&flag)
• Returns true if MPI_Init has been called, 

false otherwise



point-to-point communication
• Most MPI communication is between a pair of 

processors
• send/receive transmits data from the sending 

process to the receiving process
• MPI point-to-point communication has many 

flavors:
• Synchronous send
• Blocking send / blocking receive
• Non-blocking send / non-blocking receive
• Buffered send
• Combined send/receive
• "Ready" send (matching receive already posted.)

• All types of sends can be paired with all types of 
receive



Buffering
What happens when
• A send occurs before the receiving process is ready 

for the data
• The data from multiple sends arrive at the receiving 

task which can only accept one at a time



System buffer space

Not part of the standard -- an “implementation detail

• Managed and controlled by the MPI library
• Finite
• Not well documented -- size maybe a function of install 

parameters, consequences of running out not well 
defined

• Both sends and receives can be buffered

Helps performance by enabling asynchronous send/recvs

Can hurt performance because of memory copies

Program variables are called application buffers in MPI-
speak



Blocking and non-blocking point-
to-point communication

Blocking

• Most point-to-point routines have a blocking and non-
blocking mode 

• A blocking send call returns only when it is safe to 
modify/reuse the application buffer.  Basically the data 
in the application buffer has been copied into a system 
buffer or sent.

• Blocking send can be synchronous, which means call to 
send returns when data is safely delivered to the recv 
process

• Blocking send can be asynchronous by using a send 
buffer

• A blocking receive call returns when sent data has 
arrived and is ready to use



Blocking and non-blocking point-
to-point communication

 Non-blocking

• Non-blocking send and receive calls behave similarly 
and return almost immediately.  

• Non-blocking operations request the MPI library to 
perform the operation when it is able.   It cannot be 
predicted when the action will occur.

• You should not modify any application buffer (program 
variable) used in non-blocking communication until the 
operation has finished.  Wait calls are available to test 
this.

• Non-blocking communication allows overlap of 
computation with communication to achieve higher 
performance



Synchronous and buffered sends 
and receives

• synchronous send operations block until 
the receiver begins to receive the data

• buffered send operations allow 
specification of a buffer used to hold 
data (this buffer is not the application 
buffer that is the variable being sent or 
received)
• allows user to get around system 

imposed buffer limits
• for programs needing large buffers, 

provides portability
• One buffer/process allowed
• synchronous and buffered can be 

matched



Ordering of messages and fairness
• Messages received in-order
• If a sender sends two messages, (m1 and m2) to the 

same destination, and both match the same kind of 
receive, m1 will be received before m2.

• If a receiver posts two receives (r1 followed by r2), 
and both are looking for the same kind of messages, 
r1 will receive a message before r2.

• Operation starvation is possible
• task2 performs a single receive.  task0 and task3 

both send a message to task2 that matches the 
receive.  Only one of the sends will complete if the 
receive is only executed once.   

• It is the programmer’s job to ensure this doesn’t 
happen



Operation starvation

Only one of the sends 
will complete.

Networks are 
generally not 
deterministic, cannot 
be predicted whose 
message will arrive at 
task2 first, and which 
will complete. 



Basic sends and receives
• MPI_send(buffer, count, type, dest, tag, comm)

• MPI_Isend(buffer, count, type, dest, tag, comm,request)

• MIP_Recv(buffer, count, type, source, tag, comm, status)

• MPI_Irecv(buffer, count, type, source, tag, comm, request)

I forms are non-blocking



Basic sends/recv arguments 
(I forms are non-blocking)

• MPI_send(buffer, count, type, dest, tag, comm)

• MPI_Isend(buffer, count, type, dest, tag, comm, request)

• MIP_Recv(buffer, count, type, source, tag, comm, status)

• MPI_Irecv(buffer, count, type, source, tag, comm, request)

• buffer: pointer to the data to be sent or where received (a 
program variable)

• count: number of data elements of type (not bytes!) to be 
sent

• type: an MPI_Type

• tag: the message type, any unsigned integer 0 - 32767.

• comm: sender and receiver communicator



Basic send/recv arguments
• MPI_send(buffer, count, type, dest, tag, comm)

• MPI_Isend(buffer, count, type, dest, tag, comm, request)

• MIP_Recv(buffer, count, type, source, tag, comm, status)

• MPI_Irecv(buffer, count, type, source, comm, request)

• dest: rank of the receiving process

• source: rank of the sending process

• request: for non-blocking operations, a handle to an MPI_Request 
structure for the operation to allow wait type commands to know 
what send/recv they are waiting on

• status: the source and tag of the received message.  This is a pointer 
to the structure of type MPI_Status with fields MPI_SOURCE and 
MPI_TAG.



Blocking send/recv/etc.
MPI_Send: returns after buf is free to be reused.  Can use a system buffer 
but not required, and can be implemented by a system send.

MPI_Recv: returns after the requested data is in buf.

MPI_Ssend: blocks sender until the application buffer is free and the 
receiver process started receiving the message

MPI_Bsend: permits the programmer to allocate buffer space instead of 
relying on system defaults.  Otherwise like MPI_Send.

MPI_Buffer_attach (&buffer,size): allocate a message buffer with the 
specified size

MPI_Buffer_detach (&buffer,size): frees the specified buffer

MPI_Rsend: blocking ready send, copies directly to the receive 
application space buffer, but the receive must be posted before being 
invoked.  Archaic.

MPI_Sendrecv: performs a blocking send and a blocking receive. 
Processes can swap without deadlock



Example of blocking send/recv
#include "mpi.h"
#include <stdio.h>

int main(argc,argv) 
int argc;
char *argv[];  {
int numtasks, rank, dest, source, rc, count, tag=1;  
char inmsg, outmsg='x';
MPI_Status Stat; // status structure

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);



Example of blocking send/recv
if (rank == 0) {
   dest = 1;
   source = 1;
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, 
&Stat);
} else if (rank == 1) {
   dest = 0;
   source = 0;
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, 
&Stat);
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count); // returns # of type received
printf("Task %d: Received %d char(s) from task %d with tag %d \n",
           rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize( );
}



Example of blocking send/recv
if (rank == 0) {
   dest = 1;
   source = 1;
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, 
&Stat);
} else if (rank == 1) {
   dest = 0;
   source = 0;
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, 
&Stat);
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, 
MPI_COMM_WORLD);
}

task
0

task
1

green/italic 
send
blue/bold send



Why the reversed send/recv 
orders?

if (rank == 0) {
   dest = 1;
   source = 1;
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
} else if (rank == 1) {
   dest = 0;
   source = 0;
   rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
   rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}

MPI_Send may or may not block [until a recv is posted]. It will block 
until the sender can reuse the sender buffer. Some implementations will 
return to the caller when the buffer has been sent to a lower 
communication layer. Some others will return to the caller when there's 
a matching MPI_Recv() at the other end. So it's up to your MPI 
implementation whether if this program will deadlock or not.

From stackoverflow 
http://stackoverflow.com/questions/20448283/deadlock-with-mpi

http://stackoverflow.com/questions/20448283/deadlock-with-mpi


Non-blocking operations
• MPI_Isend, MPI_Irecv, MPI_Issend, Ibsend, Irsend: similar to 

MPI_Send, MPI_Recv, MPI_Ssend, Bsend, Rsend except that a 
Test or Wait must be used to determine that the 
operation has completed and the buffer may be read 
(in the case of a recv) or written (in the case of a send)



Wait and probe
MPI_Wait (&request, &status): wait until the operation specified by 
request (specified in an Isend/Irecv finishes)  

MPI_Waitany (count, &array_of_requests, &index,&status): wait for 
any blocking operations specified in &array_of_requests to finish

MPI_Waitall (count, &array_of_requests, &array_of_statuses): wait 
for all blocking operations specified in &array_of_requests to finish

MPI_Waitsome (incount, &array_of_requests, &outcount, 
&array_of_offsets, &array_of_statuses): wait for at least one request to 
finish, the number is returned in outcount.

MPI_Probe (source, tag, comm, &status): performs a blocking test but 
doesn’t require a corresponding receive to be posted.  



Non-blocking operations
• MPI_Test (&request, &flag,&status) 

• MPI_Testany (count, &array_of_requests, &index, &flag, &status)

• MPI_Testall (count,&array_of_requests,&flag, &array_of_statuses)

• MPI_Testsome (incount, &array_of_requests, &outcount, 
&array_of_offsets, &array_of_statuses)

• Like the wait operations, but do not block



Non-blocking example
#include "mpi.h"
#include <stdio.h>

int main(argc,argv)
int argc;
char *argv[];  {
int numtasks, rank, next, prev, buf[2], tag1=1, tag2=2;
MPI_Request reqs[4];
MPI_Status stats[4];

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);



Non-blocking exampleprev = rank-1;
next = rank+1;
if (rank == 0)  prev = numtasks - 1;
if (rank == (numtasks - 1))  next = 0;

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]);
MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]);
MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]);
  
      {  do some work that does not depend on the data being received  }

MPI_Waitall(4, reqs, stats);

MPI_Finalize();
}

Nearest neighbor exchange 
in a ring topology



Collective communication routines
• Use these when communicating among processes with a 

well defined pattern

• Some can be used to allow all processes to communicate

• Some perform computation during the communication 
(reductions)

• Involve all processes in the specified communicator, 
even if a particular processor has no data to send

• Can only be used with MPI predefined types, not derived 
types.

• The programmer has to make sure all processes 
participate in the collective operation



All processors participate in 
the collective operation

if (pid % 2) {
   MPI_Reduce(..., MPI_COMM_WORLD);
}

This program will deadlock, as the MPI_Reduce will 
wait forever for even processes to begin executing it. 
 
If you want to only involve odd processes, add them 
to a new communicator.



Groups and communicators

• Two terms used in MPI documentation are 
groups and communicators.  

• A communicator is a group of processes that 
can communicate with each other

• A group is an ordered set of processes

• Programmers can view groups and 
communicators as being identical



Collective routines
MPI_Barrier (comm): tasks block upon reaching the barrier until every 
task in the group has reached it

MPI_Bcast (&buffer,count,datatype,root,comm): process root sends a 
copy of its data to every other processor.  Should be log2(comm_size) 
operation.

MPI_Scatter (&sendbuf,sendcnt,sendtype,&recvbuf, 
recvcnt,recvtype,root,comm): distributes a unique message from root to 
every process in the group. 



Collective routines
MPI_Gather(&sendbuf, sendcnt, sendtype, &recvbuf, recvcount, 
                       recvtype, root, comm):
opposite of scatter, every process in the group sends a 
unique message to the root. 
MPI_Allgather (&sendbuf,sendcount,sendtype,&recvbuf, 
recvcount,recvtype,comm): each tasks performs a one-to-all 
broadcast to every other process in the group  These are 
concatenated together in the recvbuf.
MPI_Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm): 
performs a reduction using operation op and places the 
result into recvbuf on  the root process. 



MPI_Bcast



MPI_Scatter Equivalent to
MPI_Send(sendbuf+i*sendcount*extent(sendtype), sendcount, sendtype,  i, …)
MPI_Recv(recvbuf, recvcount, recvtype, i, sendcount, sendtype,  i, ...)



MPI_Gather
Equivalent to MPI_Send(sendbuf, sendcount, sendtype, root, ...)
MPI_Recv(recvbuf+i*recvcount*extent(recvtype), recvcount, recvtype, i, …)
With the results of each recv stored in rank order of the sending 
process 



MPI_Allgather

A gather with 
every process 
being a target.



MPI_Reduce
Also see MPI 
introductory slides.

You can form your 
own reduction 
function using 
MPI_Op_create 



MPI_Op_create

       #include "mpi.h"
       int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op )

pointer to the 
user defined 
Function that

 is the Op
true if 

commutative, 
false otherwise

Handle to refer to 
the function 
wherever an 

MPI_Op is needed



More operations
MPI_Allreduce (&sendbuf, &recvbuf, count, 

  datatype, op, comm):

 functionally equivalent to an 
MPI_Reduce followed by an MPI_Bcast. 
 Faster on most hardware than the 
combination of these.
MPI_Reduce_scatter(&sendbuf, &recvbuf,

 recvcount, datatype,
 op, comm): 

Does an element-wise reduce on the 
vector in sendbuf of length recvcount. 
 The vector is then split into disjoint 
segments and spread across the 
tasks.  Equivalent to an MPI_Reduce 
followed by an MPI_Scatter operation.



More operations
MPI_Alltoall(&sendbuf, sendcount, 
                       sendtype, &recvbuf, recvcnt, 

recvtype, comm): 

Each task in the group performs a 
scatter with the results concatenated 
on each process in task rank order. 

MPI_Scan(&sendbuf, &recvbuf, count,
                   datatype, op, comm): 

performs the partial sums on each 
processor that would result from doing 
an in-order reduction across the 
processors in rank order.



MPI_Allreduce



P0 P7P6P5P4P3P2P1

P0

P0

P0

P0

P0

P0 P7P6P5P4P3P2P1

P2 P4 P6

P4

P4

P2 P6P4

Naive Allreduce ~1/2 nodes are 
idle at any given time

2*log2(|P|) 
steps



P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

0:1

2:3 4:5 6:7

2:3 4:5 6:7

0:3 4:7

log2(|P|) steps



 Algorithm from Optimization of Collective Reduction 
Operations, Rolf Rabenseifner, International Conference on 
Computational Science, 2004

All processors 
all busy each 
step.

Note that the 
bandwidth 
requirements 
of the 
network 
change

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1



MPI_Reduce_scatter

reduce
result

0

4

8

12



Each process performs a 
scatter of its elements to all 
other processes.

Received data is 
concatenated in sender 
rank order



0 0:1 0:2 0:3



Group and communicator
• Remember that

• A communicator is a group of 
processes that can 
communicate with each 
other

• A group is an ordered set of 
processes

• Programmers can view groups 
and communicators as being 
the same thing

• group routines are used in 
collecting processes to form  
communicator.



Why groups and communicators?

• Allow programmer to 
organize tasks by functions

• Enable collective 
communication operations

• Allow user-defined virtual 
topologies to be formed

• Enable manageable 
communication by enabling 
synchronization



Properties

• Groups/communicators are 
dynamic, i.e. they can be created 
and destroyed

• Processes can be in many groups, 
and will have a unique, possibly 
different, rank in each group

• MPI provides 40+ routines for 
managing groups and 
communicators!  Mercifully, we 
will not cover them all.



functions of these 40+ routines 

● Extract handle of a global group and 
communicator using  MPI_Comm_group

● Form new group as a subset of 
another group using MPI_Group_incl

● Create new communicator for a 
group using MPI_Comm_create

● Determine a processor’s rank in a 
communicator using MPI_Comm_rank

● Communicate among the processors 
of a group

● When finished, free communicators 
and groups using MPI_Comm_free and 
MPI_Group_free



Relationships 
among 
communicators 
and groups. 

Both collective 
and point-to-
point 
communicatio
n is within a 
group.



Handle for a 
new 

communicator

Handle for 
MPI_COMM_WORLD 

group

Handle for a 
new group

#include "mpi.h"
#include <stdio.h>
#define NPROCS 8

int main(argc,argv)
int argc;
char *argv[];  {
int        rank, new_rank, sendbuf, recvbuf, numtasks,
           ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI_Group  orig_group, new_group;
MPI_Comm   new_comm;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

if (numtasks != NPROCS) {
  printf("Must specify MP_PROCS= %d. Terminating.\n",NPROCS);
  MPI_Finalize();
  exit(0);
  }

sanity check 
code

Get the number 
of tasks and
 the rank of 

MPI_COMM_WORLD 
for this process



#include "mpi.h"
#include <stdio.h>
#define NPROCS 8

int main(argc,argv)
int argc;
char *argv[];  {
int        rank, new_rank, sendbuf, recvbuf, numtasks,
           ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI_Group  orig_group, new_group;
MPI_Comm   new_comm;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

if (numtasks != NPROCS) {
  printf("Must specify MP_PROCS= %d. Terminating.\n",NPROCS);
  MPI_Finalize();
  exit(0);
  }

Variables to hold information about the new 
Group this will be in.  Note that since this is an 

SPMD program, if we do this statically we 
need information for all groups the process 

can be in, not just the one that it is in. 

Hold the ranks of processors 
in (in MPI_COMM_WORLD) 
of processes in each of the 

two new groups. 



Each process executes one of 
the if branches.  Based on 
its number, each process 

becomes a member of 
one of the  new groups.

sendbuf = rank;

/* Extract the original group handle */
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
if (rank < NPROCS/2) {
  MPI_Group_incl(orig_group, NPROCS/2, ranks1, &new_group);
  }
else {
  MPI_Group_incl(orig_group, NPROCS/2, ranks2, &new_group);
  }

/* Create new new communicator and then perform collective communications */
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);

MPI_Group_rank (new_group, &new_rank);
printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);

MPI_Finalize();
}

get handle for 
MPI_COMM_WORLD



Get the processes rank 
within the new group

Perform collective 
communication within the

communicator comm

Create a communicator 
From the group formed 

above

sendbuf = rank;

/* Extract the original group handle */
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
if (rank < NPROCS/2) {
  MPI_Group_incl(orig_group, NPROCS/2, ranks1, &new_group);
  }
else {
  MPI_Group_incl(orig_group, NPROCS/2, ranks2, &new_group);
  }

/* Create new new communicator and then perform collective communications */
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);

MPI_Group_rank (new_group, &new_rank);
printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);

MPI_Finalize();
}
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