
Introduction to MPI

Topics to be
covered

• MPI vs shared memory

• Initializing MPI

• MPI concepts -- communicators,
processes, ranks

• MPI functions to manipulate these

• Timing functions

• Barriers and the reduction collective
operation

Shared and distributed memory
• Shared memory
• automatically maintained a

consistent image of memory
according to some memory
model

• fine grained communication
possible via loads, stores, and
cache coherence

• model and multicore
hardware support well aligned

• Programs can be converted
piece-wise

Shared and distributed memory
• Distributed memory

• Program executes as a collection of
processes, all communication
between processors explicitly
specified by the programmer

• Fine grained communication in
general too expensive -- programmer
must aggregate communication

• Conversion of programs is all-or-
nothing

• Cost scaling of machines is better
than with shared memory -- well
aligned with economics of
commodity rack mounted blades

Message Passing Model

network -
ethernet or
proprietary

(vendor
specific,

infinitband,
etc.)

processo
r

memory

processo
r

memory

processo
r

memory

processo
r

memory

processo
r

memory

processo
r

memory

processo
r

memory

processo
r

memory
• This drawing

implies that all
processor are
equidistant from
one another

• This is often not
the case -- the
network topology
and multicores
make some
processors closer
than others

• programmers
have to exploit
this manually

Message Passing Model

• This drawing implies
that all processor
are equidistant from
one another

• This is often not the
case -- the network
topology and
multicores make
some processors
closer than others

• programmers have
to exploit this
manually

processor

memory

processor

memory

Network
Eithernet,

 Infiniband, etc.

processor

memory

processor

memory

Message Passing Model

• In reality, processes
run on cores, and are
closer to other
processes on the
same processor

• Across processors,
some can be reached
via a single hop on
the network, others
require multiple hops

• Not a big issue on
small (several
hundred processors),
but it needs to be
considered on large
machines.

netw
ork

P

M

P

M

P

M

P

M

netw
ork

P

M

P

M

P

M

P

M

netw
ork

P

M

P

M

P

M

P

M

netw
ork

P

M

P

M

P

M

P

M

netw
ork

Message Passing Model

• In reality, processes
run on cores, and are
closer to other
processes on the
same processor

• Across processors,
some can be reached
via a single hop on
the network, others
require multiple hops

• Not a big issue on
small (several
hundred processors),
but it needs to be
considered on large
machines.

P
M

P
M

P
M

P
M

switch

P
M

P
M

P
M

P
M

switch

P
M

P
M

P
M

P
M

switch

switch

Cray-1 80 mhz, 138 – 250 MPFLOPs

Some Seymour Cray quotes

If you were plowing a field,
which would you rather
use? Two strong oxen or
1024 chickens?

As long as we can
make them smaller, we
can make them faster.

Anybody can build a
fast CPU, the trick is to
build a fast system.

Parity is for farmers.

131,072 cores BG/L (5.6
GFLOPS)

Tianhe-2, 40,960 processors,
10,649,600 cores, 33.9 PFLOPS

TaihuLight has 125
PFLOPS peak
performance, 93
PFLOPS on
Linpack.

Why use message passing
• Allows control over data layout, locality

and communication -- very important on
large machines

• Portable across all machines including
shared memory machines -- it’s a
universal parallel programming model.
Sometimes called the assembly language
of paralle programming

• Easier to write deterministic programs

• simplifies debugging

• easier to understand programs

• Style needed for efficient messages can
lead to better performance than shared
memory programs, even on shared
memory systems.

Why not use it?

• All or nothing program development -
generally need to make the entire
program parallel to make any part
parallel

• Information needed for messages
low-level and sometimes hard to
program

• Subtle bugs in message passing code
can lead to performance problems
and deadlock

• Message passing code disrupts the
flow of algorithms

SPMD execution is often used
with MPI

• Single Program Multiple Data

• Multiple copies of the same
program operating on different
parts of the data (typically
different sections of an array)

• Each program copy executes
in a process

• Different processes can
execute different paths
through the program

SPMD execution

for (i=0; i <= n-1; i++) { // n = 100
a[i] = i + 1;

}
for (i=0, i <= n-1; i++) {

... = a[i-1];
}

0 1 ... n/2-1 n/2

1 2 ... 49 50

for (i=0; i <= n-1; i++) {
a[i] = i + 1;

}
for (i=0, i <= n-1; i++) {

... = a[i-1];
}

0 1 ... n/2-1 n/2

1 2 ... 49 50

for (i=0; i <= (n-1)/2; i++) {
a[i] = i + 1;

}
for (i=0, i <= n-1; i++) {

... = a[i-1];
}

Global index

Local index

The original
program

Work is done by processes
• Each process has a

unique rank or process
id (often called pid in
programs) that is set
when program begins
executing

• The rank does NOT
change during the
execution of the
program

• Each process has a
unique identifier (often
called pid) that is
known to the program

• Typical program
pattern is

Compute

communicate

compute

communicate ...

An simple MPI program: Radix sort

• Radix sort works well to
sort lists of numbers

• Will assume integers
have values from 0 to
65,535

• Have N >> 65,535
numbers to sort

A sequential radix sort

for (i=0; i < 65535; i++) {
sorted[i] = 0;

}

for (i=0; i < n; i++) {
sorted[data[i]]++;

}

for (i=0; i<65535; i++) {
for (j=0; j < sort[i]; j+

+) {
fprint(“%i\n”, i);

}}

Want to convert to SPMD
message passing code

A sequential radix sort

for (i=0; i < 65535; i++) {
sorted[i] = 0;

}

for (i=0; i < n; i++) {
sorted[data[i]]++;

}

for (i=0; i<65535; i++) {
for (j=0; j < sort[i]; j+

+) {
fprint(“%i\n”, i);

}}

Note that data input not shown --
this can require some thought

Data often spread across
multiple files to accommodate
parallel I/O on large problems

Determining a data layout

data[0:N/4-1]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

Process pid = 0

Process pid = 2

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

Process pid = 1

Process pid = 2

Global indices are
shown. The local
indices used on each
processor are, for
data,
pid*n/4:(pid+1)*n/4-1
For replicated data,
global and local
indices are the same

Change the program to SPMD

all processors execute this (replicated execution)
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}

each processor executes N/4 iterations (assume N mod 4 = 0)
for (i=0; i < N/4; i++) {

sorted[data[i]]++;
}

this becomes a sum reduction over the sorted arrays on each processor,
i.e. communication. This code does not show that yet.
for (i=0; i<65535; i++) {

for (j=0; j < sort[i]; j++) {
fprint(“%i\n”, i);

}}

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

Data management

• All declared variables exist within each process
• There is a global and local logical index space for

arrays
• globally, data has N elements pid*N:(pid+1)*N/4-1
• locally, each process has N/4 elements numbered

0:N/4-1(if N mod 4 == 0, otherwise
N/4⎡N/4⎤ ⎤or N/4⎣N/4⎦ ⎦elements per processors with some

processors having more or fewer elements than
other processors

• The concatenation of the local partitions of data
arrays forms the global array data

• The array data is block distributed over the
processors

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

Data bounds for
block

• Two “obvious” ways to compute

• Let n be the array size, P the
number processors

First method
•Let P be the number of processes, n the number of array elements, 0 ≤ p ≤ P-1 is a
process id

•r = n mod P, r = 0, all blocks are the same size, otherwise, first r blocks
have n/P ⎡N/4⎤ ⎤ elements, last P-r have n/P ⎣N/4⎦ ⎦ elements

•First element on a process p is p⎣n/P⎦+ min(p,r)

•Last element on process p is (p+1)⎣n/P⎦+ min(p+1,r) - 1

•process with element i is min(i/(n/P + 1) , i-r) / n/P)⎣N/4⎦ ⎣N/4⎦ ⎦ ⎦ ⎣N/4⎦ ⎣N/4⎦ ⎦⎦

•Example -- 12 elements over 5 processors, 2 = 12 mod 5

• Example -- 12 elements over 7 processors, 5 = 12 mod 7

Second method
• First element controlled (or owned) by process p is p n/P ⎣N/4⎦ ⎦

(first element and first process id p is 0

• Last element controlled by process p is one less that the
first element controlled by process p+1 (the next process)

 ⎣N/4⎦ (p+1) n/P - 1⎦

• Process controlling element i is (P(i+1)-1)/n⎣N/4⎦ ⎦

• Example -- 12 elements over 5 processors, r = 2 = 12 mod 5

• Example -- 17 elements over 5 processors, r = 2 = 17 mod 5

Global vs local indices

• Each part of an array within a process must
be indexed as a local element of that array
using the local index.

• Logically, each local element is a part of the
global array, and within the problem domain
has a global index

• It is the MPI programmer’s responsibility (that
means you) to maintain that mapping.

0 1 0 1 20 1 20 10 1

7 8 9 1
0

1
1

4 5 62 30 1

local index:

global
index:

Use macros to access
bounds

• Macros or functions can be used to compute
these.

• Block lower bound: LB(pid, P, n) = (pid*n/P)

• Block upper bound: UB(pid, P, n) = LB(pid+1, P, n)-1

• Block size: LB(pid+1, P, n) - LB(pid, P, n) + 1

• Block owner: Owner(i, P, n) = (P*(i+1)-1)/n

0 1 0 1 20 1 20 10 1

7 8 9 1
0

1
1

4 5 62 30 1

local index:

global
index:

Comparison of the two methods

Operations First
Method

Second
Method

Low index 4 2

High index 6 4

Owner 7 4

Assumes floor is free (as it is with integer
division although integer division itself may

be expensive)

The cyclic distribution

• Let A be an array with N elements.
• Let the array be cyclically distributed over P

processes
• Process p gets elements p, p+P, p+2*P,

p+3*P, ...
• In the above
• process 0 gets elements 0, 4, 8, 12, ... of data
• process 1 gets elements 1, 5, 9, 13, ... of data
• process 2 gets elements 2, 6, 10, 14, ... of

data
• process 3 gets elements 3, 7, 11, 15, ... of

data

Data[1:N:4]
I,j

Sorted[0:65353

Data[2:N:4]
I,j

Sorted[0:65353

Data[3:N:4]
I,j

Sorted[0:65353

Data[0:N:4]
I,j

Sorted[0:65353

P0 P1 P2 P3

The block-cyclic distribution

• Let A be an array with N elements
• Let the array be block-cyclically distributed over P

processes, with blocksize B
• Block b, b = 0 ..., on process p gets elements
 b*B*P+p*B: b*B*P + (p+1)*B)-1 elements
• With P=4, B=3
• process 0 gets elements [0:2], [12:14], [24:26] of

data
• process 1 gets elements [3:5], [15:17],[27:29] of

data
• process 2 gets elements [6:8], [18:20],[30:32] of

data
• process 3 gets elements [9:11], [21:23],[33:35] of

data

System initialization

data[pid*n/4:pid*N/4-1]
i,j

Sorted[0:65353]

#include <mpi.h> /* MPI library prototypes, etc. */
#include <stdio.h>
// all processors execute this (replicated execution)
int main(int argc, char * argv[]) {
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
extractArgv(&N, argv); // get N from the arg vector
int sorted[65536]; int data[N/4];
MPI_INIT(&argc, &argv); // argc and argv need to be passed in
for (i=0; i < 65535; i++) {
sorted[i] = 0;
}}

MPI_INIT
• Initialize the MPI runtime

• Does not have to be the first executable
statement in the program, but it must be
the first MPI call made

• Initializes the default MPI communicator
(MPI_COMM_WORLD which includes all
processes)

• Reads standard files and environment
variables to get information about the
system the program will execute on

• e.g. what machines executes the
program?

The MPI environment

MPI_COMM_WORLD

0
6

1 2

4

3

7

5

The communicator name
(MPI_COMM_WORLD is

the default communicator name

A
communicator
defines a
universe of
processes that
can exchange
messages

A
process

A rank

Include files

#include <mpi.h> /* MPI library prototypes, etc. */
#include <stdio.h>

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[0:N:4]
I,j

Sorted[0:65353

P0 P1 P2 P3

using mpi // Fortran 90
include “mpi.h” // Fortran 77

These may not be shown on later
slides to make room for more
interesting stuff

Communicator and process info

// all processors execute this (replicated execution)
int main(int argc, char * argv[]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int *data;
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

P0 P1 P2 P3

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

P0 P1 P2 P3

Getting the pid for each process

// all processors execute this (replicated execution)
int main(int argc, char * argv[]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data;
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

P0 P1 P2 P3

Getting the pid for each process

// all processors execute this (replicated execution)
int main(int argc, char * argv[]) {

int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data;
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

P0 P1 P2 P3

Allocating local storage

int main(int argc, char * argv[]) {
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data;
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
Lb = LB(pid, numP, N); ub = LB(pid, numP, N)-1;
data = malloc(sizeof(int)*(ub-lb+1)
for (i=0; i < 65535; i++) {

sorted[i] = 0;
}}

data[0:N/4-1]
i,j

Sorted[0:65353]

data[n/4:2*N/4]
i,j

Sorted[0:65353]

data[2*N/4:3*N/4-1]
i,j

Sorted[0:65353]

data[3*n/4:N-1]
i,j

Sorted[0:65353]

P0 P1 P2 P3

Terminating the MPI program

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[0:N:4]
I,j

Sorted[0:65353

P0 P1 P2 P3

int main(int argc, char * argv[]) {
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data;
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
Lb = LB(pid, numP, N); ub = LB(pid, numP, N)-1;
data = malloc(sizeof(int)*(ub-lb+1)
for (i=0; i < 65535; i++) {
 sorted[i] = 0;

 MPI_Finalize();
}

Time to do something useful

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[1:N:4]
I,j

Sorted[0:65353

Data[0:N:4]
I,j

Sorted[0:65353

P0 P1 P2 P3

int main(int argc, char * argv[]) {
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int lb = LB(pid, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data;
MPI_INIT(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numP);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
Lb = LB(pid, numP, N); ub = LB(pid, numP, N)-1;
data = malloc(sizeof(int)*(ub-lb+1)
for (i=0; i < 65535; i++) {
 sorted[i] = 0;

 sort(data, sort, ub-lb+1);
 MPI_Finalize();}

The sequential radix sort

void sort (sort[], data[], int N) {
for (i=0; i < N; i++) {

sorted[data[i]]++;
}

 for (i=0; i<65535; i++) {
 for (j=0; j < sort[i]; j++) {

 fprint(“%i\n”, i);
 }

 }
}

The parallel radix sort

void sort (sort[], data[], int localN) {
for (i=0; i < N; i++) {

sorted[data[i]]++;
}
// pid == 0 only has its results! We
// need to combine the results here.

 If (pid == 0) {
 for (i=0; i<65535; i++) {

 for (j=0; j < sort[i]; j++) {
 fprint(“%i\n”, i);

 }
 }

}

Each process sorts the
local N elements that it
owns. The results from
each process need to be
combined and sent to a
single process for
printing, say, the process
with pid==0.

MPI_Reduce(...)
MPI_Reduce(
 void *opnd, // data to be reduced
 void *result, // result of the reduction
 int count, // # of elements to be reduced
 MPI_Datatype type, // type of the elements
 // being reduced
 MPI_Operator op, // reduction operation
 int root, // pid of the process getting the
 // result of the reduction
 MPI_Comm comm // communicator over
 // which the reduction is
 // performed
);

MPI_Datatype

Defined as constants in the mpi.h header file

Types supported are

MPI_CHAR MPI_DOUBLE

MPI_FLOAT MPI_INT

MPI_LONG MPI_LONG_DOUBLE

MPI_SHORT MPI_UNSIGNED_CHAR

MPI_UNSIGNED MPI_UNSIGNED_LONG

MPI_UNSIGNED_SHORT

MPI_Datatype
Defined as constants in the mpi.h header file

Types supported are

MPI_CHAR
MPI_FLOAT
MPI_LONG
MPI_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_SHORT
MPI_DOUBLE
MPI_INT
MPI_LONGDOUBLE
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_LONG

MPI_Op
• Defined as constants in the mpi.h header file

• Types supported are

MPI_BAND
MPI_EXOR
MPI_LAND
MPI_LXOR
MPI_MAXLOC
MPI_MINLOC
MPI_SUM
MPI_BOR
MPI_BXOR
[MPI_LOR
MPI_MAX
MPI_MIN
MPI_PROD

Example of reduction

MPI_Reduce(MPI_IN_PLACE, sorted, 8, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

3 5 2 9 8 11 20 4
sorted, p=0

8 3 6 8 38 5 27 6
sorted, p=1

1 0 9 0 2 1 2 40
sorted, p=2

13 15 12 19 18 21 42 3
sorted, p=3

25 23 39 36 64 38 91 53
sorted, p=0

Example of reduction

MPI_Reduce(data, res, 1,
 MPI_INT,

 MPI_SUM, 2,
 MPI_COMM_WORLD);

1 12 3 4P0 data

2 14 6 8P1 data

3 16 9 12P2 data

4 18 12 16P3 data

1P0 res

10 1P2 res

1

1P1 res

P3 res

Example of reduction

MPI_Reduce(data, res, 3,
 MPI_INT,

 MPI_SUM, 0,
 MPI_COMM_WORLD);

1 12 3 4P0 data

2 14 6 8P1 data

3 16 9 12P2 data

4 18 12 16P3 data 1P0 res

10 120 30P0 res

1P1 res

1P2 res

Example of reduction

MPI_Reduce(MPI_IN_PLACE, data, 3,
 MPI_INT,

 MPI_SUM, 0,
 MPI_COMM_WORLD);

1 12 3 4P0 data

2 14 6 8P1 data

3 16 9 12P2 data

4 18 12 16P3 data

Before reduction After reduction

10 120 30 4P0 data

2 14 6 8P1 data

3 16 9 12P2 data

4 18 12 16P3 data

Add the reduction
void sort (sort[], data[], int pid, int numP) {

for (i=0; i < N; i++) {
sorted[data[i]]++;

}
// can merge all of the “sorted” arrays here
if (pid == 0) {

MPI_Reduce(MPI_IN_PLACE, sorted, 65353, MPI_INT,
 MPI_SUM, 0, MPI_COMM_WORLD);

} else {
MPI_Reduce(sorted, (void *) null, 65353, MPI_INT,
 MPI_SUM, 0, MPI_COMM_WORLD);

 // print out the sorted array on process pid==0
Alternatively, could allocate a buffer for final
sorted result. Buffer would be the same size as
sorted.

Measure program runtime
• MPI_Barrier - barrier

synchronization

• MPI_Wtick - returns
the clock resolution
in seconds

• MPI_Wtime - current
time

int main(int argc, char * argv[]) {
double elapsed;
int pid;
int numP;
int N;
. . .
MPI_Barrier();
elapsed = -MPI_Wtime();
sort(data, sort, pid, numP);
elapsed += MPI_Wtime();
if (pid == 0) printSort(final);
MPI_Finalize();

}

Wtick() returns a double that holds
the number of seconds between
clock ticks - 10-3 is milliseconds

Wtick() gives the
clock resolution

MPI_WTick returns the resolution of MPI_WTime in
seconds. That is, it returns, as a double precision
value, the number of seconds between successive
clock ticks.

double tick = MPI_WTick();

Thus, a millisecond resolution timer will return 10-3

This can be used to convert elapsed time to seconds

Sieve of Erosthenes

• Look at block
allocations

• Performance tuning

• MPI_Bcast function

Finding prime numbers
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes
1.start with two, mark all

multiples
2.find the next unmarked

u -- it is a prime
3.mark all multiples of u

between k2 and n until k2

> n
4.repeat 2 & 3 until

finished

Mark off multiples of primes
10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes

3 is prime

mark all multiples
of 3 > 9

10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes

5 is prime

mark all multiples
of 5 > 25

10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes

7 is prime

mark all multiples
of 7 > 49

10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes

11 is prime

mark all multiples
of 11 > 121

10987654321

20191817161514131211

30292827262524232221

40393837363534333231

50494847464544434241

60595857565554535251

70696867666564636261

80797877767574737271

90898887868584838281

10
0

999897969594939291

To find primes

1, 2, 3, 5, 7, 13, 17,
19, 23, 29, 31, 37,
41, 43, 47, 53, 59,
61, 67, 71, 73, 79,
83, 89 and 97 are
prime.

Want to parallelize this

• Because we are message
passing, obvious thing to
look at it domain
decomposition, i.e. how can
we break up the domain
being operated on over
multiple processors

• partition data across
processors

• associate tasks with data

• In general, try to find
fundamental operations and
associate them with data

Find the fundamental operation(s)?

• Marking of the
multiples of the
last prime found

• if v a multiple of
k then v mod k
== 0

• min-reduction to
find the next
prime (i.e.
smallest
unmarked value)
across all
processes

forall (v = k; v < n+1; v++) {
if (v mod k != 0) a[v] = 1;

}

• broadcast the value to
all tasks

To make this efficient . . .

• Combine as many tasks as
possible onto a single process

• Make the amount of work done
by each process similar, i.e. load
balance

• Make the communication
between tasks efficient

Combining work/data partitioning
• Because processes work on

data that they own (the owners
compute rule, Rogers and
Pingali), the two problems are
tightly inter-related.

• Each element is owned by a
process

• It is the process that owns the
consistent, i.e., up-to-date
value of a variable

• All updates to the variable are
made by the owner

• All requests for the value of the
variable are to the owner

Combining work/data partitioning

• Because processes update the data that
they own

• Cyclic distributions have the property that
for all elements i on some process p, i mod p
= c holds, where c is some integer value

• Although cyclic usually gives better load
balance, it doesn’t in this case

• Lesson -- don’t apply rules-of-thumb
blindly

• Block, in this case, gives a better load
balance

• computation of indices will be harder

Interplay of decomposition and
implementation

• Decomposition affects how we design the
implementation

• More abstract issues of parallelization can affect the
implementation

• In the current algorithm, let Φ be the highest possible
prime

• At most, only first √Φ Φ values may be used to mark off
(sieve) other primes

• if P processes, n elements to a process, then if n/P > √Φ Φ
only elements in p=0 will be used to sieve. This means we
only need to look for lowest unmarked elements in p=0
and only p=0 needs to send this out, saving a reduction
operation.

Use of block partitioning affects
marking

• Can mark j, j+k, j+2k, ... where j is
the first prime in the block

• Using the parallel method
described in earlier psuedo-
code, would need to use an
expensive mod

 for all e in the block
if e mod k = 0, mark e

• We would like to eliminate this.

Sketch of the algorithm

1. Create list of possible primes

2. On each process, set k = 2

3. Repeat

1. On each process, mark all multiples of k

2. On process 0, find smallest unmarked number u,
set k=u

3. On process 0, broadcast k to all processes

4. Until k2 > Φ (the highest possible prime)

5. Perform a sum reduction to determine the number
of primes

Data layout, primes up to 28

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8i =

11 12 13 14 15 16 17 18 19P=1
0 1 2 3 4 5 6 7 8i =

20 21 22 23 24 25 26 2 28P=2
0 1 2 3 4 5 6 7 8i =

number being
checked for
"primeness"

array element

Algorithm 1/4#include <mpi.h>
#include <math.h>
#include <stdio.h>
#include "MyMPI.h"
#define MIN(a,b) ((a)<(b)?(a):(b))

int main (int argc, char *argv[])
{
 ...
 MPI_Init (&argc, &argv);
 MPI_Barrier(MPI_COMM_WORLD);
 elapsed_time = -MPI_Wtime();
 MPI_Comm_rank (MPI_COMM_WORLD, &id);
 MPI_Comm_size (MPI_COMM_WORLD, &p);
 if (argc != 2) {
 if (!id) printf ("Command line: %s <m>\n", argv[0]);
 MPI_Finalize(); exit (1);
 }

Figure out if too
many processes

for √Φ candidates Φ candidates
on p=0

Algorithm, 2/4

allocate array
to use to

mark primes

 n = atoi(argv[1]);
 low_value = 2 + BLOCK_LOW(id,p,n-1);
 high_value = 2 + BLOCK_HIGH(id,p,n-1);
 size = BLOCK_SIZE(id,p,n-1);
 proc0_size = (n-1)/p;
 if ((2 + proc0_size) < (int) sqrt((double) n)) {
 if (!id) printf ("Too many processes\n");
 MPI_Finalize();
 exit (1);
 }

 marked = (char *) malloc (size);
 if (marked == NULL) {
 printf ("Cannot allocate enough memory\n");
 MPI_Finalize();
 exit (1);
 }

Get min and max
possible prime on
p in global space

11 12 13 14 15 16 17 18 19P=1
9 10 11 12 13 14 15 16 17i =

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8i =

20 21 22 23 24 25 26 2 28P=2

18 19 20 21 22 23 24 25 26i =

Block Low Block hIGH

Low value High value

Algorithm 3/4 (a)

 for (i = 0; i < size; i++) marked[i] = 0; // initialize marking array
 if (!id) index = 0; // p=0 action, find first prime
 prime = 2;
 do { // prime = 2 first time through, sent by bcast on later iterations
 Find first element to mark on each procesor
 Mark that element and every kth element on the processor
 Find the next unmarked element on P0. This is the next prime

 Send that prime to every other processor
 } while (prime * prime <= n);

Algorithm 3/4 (b)
Initialize array and find first prime
 // Find first element to mark on each procesor
 do { // prime = 2 first time through, sent by bcast on later iterations
 if (prime * prime > low_value) // find first value to mark
 first = prime * prime - low_value; // first item in this block
 else {
 if (!(low_value % prime)) first = 0; // first element divisible
 // by prime
 else first = prime - (low_value % prime);
 }
 Find first element to mark on each procesor
 Mark that element and every kth element on the processor
 Find the next unmarked element on P0. This is the next prime

 Send that prime to every other processor
 } while (prime * prime <= n);

Algorithm 3/4 (c)

Initialize array and find first prime
 do { // prime = 2 first time through, sent by bcast on later iterations
 Find first element to mark on each procesor
 // Mark that element and every kth element on the processor
 for (i = first; i < size; i += prime) marked[i] = 1; // mark every kth item
 Find the next unmarked element on P0. This is the next prime

 Send that prime to every other processor
 } while (prime * prime <= n);

Algorithm 3/4 (d)
Initialize array and find first prime
 do { // prime = 2 first time through, sent by bcast on later iterations
 Find first element to mark on each procesor
 Mark that element and every kth element on the processor
 // Find the next unmarked element on P0. This is the next prime

 if (!id) { // p=0 action, find next prime by finding unmarked element
 while (marked[++index]);
 prime = index + 2;
 }
 // Send that prime to every other processor
 MPI_Bcast (&prime, 1, MPI_INT, 0, MPI_COMM_WORLD);
 } while (prime * prime <= n);

Algorithm 3/4 full code

 for (i = 0; i < size; i++) marked[i] = 0; // initialize marking array
 if (!id) index = 0; // p=0 action, find first prime
 prime = 2;
 do { // prime = 2 first time through, sent by bcast on later iterations
 if (prime * prime > low_value) // find first value to mark
 first = prime * prime - low_value; // first item in this block
 else {
 if (!(low_value % prime)) first = 0; // first element divisible by prime
 else first = prime - (low_value % prime);
 }
 for (i = first; i < size; i += prime) marked[i] = 1; // mark every kth item
 if (!id) { // p=0 action, find next prime by finding unmarked element
 while (marked[++index]);
 prime = index + 2;
 }
 MPI_Bcast (&prime, 1, MPI_INT, 0, MPI_COMM_WORLD);
 } while (prime * prime <= n);

First prime index = 0
prime = 2

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local =

2 * 2 > 2
first = 2 * 2 - 2
first = 2

not 2 * 2 > 11
11 % 2 == 1
first = 2 - (l1 % 2)
first = 1

not 2 * 2 > 20
20 % 2 == 0
first = 0

third prime index = 3
prime = 5

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local =

5 * 5 > 2
first = 5 * 5 - 2
first = 23

5 * 5 > 11
first = 5 * 5 - 11
first = 16

5 * 5 > 20
first = 5 * 5 - 20
first = 5

Mark every prime elements
starting with first index = 0

prime = 2

2 * 2 > 4
first = 2 * 2 - 2
first = 2

not 2 * 2 > 11
11 % 2 == 1
first = 2 - (l1 % 2)
first = 1

not 2 * 2 > 20
20 % 2 == 0
first = 0

2 3 4 5 6 7 8 9 10P=0
0 1 2 3 4 5 6 7 8local i =

11 12 13 14 15 16 17 18 19P=0
0 1 2 3 4 5 6 7 8local i =

20 21 22 23 24 25 26 2 28P=0
0 1 2 3 4 5 6 7 8local =

Algorithm 4/4

 // on each processor count the number of primes, then reduce this total
 count = 0;
 for (i = 0; i < size; i++) if (!marked[i]) count++;
 MPI_Reduce (&count, &global_count, 1, MPI_INT, MPI_SUM,
 0, MPI_COMM_WORLD);
 elapsed_time += MPI_Wtime();
 if (!id) {
 printf ("%d primes are less than or equal to %d\n",
 global_count, n);
 printf ("Total elapsed time: %10.6f\n", elapsed_time);
 }
 MPI_Finalize ();
 return 0;
}

index = 0
prime = 2

2 3 4 5 6 7 8 9 10P=0

11 12 13 14 15 16 17 18 19P=0

20 21 22 23 24 25 26 27 28P=0

count = 1

count = 4

count = 2

global_count = 1 + 4 + 2

Other MPI environment
management routines

• MPI_Abort (comm, errorcode)
• Aborts all processors associated with

communicator comm
• MPI_Get_processor_name(&name,

 &length)
• MPI version of gethostname, but what it

returns is implementation dependent.
gethostname may be more portable.

• MPI_Initialized(&flag)
• Returns true if MPI_Init has been called,

false otherwise

point-to-point communication
• Most MPI communication is between a pair of

processors
• send/receive transmits data from the sending

process to the receiving process
• MPI point-to-point communication has many

flavors:
• Synchronous send
• Blocking send / blocking receive
• Non-blocking send / non-blocking receive
• Buffered send
• Combined send/receive
• "Ready" send (matching receive already posted.)

• All types of sends can be paired with all types of
receive

Buffering
What happens when
• A send occurs before the receiving process is ready

for the data
• The data from multiple sends arrive at the receiving

task which can only accept one at a time

System buffer space

Not part of the standard -- an “implementation detail

• Managed and controlled by the MPI library
• Finite
• Not well documented -- size maybe a function of install

parameters, consequences of running out not well
defined

• Both sends and receives can be buffered

Helps performance by enabling asynchronous send/recvs

Can hurt performance because of memory copies

Program variables are called application buffers in MPI-
speak

Blocking and non-blocking point-
to-point communication

Blocking

• Most point-to-point routines have a blocking and non-
blocking mode

• A blocking send call returns only when it is safe to
modify/reuse the application buffer. Basically the data
in the application buffer has been copied into a system
buffer or sent.

• Blocking send can be synchronous, which means call to
send returns when data is safely delivered to the recv
process

• Blocking send can be asynchronous by using a send
buffer

• A blocking receive call returns when sent data has
arrived and is ready to use

Blocking and non-blocking point-
to-point communication

 Non-blocking

• Non-blocking send and receive calls behave similarly
and return almost immediately.

• Non-blocking operations request the MPI library to
perform the operation when it is able. It cannot be
predicted when the action will occur.

• You should not modify any application buffer (program
variable) used in non-blocking communication until the
operation has finished. Wait calls are available to test
this.

• Non-blocking communication allows overlap of
computation with communication to achieve higher
performance

Synchronous and buffered sends
and receives

• synchronous send operations block until
the receiver begins to receive the data

• buffered send operations allow
specification of a buffer used to hold
data (this buffer is not the application
buffer that is the variable being sent or
received)
• allows user to get around system

imposed buffer limits
• for programs needing large buffers,

provides portability
• One buffer/process allowed
• synchronous and buffered can be

matched

Ordering of messages and fairness
• Messages received in-order
• If a sender sends two messages, (m1 and m2) to the

same destination, and both match the same kind of
receive, m1 will be received before m2.

• If a receiver posts two receives (r1 followed by r2),
and both are looking for the same kind of messages,
r1 will receive a message before r2.

• Operation starvation is possible
• task2 performs a single receive. task0 and task3

both send a message to task2 that matches the
receive. Only one of the sends will complete if the
receive is only executed once.

• It is the programmer’s job to ensure this doesn’t
happen

Operation starvation

Only one of the sends
will complete.

Networks are
generally not
deterministic, cannot
be predicted whose
message will arrive at
task2 first, and which
will complete.

Basic sends and receives
• MPI_send(buffer, count, type, dest, tag, comm)

• MPI_Isend(buffer, count, type, dest, tag, comm,request)

• MIP_Recv(buffer, count, type, source, tag, comm, status)

• MPI_Irecv(buffer, count, type, source, tag, comm, request)

I forms are non-blocking

Basic sends/recv arguments
(I forms are non-blocking)

• MPI_send(buffer, count, type, dest, tag, comm)

• MPI_Isend(buffer, count, type, dest, tag, comm, request)

• MIP_Recv(buffer, count, type, source, tag, comm, status)

• MPI_Irecv(buffer, count, type, source, tag, comm, request)

• buffer: pointer to the data to be sent or where received (a
program variable)

• count: number of data elements of type (not bytes!) to be
sent

• type: an MPI_Type

• tag: the message type, any unsigned integer 0 - 32767.

• comm: sender and receiver communicator

Basic send/recv arguments
• MPI_send(buffer, count, type, dest, tag, comm)

• MPI_Isend(buffer, count, type, dest, tag, comm, request)

• MIP_Recv(buffer, count, type, source, tag, comm, status)

• MPI_Irecv(buffer, count, type, source, comm, request)

• dest: rank of the receiving process

• source: rank of the sending process

• request: for non-blocking operations, a handle to an MPI_Request
structure for the operation to allow wait type commands to know
what send/recv they are waiting on

• status: the source and tag of the received message. This is a pointer
to the structure of type MPI_Status with fields MPI_SOURCE and
MPI_TAG.

Blocking send/recv/etc.
MPI_Send: returns after buf is free to be reused. Can use a system buffer
but not required, and can be implemented by a system send.

MPI_Recv: returns after the requested data is in buf.

MPI_Ssend: blocks sender until the application buffer is free and the
receiver process started receiving the message

MPI_Bsend: permits the programmer to allocate buffer space instead of
relying on system defaults. Otherwise like MPI_Send.

MPI_Buffer_attach (&buffer,size): allocate a message buffer with the
specified size

MPI_Buffer_detach (&buffer,size): frees the specified buffer

MPI_Rsend: blocking ready send, copies directly to the receive
application space buffer, but the receive must be posted before being
invoked. Archaic.

MPI_Sendrecv: performs a blocking send and a blocking receive.
Processes can swap without deadlock

Example of blocking send/recv
#include "mpi.h"
#include <stdio.h>

int main(argc,argv)
int argc;
char *argv[]; {
int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';
MPI_Status Stat; // status structure

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

Example of blocking send/recv
if (rank == 0) {
 dest = 1;
 source = 1;
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD,
&Stat);
} else if (rank == 1) {
 dest = 0;
 source = 0;
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD,
&Stat);
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count); // returns # of type received
printf("Task %d: Received %d char(s) from task %d with tag %d \n",
 rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize();
}

Example of blocking send/recv
if (rank == 0) {
 dest = 1;
 source = 1;
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD,
&Stat);
} else if (rank == 1) {
 dest = 0;
 source = 0;
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD,
&Stat);
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag,
MPI_COMM_WORLD);
}

task
0

task
1

green/italic
send
blue/bold send

Why the reversed send/recv
orders?

if (rank == 0) {
 dest = 1;
 source = 1;
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
} else if (rank == 1) {
 dest = 0;
 source = 0;
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}

MPI_Send may or may not block [until a recv is posted]. It will block
until the sender can reuse the sender buffer. Some implementations will
return to the caller when the buffer has been sent to a lower
communication layer. Some others will return to the caller when there's
a matching MPI_Recv() at the other end. So it's up to your MPI
implementation whether if this program will deadlock or not.

From stackoverflow
http://stackoverflow.com/questions/20448283/deadlock-with-mpi

http://stackoverflow.com/questions/20448283/deadlock-with-mpi

Non-blocking operations
• MPI_Isend, MPI_Irecv, MPI_Issend, Ibsend, Irsend: similar to

MPI_Send, MPI_Recv, MPI_Ssend, Bsend, Rsend except that a
Test or Wait must be used to determine that the
operation has completed and the buffer may be read
(in the case of a recv) or written (in the case of a send)

Wait and probe
MPI_Wait (&request, &status): wait until the operation specified by
request (specified in an Isend/Irecv finishes)

MPI_Waitany (count, &array_of_requests, &index,&status): wait for
any blocking operations specified in &array_of_requests to finish

MPI_Waitall (count, &array_of_requests, &array_of_statuses): wait
for all blocking operations specified in &array_of_requests to finish

MPI_Waitsome (incount, &array_of_requests, &outcount,
&array_of_offsets, &array_of_statuses): wait for at least one request to
finish, the number is returned in outcount.

MPI_Probe (source, tag, comm, &status): performs a blocking test but
doesn’t require a corresponding receive to be posted.

Non-blocking operations
• MPI_Test (&request, &flag,&status)

• MPI_Testany (count, &array_of_requests, &index, &flag, &status)

• MPI_Testall (count,&array_of_requests,&flag, &array_of_statuses)

• MPI_Testsome (incount, &array_of_requests, &outcount,
&array_of_offsets, &array_of_statuses)

• Like the wait operations, but do not block

Non-blocking example
#include "mpi.h"
#include <stdio.h>

int main(argc,argv)
int argc;
char *argv[]; {
int numtasks, rank, next, prev, buf[2], tag1=1, tag2=2;
MPI_Request reqs[4];
MPI_Status stats[4];

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

Non-blocking exampleprev = rank-1;
next = rank+1;
if (rank == 0) prev = numtasks - 1;
if (rank == (numtasks - 1)) next = 0;

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]);
MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]);
MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]);

 { do some work that does not depend on the data being received }

MPI_Waitall(4, reqs, stats);

MPI_Finalize();
}

Nearest neighbor exchange
in a ring topology

Collective communication routines
• Use these when communicating among processes with a

well defined pattern

• Some can be used to allow all processes to communicate

• Some perform computation during the communication
(reductions)

• Involve all processes in the specified communicator,
even if a particular processor has no data to send

• Can only be used with MPI predefined types, not derived
types.

• The programmer has to make sure all processes
participate in the collective operation

All processors participate in
the collective operation

if (pid % 2) {
 MPI_Reduce(..., MPI_COMM_WORLD);
}

This program will deadlock, as the MPI_Reduce will
wait forever for even processes to begin executing it.

If you want to only involve odd processes, add them
to a new communicator.

Groups and communicators

• Two terms used in MPI documentation are
groups and communicators.

• A communicator is a group of processes that
can communicate with each other

• A group is an ordered set of processes

• Programmers can view groups and
communicators as being identical

Collective routines
MPI_Barrier (comm): tasks block upon reaching the barrier until every
task in the group has reached it

MPI_Bcast (&buffer,count,datatype,root,comm): process root sends a
copy of its data to every other processor. Should be log2(comm_size)
operation.

MPI_Scatter (&sendbuf,sendcnt,sendtype,&recvbuf,
recvcnt,recvtype,root,comm): distributes a unique message from root to
every process in the group.

Collective routines
MPI_Gather(&sendbuf, sendcnt, sendtype, &recvbuf, recvcount,
 recvtype, root, comm):
opposite of scatter, every process in the group sends a
unique message to the root.
MPI_Allgather (&sendbuf,sendcount,sendtype,&recvbuf,
recvcount,recvtype,comm): each tasks performs a one-to-all
broadcast to every other process in the group These are
concatenated together in the recvbuf.
MPI_Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm):
performs a reduction using operation op and places the
result into recvbuf on the root process.

MPI_Bcast

MPI_Scatter Equivalent to
MPI_Send(sendbuf+i*sendcount*extent(sendtype), sendcount, sendtype, i, …)
MPI_Recv(recvbuf, recvcount, recvtype, i, sendcount, sendtype, i, ...)

MPI_Gather
Equivalent to MPI_Send(sendbuf, sendcount, sendtype, root, ...)
MPI_Recv(recvbuf+i*recvcount*extent(recvtype), recvcount, recvtype, i, …)
With the results of each recv stored in rank order of the sending
process

MPI_Allgather

A gather with
every process
being a target.

MPI_Reduce
Also see MPI
introductory slides.

You can form your
own reduction
function using
MPI_Op_create

MPI_Op_create

 #include "mpi.h"
 int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op)

pointer to the
user defined
Function that

 is the Op
true if

commutative,
false otherwise

Handle to refer to
the function
wherever an

MPI_Op is needed

More operations
MPI_Allreduce (&sendbuf, &recvbuf, count,

 datatype, op, comm):

 functionally equivalent to an
MPI_Reduce followed by an MPI_Bcast.
 Faster on most hardware than the
combination of these.
MPI_Reduce_scatter(&sendbuf, &recvbuf,

 recvcount, datatype,
 op, comm):

Does an element-wise reduce on the
vector in sendbuf of length recvcount.
 The vector is then split into disjoint
segments and spread across the
tasks. Equivalent to an MPI_Reduce
followed by an MPI_Scatter operation.

More operations
MPI_Alltoall(&sendbuf, sendcount,
 sendtype, &recvbuf, recvcnt,

recvtype, comm):

Each task in the group performs a
scatter with the results concatenated
on each process in task rank order.

MPI_Scan(&sendbuf, &recvbuf, count,
 datatype, op, comm):

performs the partial sums on each
processor that would result from doing
an in-order reduction across the
processors in rank order.

MPI_Allreduce

P0 P7P6P5P4P3P2P1

P0

P0

P0

P0

P0

P0 P7P6P5P4P3P2P1

P2 P4 P6

P4

P4

P2 P6P4

Naive Allreduce ~1/2 nodes are
idle at any given time

2*log2(|P|)
steps

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

0:1

2:3 4:5 6:7

2:3 4:5 6:7

0:3 4:7

log2(|P|) steps

 Algorithm from Optimization of Collective Reduction
Operations, Rolf Rabenseifner, International Conference on
Computational Science, 2004

All processors
all busy each
step.

Note that the
bandwidth
requirements
of the
network
change

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

P0 P7P6P5P4P3P2P1

MPI_Reduce_scatter

reduce
result

0

4

8

12

Each process performs a
scatter of its elements to all
other processes.

Received data is
concatenated in sender
rank order

0 0:1 0:2 0:3

Group and communicator
• Remember that

• A communicator is a group of
processes that can
communicate with each
other

• A group is an ordered set of
processes

• Programmers can view groups
and communicators as being
the same thing

• group routines are used in
collecting processes to form
communicator.

Why groups and communicators?

• Allow programmer to
organize tasks by functions

• Enable collective
communication operations

• Allow user-defined virtual
topologies to be formed

• Enable manageable
communication by enabling
synchronization

Properties

• Groups/communicators are
dynamic, i.e. they can be created
and destroyed

• Processes can be in many groups,
and will have a unique, possibly
different, rank in each group

• MPI provides 40+ routines for
managing groups and
communicators! Mercifully, we
will not cover them all.

functions of these 40+ routines

● Extract handle of a global group and
communicator using MPI_Comm_group

● Form new group as a subset of
another group using MPI_Group_incl

● Create new communicator for a
group using MPI_Comm_create

● Determine a processor’s rank in a
communicator using MPI_Comm_rank

● Communicate among the processors
of a group

● When finished, free communicators
and groups using MPI_Comm_free and
MPI_Group_free

Relationships
among
communicators
and groups.

Both collective
and point-to-
point
communicatio
n is within a
group.

Handle for a
new

communicator

Handle for
MPI_COMM_WORLD

group

Handle for a
new group

#include "mpi.h"
#include <stdio.h>
#define NPROCS 8

int main(argc,argv)
int argc;
char *argv[]; {
int rank, new_rank, sendbuf, recvbuf, numtasks,
 ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI_Group orig_group, new_group;
MPI_Comm new_comm;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

if (numtasks != NPROCS) {
 printf("Must specify MP_PROCS= %d. Terminating.\n",NPROCS);
 MPI_Finalize();
 exit(0);
 }

sanity check
code

Get the number
of tasks and
 the rank of

MPI_COMM_WORLD
for this process

#include "mpi.h"
#include <stdio.h>
#define NPROCS 8

int main(argc,argv)
int argc;
char *argv[]; {
int rank, new_rank, sendbuf, recvbuf, numtasks,
 ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI_Group orig_group, new_group;
MPI_Comm new_comm;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

if (numtasks != NPROCS) {
 printf("Must specify MP_PROCS= %d. Terminating.\n",NPROCS);
 MPI_Finalize();
 exit(0);
 }

Variables to hold information about the new
Group this will be in. Note that since this is an

SPMD program, if we do this statically we
need information for all groups the process

can be in, not just the one that it is in.

Hold the ranks of processors
in (in MPI_COMM_WORLD)
of processes in each of the

two new groups.

Each process executes one of
the if branches. Based on
its number, each process

becomes a member of
one of the new groups.

sendbuf = rank;

/* Extract the original group handle */
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
if (rank < NPROCS/2) {
 MPI_Group_incl(orig_group, NPROCS/2, ranks1, &new_group);
 }
else {
 MPI_Group_incl(orig_group, NPROCS/2, ranks2, &new_group);
 }

/* Create new new communicator and then perform collective communications */
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);

MPI_Group_rank (new_group, &new_rank);
printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);

MPI_Finalize();
}

get handle for
MPI_COMM_WORLD

Get the processes rank
within the new group

Perform collective
communication within the

communicator comm

Create a communicator
From the group formed

above

sendbuf = rank;

/* Extract the original group handle */
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
if (rank < NPROCS/2) {
 MPI_Group_incl(orig_group, NPROCS/2, ranks1, &new_group);
 }
else {
 MPI_Group_incl(orig_group, NPROCS/2, ranks2, &new_group);
 }

/* Create new new communicator and then perform collective communications */
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);

MPI_Group_rank (new_group, &new_rank);
printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);

MPI_Finalize();
}

	Slide 1
	Topics to be covered
	Shared and distributed memory
	Slide 4
	Message Passing Model
	Slide 6
	Message Passing Model
	Slide 8
	Slide 9
	Slide 10
	131,072 cores BG/L
	Tianhe-2, 40,960 processors, 10,649,600 cores
	Why use message passing
	Why not use it?
	SPMD execution
	Slide 16
	Work done by processes
	Radix sort
	Slide 19
	Sequential program
	Slide 21
	Slide 22
	Data management
	Data bounds for block
	First method
	Second method
	Global vs local indices
	Use macros to access bounds
	Comparison of the two methods
	Slide 30
	The block-cyclic distribution
	Converting the program to MPI: System initialization
	MPI_INIT
	The MPI environment
	Converting the program to MPI
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	MPI_Datatype
	Slide 46
	MPI_Op
	Example of reduction
	Slide 49
	Slide 50
	Slide 51
	Add the reduction
	Determining program performance
	Wtick() gives the clock resolution
	Sieve of Erosthenes
	Finding prime numbers
	Finding prime numbers
	Finding prime numbers
	Finding prime numbers
	Finding prime numbers
	Finding prime numbers
	Want to parallelize this
	What is (are) the fundamental operation(s)?
	To make this efficient
	Combining work/partitioning data
	Combining work/partitioning data
	Interplay of decomposition and implementation
	Use of block partitioning affects marking
	Sketch of the algorithm
	Data layout, primes up to 28
	Algorithm 1/4
	Slide 72
	values for P=0, similar for other processes
	Algorithm 3/4
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	First prime
	third prime
	Mark every prime elements starting with first
	Algorithm 4/4
	Mark every prime elements starting with first
	Other MPI environment management routines
	point-to-point communication
	Buffering
	System buffer space
	Blocking and non-blocking point-to-point communication
	Slide 89
	Synchronous and buffered sends and receives
	Ordering of messages and fairness
	Operation starvation
	Basic sends and receives
	Basic sends/recv arguments (I forms are non-blocking)
	Basic send/recv arguments
	Blocking send/recv/etc.
	Example of blocking send/recv
	Example of blocking send/recv
	Example of blocking send/recv
	Why the reversed send/recv orders?
	Non-blocking operations
	Wait and probe
	Slide 103
	Non-blocking example
	Non-blocking example
	Collective communication routines
	All processors participate in the collective operation
	Groups and communicators
	Collective routines
	Slide 110
	MPI_Bcast
	MPI_Scatter
	MPI_Gather
	MPI_Allgather
	MPI_Reduce
	MPI_Op_create
	More operations
	Slide 118
	MPI_Allreduce
	Slide 120
	Slide 121
	Slide 122
	MPI_Reduce_scatter
	Slide 124
	MPI_Scan
	Group and communicator
	Why groups and communicators?
	Properties
	Tasks these 40+ routines can perform
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

