Introduction to MPI



Topics to be
covered

MPI vs shared memory
Initializing MPI

MPI concepts -- communicators,
processes, ranks

MPI functions to manipulate these
Timing functions

Barriers and the reduction collective
operation



Shared and distributed memory

® Shared memory

® automatically maintained a
consistent image of memory
according to some memory
model

® fine grained communication
possible via loads, stores, and
cache coherence

® model and multicore
hardware support well aligned

® Programs can be converted
piece-wise



Shared and distributed memory

® Distributed memory

® Program executes as a collection of
processes, all communication
between processors explicitly
specified by the programmer

® Fine grained communication in
general too expensive -- programmer
must aggregate communication

® Conversion of programs is all-or-
nothing

® Cost scaling of machines is better
than with shared memory -- well
aligned with economics of
commodity rack mounted blades
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Message Passing Model

* This drawing

implies that all
processor are
equidistant from
one another

* This Is often not

the case -- the
network topology
and multicores
make some
processors closer
than others
programmers

havie Fn avnlilnit



Message Passing Model

* This drawing implies
that all processor
are equidistant from
one another

* This is often not the
case -- the network
topology and
multicores make
some processors
closer than others

* programmers have
to exploit this
manually
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Message Passing Model

* In reality, processes
run on cores, and are
closer to other
processes on the
same processor

* ACross processors,
some can be reached
via a single hop on
the network, others
require multiple hops

* Not a big issue on
small (several
hundred processors),
but it needs to be
considered on large
machines.




Message Passing Model

* In reality, processes P P

P P
run on cores, and are P P P P M MM M

closer to other M MM M \#f
th
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* ACross processors, switch /

some can be reached
via a single hop on

the network, others switch switch
require multiple hops
* Not a big issue on /f : \
small (several P P P P
hundred processors), M MM M

but It needs to be
considered on large
machines.
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Some Seymour Cray quotes

If you were plowing a field, Anybody can build a
which would you rather fast CPU, the trick is to
use? Two strong oxen or build a fast system.

1024 chickens?

As long as we can Parity Is for farmers.
make them smaller, we
can make them faster.
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Tianhe-2, 40,960 processors,
10 649 ,600 cores, 33.9 PFLOPS
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Figure 4: Overview of the Sunway TaihuLight System




Why use message passing

® Allows control over data layout, locality

and communication -- very important on
large machines

® Portable across all machines including
shared memory machines -- it's a

universal parallel programming model.
Sometimes called the assembly language
of paralle programming

® Easier to write deterministic programs
® simplifies debugging
® easier to understand programs

Style needed for efficient messages can
lead to better performance than shared

memory programs, even on shared
memory systems.



Why not use it?

All or nothing program development -
generally need to make the entire
program parallel to make any part
parallel

Information needed for messages
low-level and sometimes hard to
program

Subtle bugs in message passing code
can lead to performance problems
and deadlock

Message passing code disrupts the
flow of algorithms



SPMD execution Is often used
with MPI

Single Program Multiple Data

Multiple copies of the same
program operating on different
parts of the data (typically
different sections of an array)

Each program copy executes
In @ process

Different processes can
execute different paths
through the program



SPMD execution

for (i=0; i <= (n-1)/2; i++) { for (i=0; i <=n-1; i++) {

a1l =1+ 1; ali]=1+ 1;

h h

for (i=0, 1 <= n-1; i++) { for (i=0, i <= n-1; i++) {
.. =af1-1]; .. =a[i-17];

h h

0 1 ~[n/2-1| n/2 | Global iIndex /21l 02

1 | 2 49 | 50 | Local index 49 | 50

for (1=0; 1 <=n-1;1++) { /n=100

j

a1l =1+ 1;

for 1=0, 1 <=n-1; 1++) {

j

.. =a[1-1];

The original
program




Work Is done by processes

® Each process has a ® Typical program
unique rank or process pattern is
id (often called pzd N Compute
programs) that is set .
when program begins communicate
executing compute
communicate ...

® The rank does NOT
change during the
execution of the
program

® Each process has a
unigue identifier (often
called pid) that is
known to the program



An simple MPI program: Radix sort

® Radix sort works well to
sort lists of numbers

® Will assume integers
have values from 0 to
65,535

® Have N >> 65,535
numbers to sort



A sequential radix sort

for (i=0; i < 65535; i++) { Want to convert to SPMD
sorted[i] = 0; message passing code

j

for (1=0; 1 <n; 1++) {
sorted|data[1]]++;

j

for (1=0; 1<65535; 1++) {
for (j=0; j < sort[1]; j+
+) 4
fprint(“%i1\n”, 1);
P



for (1=0; 1 < 65535; 1++) {

A sequential radix sort

sorted[1] = 0;

j

for 1=0; 1 <n; 1++) {

sorted[data[1]]++;

j

for (1=0; 1<65535; 1++) {
for (j=0; j < sort[1]; j+

)1
i)

fprint(“%1\n”, 1);

Note that data input not shown --
this can require some thought

Data often spread across
multiple files to accommodate
parallel 1/0 on large problems



Determining a data layout

Process pid =0

Process pid =1

data[O:N/4-1]
]
Sorted[0:65353]

data[n/4:2*N/4]
]
Sorted[0:65353]

Process pid = 2

Process pid = 2

data[2*N/4:3*N/4-1]
]
Sorted[0:65353]

data[3*n/4:N-1]
]
Sorted[0:65353]

Global indices are
shown. The local
Indices used on each
processor are, for
data,
pid*n/4:(pid+1)*n/4-1
For replicated data,
global and local
Indices are the same



Change the program to SPMD

data[0:N/4-1] data[n/4:2*N/4] data[2*N/4:3*N/4-1] data[3*n/4:N-1]
1) ) ) ]
Sorted[0:65353] Sorted[0:65353] Sorted[0:65353] Sorted[0:65353]

all processors execute this (replicated execution)
for (i=0; i < 65535; i++) {

sorted[1] = 0;
h

each processor executes N/4 iterations (assume N mod 4 = 0)
for 1=0; 1 <N/4; 1++) {
sorted[data[1]]++;

j

this becomes a sum reduction over the sorted arrays on each processor,
l.e. communication. This code does not show that yet.

for (1=0; 1<65535; i++) {
for (j=0; j < sort[i]; j++) {
fprint(“%1\n”, 1);
i)



Data management

data[0:N/4-1] data[n/4:2*N/4] data[2*N/4:3*N/4-1] data[3*n/4:N-1]
IaJ I’J I’J I!J
Sorted[0:65353] Sorted[0:65353] Sorted[0:65353] Sorted[0:65353]

All declared variables exist within each process
There is a global and local logical index space for
arrays

* globally, data has N elements pid*N:(pid+1)*N/4-1

* locally, each process has N/4 elements numbered
0:N/4-1(if N mod 4 == 0, otherwise
[ N/4 |or| N4 Jelements per processors with some
processors having more or fewer elements than
other processors

* The concatenation of the local partitions of data
arrays forms the global array data

The array data Is block distributed over the

Processors



Data boundas for
block

® Two “obvious” ways to compute

® Let n be the array size, P the
number processors



First method

®Let P be the number of processes, n the number of array elements, 0 <p <P-] isa
process 1d

® =nmod P r=0, all blocks are the same size, otherwise, first » blocks
have [n/P]elements, last P-r have | n/P| elements

®First element on a process p is p| n/P|+ min(p,r)

®|ast element on process p is (p+1)|n/P|+ min(p+1,r) - 1
®orocess with element i is mind i/ nP|+ 1| |i-r) /| n/P]])
®Example -- 12 elements over 5 processors, 2 =12 mod 5

HENRNENRNEREEREE

® Example -- 12 elements over 7 processors, 5 =12 mod 7

HEpEERNEREEREERERE



Second method

® First element controlled (or owned) by process pis |p n/P]
(first element and first process 1d p 1s 0

® Last element controlled by process p is one less that the
first element controlled by process p+1 (the next process)

| p+1) wP]-1
® Process controlling element iis | (P(i+1)-1)/n]
® Example -- 12 elements over 5 processors, » =2 = 12 mod 5

HEpNEREEEREEpEEE

® Example -- 17 elements over 5 processors, r=2 =17 mod 5

HEEpNIEpEINEpNENREEEN



Global vs local indices

local index:0 1

[I]D:ID:DI:I:ID:D

global 511
INaex: 0 1

® Each part of an array within a process must
be indexed as a local element of that array
using the local index.

® Logically, each local element is a part of the
global array, and within the problem domain
has a global index

® It is the MPI programmer’s responsibility (that
means you) to maintain that mapping.



Use macros to access

bounds
local index:0 1 012
ot D] [T D] IZIZI]
index: 0 1

Macros or functions can be used to compute
these.

Block lower bound: LB(pid, P. n) = (pid*n/P)

Block upper bound: UB(pid, P, n) = LB(pid+1, P, n)-1
Block size: LB(pid+1, P, n) - LB(pid, P. n) + I

Block owner: Owner(i, P n) = (P*(i+1)-1)/n



Comparison of the two methods

Operations First Second
P Method | Method
Low Index 4 2
High index 6 4
Owner / 4

Assumes floor is free (as it is with integer
division although integer division itself may
be expensive)



The cyclic distribution
PO Pl P2 P 3

Data[()_:N:4] Data[1:N:4] Data[2:N:4] Data[3:N:4]

) ) ) )
Sorted[0:65353  Sorted[0:65353 Sorted[0:65353 Sorted[0:65353

* Let A be an array with N elements.
* Let the array be cyclically distributed over P
processes
* Process p gets elements p, p+P, p+2*P,
p+3*P, ...
* In the above
* process 0 gets elements 0, 4, 8, 12, ... of data
* process 1 gets elements 1, 5, 9, 13, ... of data
* process 2 gets elements 2, 6, 10, 14, ... of
data
* process 3 gets elements 3, 7, 11, 15, ... of
data




The block-cyclic distribution

Let A be an array with N elements

Let the array be block-cyclically distributed over P

processes, with blocksize B

Block b, b =0 ..., on process p gets elements

b*B*P+p*B: b*B*P + (p+1)*B)-1 elements

With P=4, B=3

* process 0 gets elements [0:2], [12:14], [24:206] of
data

* process 1 gets elements [3:5], [15:17],[27:29] of
data

* process 2 gets elements [6:8], [18:20],[30:32] of
data

* process 3 gets elements [9:11], [21:23],[33:35] of
data



System initialization

#include <mpi.h> /* MPI library prototypes, etc. */
#include <stdio.h>

/] all processors execute this (replicated execution)
int main(int argc, char * argv]| |) {

int pid; /* MPI process ID)

int numP; /* number of MP| processes */

int N;

extractArgv(&N, argv); // get N from the arg vector

int sorted[65536]; int data| N/4];

MPI INIT(&argc, &argv); // arge and argv need to be passed in
for (1=0; 1 < 65535; 1++) {

sorted[1] = 0;

§ 3 data[pid*n/4:pid*N/4-1]
N

Sorted[0:65353]




MPI INIT

Initialize the MPI runtime

Does not have to be the first executable
statement in the program, but it must be
the first MPI call made

Initializes the default MPI communicator
(MPI_COMM WORLD which includes all

processes)

Reads standard files and environment
variables to get information about the
system the program will execute on

® e.g. what machines executes the
program?



The MPI enwmnment

The communicator name
(MPI_ COMM WORLD is
the default communicator name

A
process

Commun/cator
defines a
universe of
processes that
can exchange
messages



PO

Include files

Pl

Data[0:N:4]
]

Sorted[0:65353 Sorted[0:65353

Data[1:N:4]
]

P2

P3

Data[1:N:4]

]
Sorted[0:65353

Data[1:N:4]

]
Sorted[0:65353

#include <mpi.h> /* MPI library prototypes, etc. */

#include <stdio.h>

using mpi // Fortran 90
include “mp1.h” // Fortran 77

These may not be shown on later

slides to make room for more

Interesting stuff




Communicator and process info

PO

Pl

data[O:N/4-1]
)

Sorted[0:65353]

data[n/4:2*N/4]
N
Sorted|[0:65353]

P2

data[2*N/4:3*N/4-1

N
Sorted[0:65353]

P3

/] all processors execute this (replicated execution)
int main(int argc, char * argv| |) {
int pid; /* MPI process ID)

int numP; /* number of MPI processes */

i)

int N;

int 1Ib = LB(p1d, numP, N); int ub = UB(p1d,numP,N);
extractArgv(&N, argv);

int sorted[65536]; int *data;
MPI_INIT(&arge, &argv);
MPI Comm_size(MPI COMM_WORLD, &numP);
for (1=0; 1 < 65535; 1++) {

sorted[1] = 0;

data[3*n/4:N-1]
N
Sorted[0:65353]




Getting the pid for each process

PO

Pl

data[0:N/4-1]
)

Sorted[0:65353]

data[n/4:2*N/4]
N
Sorted|[0:65353]

data[2*N/4:3*N/4-1

P2

N
Sorted[0:65353]

P3

/] all processors execute this (replicated execution)
int main(int argc, char * argv| |) {
int pid; /* MPI process ID)

int numP; /* number of MPI processes */

i)

int N;

int 1Ib = LB(p1d, numP, N); int ub = UB(p1d,numP,N);
extractArgv(&N, argv);

int sorted[65536]; int* data;
MPI INIT(&argc, &argv);
MPI Comm_size(MPI COMM_ WORLD, &numP);
MPI Comm rank(MPI COMM WORLD, &pid);
for 1=0; 1 < 65535; 1++) {

sorted[1] = 0;

data[3*n/4:N-1]
N
Sorted[0:65353]




Getting the pid for each process

PO

Pl

data[0:N/4-1]
)

Sorted[0:65353]

data[n/4:2*N/4]
N
Sorted|[0:65353]

data[2*N/4:3*N/4-1

P2

N
Sorted[0:65353]

P3

/] all processors execute this (replicated execution)
int main(int argc, char * argv| |) {
int pid; /* MPI process ID)

int numP; /* number of MPI processes */

i)

int N;

int 1Ib = LB(p1d, numP, N); int ub = UB(p1d,numP,N);
extractArgv(&N, argv);

int sorted[65536]; int* data;
MPI INIT(&argc, &argv);
MPI Comm_size(MPI COMM_ WORLD, &numP);
MPI Comm rank(MPI COMM WORLD, &pid);
for 1=0; 1 < 65535; 1++) {

sorted[1] = 0;

data[3*n/4:N-1]
N
Sorted[0:65353]




Allocating local storage

PO Pl P2

data[0:N/4-1] data[n/4:2*N/4]  data[2*N/4:3*N/4-1
i1j |1J I’J

P3

Sorted[0:65353] Sorted[0:65353]  Sorted[0:65353]

int main(int argc, char * argv|[ ]) {
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N;
int 1b = LB(p1d, numP, N); int ub = UB(p1d,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data;
MPI INIT(&argc, &argv);
MPI Comm_size(MPI_COMM_WORLD, &numP);
MPI Comm_rank(MPI COMM_WORLD, &pid);
Lb = LB(p1d, numP, N); ub = LB(p1d, numP, N)-1;
data = malloc(sizeof(int)*(ub-1b+1)
for (i=0; 1 < 65535; 1++) {
sorted[1] = O;
iy

data[3*n/4:N-1]
N
Sorted[0:65353]




Terminating the MPI program

P2

P3

Data[1:N:4]

]
Sorted[0:65353

Data[1:N:4]

]
Sorted[0:65353

PO Pl
Data[0:N:4] Data[1:N:4]
N 1)
Sorted[0:65353 Sorted[0:65353
int main(int argc, char * argv[ ]) {

}

int pid; /* MPI process ID)
int numP; /* number of MPI processes */

int N;

int 1b = LB(p1d, numP, N); int ub = UB(p1d,numP,N);

extractArgv(&N, argv);
int sorted[65536]; int* data;
MPI_INIT(&argc, &argv);

MPI Comm_size(MPI_ COMM_ WORLD, &numP);
MPI Comm_rank(MPI COMM_ WORLD, &pid);
Lb = LB(p1d, numP, N); ub = LB(p1d, numP, N)-1;
data = malloc(sizeof(int)*(ub-l1b+1)

for 1=0; 1 < 65535; 1++) {
sorted[1] = 0;
MPI Finalize( );




Time to do something useful
PO P1 P2 P3

Data[0:N:4] Data[1:N:4] Data[1:N:4] Data[1:N:4]

I’j I1J I1J I1J
Sorted[0:65353  Sorted[0:65353 Sorted[0:65353 Sorted[0:65353

int main(int argc, char * argv|[ ]) {
int pid; /* MPI process ID)
int numP; /* number of MPI processes */
int N:
int 1Ib = LB(p1d, numP, N); int ub = UB(pid,numP,N);
extractArgv(&N, argv);
int sorted[65536]; int* data;
MPI INIT(&argc, &argv);
MPI Comm_size(MPI _COMM_ WORLD, &numP);
MPI Comm_rank(MPI COMM_ WORLD, &pid);
Lb = LB(p1d, numP, N); ub = LB(p1d, numP, N)-1;
data = malloc(sizeof(int)*(ub-1b+1)
for (1=0; 1 < 65535; 1++) {
sorted[1] = 0;
sort(data, sort, ub-lb+1);
MPI Finalize( );}




The sequential radix sort

vold sort (sort[ ], data[ ], int N) {
for 1=0; 1 < N; 1++) {
sorted[data[1]]++;

j

for (i=0; i<65535; i++) {
for j=0; j < sort[i]; j++) {
fprint(“%i1\n”, 1);
h

j
h



The parallel radix sort

void sort (sort[ ], data[ ], int localN) { Each process sorts the
for (i=0; 1 < N; i++) { local N elements that it

sorted[data[i]]++; owns. The results from
each process need to be

} |
// pid == 0 only has its results! We C_Omblned and sent to a
single process for

// need to combine the results here. 2
S printing, say, the process
If (pid == 0) { with pid==0.
for (i=0; 1<65535; i++) {
for (j=0; j <sort[1]; j++) {
fprint(“%1\n”, 1);
h
h
h



MPI Reduce(...)

MPI Reduce(

void *opnd, // data to be reduced
void *result, // result of the reduction
int count, // # of elements to be reduced
MPI Datatype type, // type of the elements
// being reduced
MPI_Operator op, // reduction operation
int root, // pid of the process getting the
// result of the reduction
MPI_Comm comm // communicator over
// which the reduction is
/] performed



MP| Datatype

Defined as constants in the mpi.h header file

Types supported are
MPI CHAR
MPIl FLOAT
MPIl LONG
MPI SHORT
MPI UNSIGNED

MPI_UNSIGNED SHORT

MPI DOUBLE

MPI INT

MPI LONG DOUBLE
MPI UNSIGNED CHAR
MPI_UNSIGNED LONG



MP| Datatype

Defined as constants in the mpi.h header file

Types supported are

MPI CHAR

MP| FLOAT

MPI LONG

MPI SHORT

MPI UNSIGNED

MP|_UNSIGNED_ SHORT

MP|_DOUBLE
MPI INT
MPI LONGDOUBLE

MPI|_UNSIGNED_ CHAR

MPI_UNSIGNED LONG




MPI Op

® Defined as constants in the mpi.h header file

® Types supported are

MPI_BAND
MPI_EXOR
MPI_LAND
MPI_LXOR
MPI_MAXLOC
MPI_MINLOC
MPI_SUM
MPI_BOR
MPI_BXOR
[MPI_LOR
MPI_MAX
MPI_MIN
MPI_PROD




MPI

Sort

p=0

sorted, p=1

sorted, p=2

sorted, p=3

sortegdep=0

ample of reductio

2

20

38

27

9

2

2

40

13

15

12

18

21

42

3

25

23

39

36

64

O1

53

duce(MPI IN PLACE, sorted, 8, MPI INT}
MPI SUM, 0, MPI COMM WORLD);




PO data

P1 data

P2 data

P3 data

Example of reduction

2

3

A

A

6

38

6

9

12

A

8

12

16

PO res

P1res

P2 res

P3 res

10

MPI Reduce(data, res, 1,
MPI INT,
MPI SUM, 2,
MPI COMM WORLD);



PO data

P1 data

P2 data

P3 data

Example of reduction

2

3

A

A

6

38

6

9

12

A

8

12

16

PO res

Pl res

P2 res

PO res

10

20

30

MPI Reduce(data, res, 3,
MPI INT,
MPI_SUM, 0O,
MPI COMM WORLD);



PO data

P1 data

P2 data

P3 data

Example of reduction

Before reduction

1

2

3

A

2

A

6

38

3

6

9

12

A

8

12

16

PO data

P1 data

P2 data

P3 data

After reduction

10

20

30

A

2

A

6

8

3

9

12

A

12

16

MPI Reduce(MPI IN PLACE, data, 3,

MPI INT,
MPI_SUM, 0,
MPI COMM WORLD):




Add the reduction

vold sort (sort[ ], data[ ], int pid, int numP) {
for (i=0; i < N; i++) {
sorted[data[1]]++;
h
/[ can merge all of the “sorted” arrays here
if (pid == 0) {
MPI Reduce(MPI IN PLACE, sorted, 65353, MPI INT,
MPI SUM, 0, MPI COMM_ WORLD);

} else {
MPI Reduce(sorted, (void *) null, 65353, MPI INT,
MPI SUM, 0, MPI COMM WORLD);

// print out the sorted array on process pid==0
Alternatively, could allocate a buffer for final
sorted result. Buffer would be the same size as
sorted.



Measure program runtime

int main(int argc, char * argv| ]) { ® MPI Barrier - barrier

double elapsed; . .
int pid; synchronization
s ® MPI Wtick - returns
’ the clock resolution
MPI_Barrier( ); In seconds

elapsed = -MPI_Wtime( );
sort(data, sort, pid, numP);
elapsed += MPI_Wtime( );
if (p1d == 0) printSort(final);
MPI Finalize( );

h

Wtick( ) returns a double that holds
the number of seconds between
clock ticks - 103 is milliseconds

® MPI Wtime - current
time



Wtick( ) gives the
clock resolution

MPI WTick returns the resolution of MPI_ WTime in
seconds. That is, it returns, as a double precision
value, the number of seconds between successive

clock ticks.
double tick = MPI WTick( );

Thus, a millisecond resolution timer will return 10-3
This can be used to convert elapsed time to seconds




Sieve of Erosthenes

® Look at block
allocations

® Performance tuning

® MPI _Bcast function



Finding prime numbers
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To find primes

1.start with two, mark all
multiples

2.find the next unmarked
u--itisaprime
3.mark all multiples of u

between k2 and n until k2
> N

4.repeat 2 & 3 until
finished



Mark off multiples of primes
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To find primes

X 2,63,5,7,13,17,
19, 23, 29, 31, 37,
41, 43, 47, 53, 59,
6l, 67,71, 73, 79,
83, 89 and 97 are
prime.



Want to parallelize this

® Because we are message
passing, obvious thing to
look at it domain
decomposition, i.e. how can
we break up the domain
being operated on over
multiple processors

® partition data across
Processors

® associate tasks with data

® In general, try to find
fundamental operations and
associate them with data



Find the fundamental operation(s)?

® Marking of the

multiples of the ® broadcast the value to
last prime found all tasks
® if v.a multiple of forall (v = k; v < n+1; v++) {
K then v mod k if (v mod k 1= 0) a[v] = 1:
j

® min-reduction to
find the next
prime (i.e.
smallest
unmarked value)
across all
processes



To make this efficient . . .

® Combine as many tasks as
possible onto a single process

® Make the amount of work done
by each process similar, i.e. load
balance

® Make the communication
between tasks efficient



Combining work/data partitioning

® Because processes work on
data that they own (the owners
compute rule, Rogers and
Pingali), the two problems are
tightly inter-related.

® Each element is owned by a
process

® It is the process that owns the
consistent, I.e., up-to-date
value of a variable

® All updates to the variable are
made by the owner

® All requests for the value of the
variable are to the owner



Combining work/data partitioning

® Because processes update the data that
they own

® Cyclic distributions have the property that
for all elements /i on some process p, i mod p
= ¢ holds, where c is some integer value

® Although cyclic usually gives better load
balance, it doesn’t in this case

® Lesson -- don’t apply rules-of-thumb
blindly

® Block, in this case, gives a better load
balance

® computation of indices will be harder



Interplay of decomposition and
Implementation

® Decomposition affects how we design the
implementation

® More abstract issues of parallelization can affect the
implementation

® In the current algorithm, let @ be the highest possible
prime

® At most, only first V& values may be used to mark off
(sieve) other primes

® if P processes, n elements to a process, then if w/P > @
only elements in p=0 will be used to sieve. This means we
only need to look for lowest unmarked elements in p=0
and only p=0 needs to send this out, saving a reduction
operation.



Use of block partitioning affects
marking

® Can mark j, j+k j+2k, ... wherej is
the first prime in the block

® Using the parallel method
described in earlier psuedo-
code, would need to use an
expensive mod

for all e 1n the block
if e mod k = 0, mark e
® We would like to eliminate this.



Sketch of the algorithm

1. Create list of possible primes
2. On each process, set k = 2
3. Repeat
1. On each process, mark all multiples of &

2. On process 0, find smallest unmarked number u,
set k=u

3. On process 0, broadcast k to all processes
4. Until &2 > & (the highest possible prime)

5. Perform a sum reduction to determine the number
of primes



Data Iayout prlmes up to 28

number bein g

checked for

"primeness"

array element
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#%ncﬂ_ucﬂe <mpi1.h> AI g O r| t h m 1/4

#include <math.h>

#include <stdio.h>

#include "MyMPIL.h"

#define MIN(a,b) ((a)<(b)?(a):(b))

int main (int argc, char *argv([])

d

MPI_Init (&argc, &argv);
MPI Barrier(MPI_ COMM_ WORLD);
elapsed time = -MPI_Wtime();
MPI Comm_rank (MPI COMM_ WORLD, &id);
MPI Comm_size (MPI_ COMM_ WORLD, &p);
if (argc 1= 2) {
if (11d) printf ("Command line: %s <m>\n", argv[0]);
MPI_Finalize(); exit (1);
j



Algorlthm 2/ Get min and max

n = atoi(argv[ 1]); ~ possible prime on

low_value =2 + BLOCK_LOW(id,p,n-1); P in global space -
high value =2 + BLOCK HIGH(id,p,n-1); -
size = BLOCK SIZE(id,p,n-1); _—— : N

Figure out if too

Mmany processes
for Vv® candidates

on p=0

procO_size = (n-1)/p;
if ((2 + procO_size) < (int) sqrt((double) n)) {

if (11d) printf ("TOO many processes\n"); ~
MPI Fmahze() h ~

} / mark prlmes \

marked = (char >“) malloc (s1ze);

if (marked == NULL) {
printf ("Cannot allocate enough memory\n");
MPI Finalize();
exit (1);

)
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Algorithm 3/4 (a)

for (1= 0; 1 <size; 1++) marked[1] = 0; // mitialize marking array

if (!1d) index = 0; // p=0 action, find first prime

prime = 2;

do { // prime = 2 first time through, sent by bcast on later iterations
Find first element to mark on each procesor
Mark that element and every kth element on the processor
Find the next unmarked element on P0O. This is the next prime
Send that prime to every other processor

+ while (prime * prime <= n);



Algorithm 3/4 (b)

Initialize array and find first prime
// Find first element to mark on each procesor
do { // prime = 2 first time through, sent by bcast on later iterations
if (prime * prime > low_value) // find first value to mark
first = prime * prime - low value; // first item in this block

else {
if (!(low value % prime)) first = 0; // first element divisible
// by prime
else first = prime - (low value % prime);
h

Find first element to mark on each procesor
Mark that element and every kth element on the processor
Find the next unmarked element on PO. This is the next prime
Send that prime to every other processor

+ while (prime * prime <= n);



Algorithm 3/4 (c)

Initialize array and find first prime
do { // prime = 2 first time through, sent by bcast on later iterations
Find first element to mark on each procesor

// Mark that element and every kth element on the processor
for (1 = first; 1 < size; 1 += prime) marked[i] = 1; // mark every " item
Find the next unmarked element on P0. This is the next prime
Send that prime to every other processor

+ while (prime * prime <= n);



Algorithm 3/4 (d)

Initialize array and find first prime
do { // prime = 2 first time through, sent by bcast on later iterations
Find first element to mark on each procesor
Mark that element and every kth element on the processor
// Find the next unmarked element on P0. This is the next prime

if (11d) { // p=0 action, find next prime by finding unmarked element
while (marked[++1ndex]);
prime = index + 2;

j

// Send that prime to every other processor
MPI Bcast (&prime, 1, MPI INT, 0, MPI COMM WORLD);
+ while (prime * prime <= n);



Algorithm 3/4 full code

for 1= 0; 1 <size; 1++) marked[1] = 0; // initialize marking array
if (11d) index = 0; // p=0 action, find first prime
prime = 2;
do { // prime = 2 first time through, sent by bcast on later iterations
if (prime * prime > low value) // find first value to mark
first = prime * prime - low value; // first item 1n this block
else {
if (!(low value % prime)) first = 0; // first element divisible by prime
else first = prime - (low value % prime);
)
for (1 = first; 1 < size; 1 += prime) marked[1] = 1; // mark every kth item
if (11d) { // p=0 action, find next prime by finding unmarked element
while (marked[++index]);
prime = index + 2;
)
MPI Bcast (&prime, 1, MPI INT, 0, MPI COMM_ WORLD);
+ while (prime * prime <= n);



First prime

index =

prime = 2
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third prime
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Mark every prime elements
starting with first

2%2>4

first=2%*2-2 P=0
first = 2

locali = 0

not2*2>11 locali = 0

11 %2==1
first=2 - (11 % 2) P=0
first =1

not2 *2>20 lOC‘CZl —

20 % 2 == 0
first =0

P=0

index = ()

prime = 2
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Algorithm 4/4

// on each processor count the number of primes, then reduce this total
count = 0O;
for (1= 0; 1 <size; 1++) if (!marked[1]) count++;
MPI Reduce (&count, &global count, 1, MPI INT, MPI SUM,
0, MPI COMM_WORLD);

elapsed time += MPI_ Wtime();
if (11d) {

printt ("%d primes are less than or equal to %d\n",

global count, n);
printf ("Total elapsed time: %10.61\n", elapsed time);

h
MPI Finalize ();

return O;

j




index = ()
prime = 2

sglobal _count =1+ 4 + 2

/<count=1P=O 2131415678

count=4P=0| 1112|1314 |15|16|17

count =2P=0[20 [ 21 | 22|23 |24 |25 |26




Other MPI environment
management routines

® MPI Abort (comm, errorcode)

® Aborts all processors associated with
communicator comm

® MPI Get processor name(&name,

&length)

® MPI version of gethostname, but what it
returns 1s implementation dependent.
gethostname may be more portable.
® MPI Initialized(&flag)

® Returns true if MPI Init has been called,
false otherwise



point-to-point communication

® Most MPI communication is between a pair of
Processors

® send/receive transmits data from the sending
process to the receiving process

® MPI point-to-point communication has many
flavors:

Synchronous send

Blocking send / blocking receive

Non-blocking send / non-blocking receive
Buffered send

Combined send/receive

"Ready" send (matching receive already posted.)

® All types of sends can be paired with all types of
receive



Buffering

What happens when

* A send occurs before the receiving process is ready
for the data

* The data from multiple sends arrive at the receiving
task which can only accept one at a time

Processor 1 Processor 2

process A process B

application SEND network application RECV

system buffer system buffer

Path of a message buffered at the receiving process




System buffer space

Not part of the standard -- an “implementation detall

* Managed and controlled by the MPI library

* Finite

* Not well documented -- size maybe a function of install
parameters, consequences of running out not well

defined
* Both sends and receives can be buffered

Helps performance by enabling asynchronous send/recvs
Can hurt performance because of memory copies

Program variables are called application buffers in MPI-
speak



Blocking and non-blocking point-

to-point communication
Blocking

* Most point-to-point routines have a blocking and non-
blocking mode

* A blocking send call returns only when it is safe to
modify/reuse the application buffer. Basically the data
in the application buffer has been copied into a system
buffer or sent.

* Blocking send can be synchronous, which means call to
send returns when data is safely delivered to the recv
process

* Blocking send can be asynchronous by using a send
buffer

* A blocking receive call returns when sent data has
arrived and is ready to use



Blocking and non-blocking point-

to-point communication
Non-blocking

* Non-blocking send and receive calls behave similarly
and return almost immediately.

* Non-blocking operations request the MPI library to
perform the operation when it is able. It cannot be
predicted when the action will occur.

* You should not modify any application buffer (program
variable) used in non-blocking communication until the
operation has finished. Wait calls are available to test
this.

* Non-blocking communication allows overlap of
computation with communication to achieve higher
performance



Synchronous and buffered sends
and receives

® synchronous send operations block until
the receiver begins to receive the data

® buffered send operations allow
specification of a buffer used to hold
data (this buffer is not the application
buffer that is the variable being sent or
received)

® allows user to get around system
imposed buffer limits

® for programs needing large buffers,
provides portability

One buffer/process allowed

® synchronous and buffered can be
matched



Ordering of messages and fairness

* Messages received in-order
* If a sender sends two messages, (m1 and mZ2) to the
same destination, and both match the same kind of
receive, m1 will be received before mZ2.
* |If a receiver posts two receives (rl1 followed by r2),
and both are looking for the same kind of messages,
rl1 will receive a message before r2.
* Operation starvation is possible
* task2 performs a single receive. taskO and task3
both send a message to task2 that matches the
receive. Only one of the sends will complete if the
receive Is only executed once.

* It is the programmer’s job to ensure this doesn’t
happen



Operation starvation

Only one of the sends
will complete.

Networks are
generally not
deterministic, cannot
be predicted whose
message will arrive at
task?2 first, and which
will complete.




Basic sends and receives

® MPI send(buffer, count, type, dest, tag, comm)

® MPI Isend(buffer, count, type, dest, tag, comm,request)

® MIP Recv(

buffer, count, type, source, tag, comm, status)

® MPI Irecv(

buffer, count, type, source, tag, comm, request)

[ forms are non-blocking



Basic sends/recv arguments
(/ forms are non-blocking)

MPI send(buffer, count, type, , tag, comm)

MPI Isend(buffer, count, type, , tag, comm, )
MIP Recv(buffer, count, type, , tag, comm, )
MPI Irecv(buffer, count, type, , tag, comm, )

buffer: pointer to the data to be sent or where received (a
program variable)

count: number of data elements of type (not bytes!) to be
sent

type: an MPI Type
tag: the message type, any unsigned integer 0 - 32767.

comm: sender and recerver communicator



Basic send/recv arguments

MPI send( dest, )

MPI Isend( dest, , request)
MIP Recv( source, status)
MPI Irecv( source, request)

dest: rank of the receiving process
source: rank of the sending process

request: for non-blocking operations, a handle to an MPI Request
structure for the operation to allow wait type commands to know
what send/recv they are waiting on

status: the source and tag of the recerved message. This 1s a pointer
to the structure of type MPI Status with fields MPI SOURCE and
MPI TAG.



Blocking send/recv/etc.

MPI1_ Send: returns after buf 1s free to be reused. Can use a system buffer
but not required, and can be implemented by a system send.

MPI_Recyv: returns after the requested data 1s in buf.

MPI Ssend: blocks sender until the application buffer 1s free and the
receiver process started recerving the message

MPI_Bsend: permits the programmer to allocate buffer space instead of
relying on system defaults. Otherwise like MPI Send.

MPI_Buffer attach (&buffer,size): allocate a message buffer with the
specified size

MPI1_Buffer detach (&buffer,size): frees the specified buffer
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MPI1_Sendrecv: performs a blocking send and a blocking receive.
Processes can swap without deadlock



Example of blocking send/recv

#include "mpi1.h"
#include <stdio.h>

int main(argc,argv)

int argc;

char *argv[]; {

int numtasks, rank, dest, source, rc, count, tag=1;

char inmsg, outmsg='x";
MPI Status Stat; // status structure

MPI_Init(&arge,&argv);
MPI Comm_size(MPI_COMM_WORLD, &numtasks);
MPI Comm_rank(MPI_COMM_WORLD, &rank);



Example of blocking send/recv

if (rank == 0) {

dest = 1;

source = 1;

rc = MPI Send(&outmsg, 1, MPI CHAR, dest, tag, MPI COMM WORLD);

rc = MPI Recv(&inmsg, 1, MPI CHAR, source, tag, MPI COMM WORLD,
&Stat);
} else if (rank == 1) {

dest = 0;

source = 0;

rc = MPI Recv(&inmsg, 1, MPI CHAR, source, tag, MPI COMM WORLD,
&Stat);

rc = MPI Send(&outmsg, 1, MPI CHAR, dest, tag, MPI COMM WORLD);

)

rc = MPI Get count(&Stat, MPI CHAR, &count); // returns # of type received
printf("Task %d: Received %d char(s) from task %d with tag %d \n",
rank, count, Stat. MPI SOURCE, Stat. MPI TAG);

MPI Finalize( );
}



Example of blocking send/recv

if (rank == 0) {
dest = 1;
source = 1;
rc = MPI Send(&outmsg, 1, MPI CHAR, dest, tag, MPI COMM WORLD);
rc = MPI Recv(&inmsg, 1, MPI CHAR, source, tag, MPI COMM_ WORLD,
&Stat);
+else 1f (rank == 1) {
dest = 0;
source = 0;
rc = MPI Recv(&inmsg, 1, MPI CHAR, source, tag, MPI COMM WORLD,
&Stat),
rc = MPI Send(&outmsg, 1, MPI_CHAR, dest, tag,
MPI_ COMM_WORLD);

) -~
-

~
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Why the reversed send/recv
orders?

if (rank == 0) {
dest = 1;
source = 1;

rc = MPI Send(&outmsg, 1, MPI CHAR, dest, tag, MPI COMM WORLD);

rc = MPI Recv(&inmsg, 1, MPI CHAR, source, tag, MPI COMM_WORLD, &Stat);
}else if (rank ==1) {

dest = 0;

source = 0;

rc = MPI Recv(&inmsg, 1, MPI CHAR, source, tag, MPI COMM WORLD, &Stat),

rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_ COMM_WORLD);

b

From stackoverflow
http://stackoverflow.com/questions/20448283/deadlock-with-mpi

MPI Send may or may not block [until a recv is posted]. 1t will block
until the sender can reuse the sender buffer. Some implementations will
return to the caller when the buffer has been sent to a lower
communication layer. Some others will return to the caller when there's
a matching MPI Recv() at the other end. So 1t's up to your MPI
implementation whether 1f this program will deadlock or not.


http://stackoverflow.com/questions/20448283/deadlock-with-mpi

Non-blocking operations

® MPI Isend, MPI Irecv, MPI Issend, Ibsend, Irsend: similar to
MPI Send, MPI Recv, MPI Ssend, Bsend, Rsend except that a
Test or Wait must be used to determine that the
operation has completed and the buffer may be read
(in the case of a recv) or written (in the case of a send)



Walit and probe

MPI Wait (&request, &status): wait until the operation specified by
request (specified 1n an Isend/Irecv finishes)

MPI_Waitany (count, &array of requests, &index,&status): wait for

any blocking operations specified in &array of requests to finish

MPI_ Waitall (count, &array of requests, &array of statuses): wait

for all blocking operations specified in &array of requests to finish

MPI_Waitsome (incount, &array of requests, &outcount,
&array of offsets, &array of statuses): wait for at least one request to
finish, the number 1s returned 1n outcount.

MPI1_Probe (source, tag, comm, &status): performs a blocking test but
doesn’t require a corresponding receive to be posted.



® o o o
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Non-blocking operations

PI Test (&request, &flag,&status)

PI Testany (count, &array of requests, &index, &flag, &status)

PI Testall (count,&array of requests,&flag, &array of statuses)

PI Testsome (incount, &array of requests, &outcount,

&array_of offsets, &array of statuses)

Like the wait operations, but do not block



Non-blocking example

#include "mpi.h"
#include <stdio.h>

int main(argc,argv)

int argc;

char *argv[]; {

iInt numtasks, rank, next, prev, buf[2], tag1=1, tag2=2;
MPI_Request reqgs|4];

MPI_Status stats[4];

MPI_Init(&argc,&argv);
MP| Comm_size(MPl_COMM_WORLD, &numtasks);
MPl Comm_rank(MPI_COMM_WORLD, &rank);




prev = rank-1; Non-blocking example

next = rank+1;
if (rank == 0) prev = numtasks - 1;
if (rank == (numtasks - 1)) next = 0;

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs|0]);
MPI _Irecv(&buf[1], 1, MPIl_INT, next, tag2, MPI_COMM_WORLD, &reqgs[1]);

MPI Isend(&rank, 1, MPIl _INT, prev, tag2, MPI_COMM_WORLD, &reqs|[2]);
MPI Isend(&rank, 1, MPIl _INT, next, tag1, MPI_COMM_WORLD, &reqgs[3]);

{ do some work that does not depend on the data being received }
MPI_ Waitall(4, regs, stats);

MPI_Finalize(); Nearest neighbor exchange
} In a ring topology

~_ 7




Collective communication routines

Use these when communicating among processes with a
well defined pattern

Some can be used to allow all processes to communicate

Some perform computation during the communication
(reductions)

Involve all processes in the specified communicator,
even If a particular processor has no data to send
Can only be used with MPI predefined types, not derived

types.

The programmer has to make sure all processes
participate in the collective operation



All processors participate In

the collective operation

if (pid % 2) {
MPI Reduce(..., MPI COMM WORLD);
h

This program will deadlock, as the MPI Reduce will
walit forever for even processes to begin executing it.

If you want to only involve odd processes, add them
to a new communicator.



Groups and communicators

Two terms used in MPlI documentation are
groups and communicators.

A communicator i1s a group of processes that
can communicate with each other

A group is an ordered set of processes

Programmers can view groups and
communicators as being identical



Collective routines

MPI_Barrier (comm): tasks block upon reaching the barrier until every
task 1n the group has reached 1t

MPI Bcast (&buffer,count,datatype,root,comm): process root sends a
copy of 1ts data to every other processor. Should be log2(comm size)
operation.

MPI Scatter (&sendbuf,sendcnt,sendtype,&recvbut,
recvent,recvtype,root,comm): distributes a unique message from root to
every process 1n the group.



Collective routines

MPI_ Gather(&sendbuf, sendcnt, sendtype, &recvbuf, recvcount,
recvtype, root, comm):

opposite of scatter, every process in the group sends a
unique message to the root.

MPI Allgather (&sendbuf,sendcount,sendtype,&recvbut,
recvcount,recvtype,comm): each tasks performs a one-to-all
broadcast to every other process in the group These are
concatenated together in the recvbuf.

MPI Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm):
performs a reduction using operation op and places the
result into recvbuf on the root process.



MPI Bcast

MPI Becast

Broadcasts a message to all other processes of that group

count = 1;
source = 1; broadcast originates in task 1
MPI Bcast{ &msg, count, MPI INT, source, MPI COMM WORLDY);

task 0 task 1 task 2 task 3

7 -+—— msg (before)

7 7 7 7 -+—— msg (after)




Equivalent to
M P I S C a tte r MPI_Send(sendbuf+i*sendcount*extent(sendtype), sendcount, sendtype, i, ...)

MPI_Recv(recvbuf, recvcount, recvtype, i, sendcount, sendtype, i, ...)

MPI Scatter

~sehds data from one task to all other tasks in a group

sendcnt = 1;
recvcht = 1;
strc = 1; task 1 contains the message to be scattered

MPI_Scatter{sendbuf, sendent, MPL INT,
recvbuf, recvent, MPI INT,
stc, MPI COMM_ WORLD);

task 0 task 1 task 2 task 3

-—— sendbuf (before)

1 2 3 4 -=—— recvhuf (after)




Equivalent to MPI_Send(sendbuf, sendcount, sendtype, root, ...)

MPI_Recv(recvbuf+i*recvcount*extent(recvtype), recvcount, recvtype, 1, ...)
a e r With the results of each recv stored in rank order of the sending

process

MPI Gather

(rathers together values from a group of processes

sehdcnt = 1;
recvcht = 1;
sre = 1; messages will be gathered in task 1

MPI Gather(sendbuf, sendcnt, MPL INT,
recvbuf, recvcnt, MPI INT,
stc, MPI COMM_ WORLD);

task 0 task 1 task 2 task 3

1 2 3 4 -—— sendbuf (before)

-—— recvbuf (after)




MPI1 Allgather

MP1_Allgather A gather with
(rathers together values from a group of processes and distributes to all
sendcnt=11; eve ry prOceSS
recvcnt = 1; .
MPI Allgath dbuf, sendcnt, MPL INT,
-Algatheendi sndcas, MPY T, being a target.
MPI COMM WORLD);
task 0 task 1 task 2 task 3
1 2 3 4 —+—— sendbuf (before)
1 1 1 1
2 2 2 2
-+—— recvhuf (after)
3 3 3 3
4 4 4 4




MPI Reduce

MPI_Reduce Also see MPI
Perf d late reducti ti | ' '
tasks in the group and place the resultin one task introductory slides.
count = 1;
dest = 1; result will be placed in task 1 You can form your
MPI Red dbuf, buf, t, MPI INT, MPI SUM, :
= uce(fi?;t, MP{ESGMHE?HWHGRLD_]; - own reduction
task 0 task 1 task 2 task 3 fU nCthn US|ng
MPI Op create
1 2 3 4 -+—— sendbuf (before) -

10 -«—— recvhuf (after)




MPIl Op create

#include "mpi.h"
int MPl_Op_create(MPI_User_function *function, int commulte, MPI1_Op *op )

 pointer to the

user defined _—

Function that true iIf
isthe Op commutative,

- false otherwise

the function
wherever an
- MPI_Op is needed




More operations

MPI Allreduce (&sendbuf, &recvbuf, count,
datatype, op, comm):

functionally equivalent to an

MPI Reduce followed by an MP| Bcast.

Faster on most hardware than the

combination of these.

MPI Reduce scatter(&sendbuf, &recvbuf,
recvcount, datatype,
op, comim):

Does an element-wise reduce on the
vector in sendbuf of length recvcount.
The vector is then split into disjoint
segments and spread across the
tasks. Equivalent to an MPI_Reduce
followed by an MPI Scatter operation.



More operations

MPI Alltoall(&sendbuf, sendcount,
sendtype, &recvbuf, recvent,
recvtype, comm):

Each task in the group performs a

scatter with the results concatenated
on each process in task rank order.

MPI Scan(&sendbuf, &recvbuf, count,
datatype, op, comm):

performs the partial sums on each
processor that would result from doing
an in-order reduction across the
processors in rank order.



MPI Allreduce

MPI Allreduce

Perform and associate reduction operation across all
tasks in the group and place the resultin all tasks

count = 1;
MPI Allreduce(sendbuf, recvbuf, count, MPI INT, MPI SUM,
MPI COMM WORLD);

task O task 1 task 2 task 3

1 2 3 4 --—— sendbuf (before)

10 10 10 10 -—— recvhuf (after)




e \ // \ // \ // \ // \ // \ // \ // \
/ / / / / / / /
/ \ / \ / \ / \ / \ / \ / \ / \

PO P1L P2 P3 P4 P5 P P7

e ;;;‘/2'/ $4///' ¢>‘//’
PO P2
N "/ 2*%loo(| P
K / \ gA|1P))
PO steps
i /
PO Naive Allreduce ~1/2 nodes are
/\ifle at any given time

+ \ K2

| P4

\Po/ p1 P4 pP5

\ / \ / \ / \ / \ / : \ / \ /
\\ // \\ // \\ // \\ // \\ // \\ // \\ //



AN N N N N
PO P1 P2 P3 P4 PS5

log>(|P|) steps



All processors
PO P1 P2 P3 P4 P5 PG P7 all busy each

XXX X

PO Pl P2 P3 P4 P5 P6 P7j Note that the
| bandwidth
reguirements
of the
network
change

Algorithm from Optimization of Collective Reduction
Operations, Rolf Rabenseifner, International Conference on
Computational Science, 2004



MPI Reduce scatter

MPI Reduce scatter

Perform reduction operation on vector elements across all
tasks in the group, then distribute segments of result vector to tasks

recvcount = 1;

MPI Reduce scatter{sendbuf, recvbuf, recvcount, MPI INT, MPI SUM,
MPI COMM WORLD);

reduce
resu I t task 0 task 1 task 2 task 3

0 0 0 0 0 | <«— sendbuf (before)
———— — —

4 1 1 1 1

8 Z 2 | |2 2

12 3 3 3 3

\

i] 4 R 12 | —=—— recvhuf (after)




MPI_Alltoall

sends data from all to all processes. Each process
performs a scatter operation.

Each process performs a
scatter of its elements to all
other processes.

sendcnt = 1;
recvcht = 1;

MPI_Alltoall{sendbuf, sendent, MPL INT,
recvbuf, recvent, MPI INT,

MPI_ COMM_ WORLD);
task 0 task 1 task 2 task 3 . .
Received data Is
1 5 9 |13 .
concatenated in sender
2 5 10 14 rank order
~ -=—— sendbuf (before)
3 7 11 15
4 8 12 16
1 27 73 4
—|  «—— recvbuf (after)
o | o |un | |
13 14 15 16
\ B B /



MPI Scan

Computes the scan (partial reductions) of data
oh a collection of processes

count = 1;
MPI Scan(sendbuf, recvbuf, count, MPI INT, MPI SUM,
MPI COMM WORLD);

task 0 task 1 task 2 task 3
1 2 3 4 -+—— sendbuf (before)
1 3 6 10 | -=—— recvhuf (after)

0 0:1 0:2 0:3



Group and communicator

® Remember that

® A communicator is a group of
processes that can
communicate with each
other

® A group is an ordered set of
processes

® Programmers can view groups
and communicators as being
the same thing

® group routines are used in
collecting processes to form
communicator.



Why groups and communicators?

® Allow programmer to
organize tasks by functions

® Enable collective
communication operations

® Allow user-defined virtual
topologies to be formed

® Enable manageable
communication by enabling
synchronization



Properties

® Groups/communicators are

dynamic, i.e. they can be created
and destroyed

Processes can be in many groups,
and will have a unique, possibly
different, rank in each group

® MPI provides 40+ routines for
managing groups and
communicators! Mercifully, we
will not cover them all.



functions of these 40+ routines

* Extract handle of a global group and
communicator using MPI Comm group

* Form new group as a subset of
another group using MPI Group incl

* Create new commmunicator for a
group using MPI Comm create

* Determine a processor’s rank in a
communicator using MPI Comm rank

* Communicate among the processors
of a group

* When finished, free communicators
and groups using MPI Comm free and
MPI Group free



MP]_COMM_WORLD

Relationships
daMmong O

communicators 6 ©Og4 2 ©
and groups.

Both collective
and point-to-
point
communicatio
n is within a
group.




#include "mpi.h" Handle for

#include <stdio.h> MPI_COMM_WORLD

#define NPROCS 8 group

int main(argc,argv) Handle for a Get the number
int argc; new group of tasks and
char *argv[]; { the rank of

int rank, new_rank, sendbuf, recvbuf, numtasks, MPI_COMM_WORLD
ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7}; for this process

MP| Group orig _group, new_group;

MPI_Comm new_comm; Handle for a
new

MPI_Init(&argc,&argv); communicator
MPI_Comm_rank(MPI_COMM_WORLD, &rank); =
MPI Comm_size(MPI_COMM_WORLD, &nhumtasks);

if (numtasks = NPROCS) {
printf("Must specuy .."”_PROCS= %d. Terminating.\n",NPROCS);
MPI_Finalize();
exit(0); sanity check
) code



Variables to hold information about the new

Group this will be in. Note that since this is an

SPMD program, if we do this statically we

need information for all groups the process
can be in, not just the one that it is In.

Int rank, new_rank, sendbuf, récvbuf, numtasks,
ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};

- Hold the ranks of processors
~ in (in MPI COMM _ WORLD)

of processes in each of the
two new groups.




get handle for
MPI COMM WORLD
sendbuf = rank; — —

[* Extract the origin p handle */

MPI_ Comm_group(MPI_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
if (rank < NPROCS/2) {
MPI_Group in ig_group, NPROCS/2, ranks1, &new_group);

}

else {
MPI Group incl(orig_grou

}

S/2, ranks2, &new_group);

[* Create new new commun
MPI_Comm_create(MP|_C
MPI_Allreduce(&sendbuf, &

tions */

MPI|_ Group_rank (new_gro
printf("rank= %d newrank=

MPI_Finalize();
}



sendbuf = rank;

/* Extract the original group h
MPI_Comm_group(MPI_CO

/* Divide tasks into two distinct

if (rank < NPROCS/2) {
MPI_Group _incl(orig_gro
}

else {
MPI_Group_incl(ori

}

ROCS/2, ranks1,

roup, NPROCS/2, ranks2, &new _

[* Create new new communicator and then perform collective munications */
MPI_Comm_create(MPl_COMM_WORLD, new_group, &nhew_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPIl_INT, MPl_SUM, new_comm);

MPI Group rank (new_group, &new_rank);
printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);

MPI_Finalize();
}
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