OpenMP 4 - What’s New?

SciNet Developer Seminar

Ramses van Zon

September 25, 2013

Scilet

Intro to OpenMP
» For shared memory systems.
> Add parallelism to
functioning serial code. OpenMP

» For C, C++ and Fortran OpenMP News

N
Subsaribe to the News Feed

Tre OpENMP® API SPECIFICATION FOR PARALLE

»Recently Published Articles on OpenMP

» http://openmp.org e e

The Clang/LLVM compiler now supports OpentP 3.1
»About the OpenMP ARB gl trmpghubinl
»Frequently Asked Questions
S Linux Journal / Advanced OpenMP
e — hitp:liow.lyi222A8p
»Who's Using OpenMP? In Online Journal Embedded
. . »Press Releases A portable OpenMP runtime lirary based on MCA AP for embedded systems — Part
> ompiler run-time does a hitpilowy2yUR1s
»Discussion Forums. ACM Digital Library
| t f k f Portable mapping of OpenMP to Multicore embedded systems using MCA APIs
Ot o wor or yO u http:/dl.acm.org/citation.cfm ?id=2465569&bnc=1
Events
»Public OpentP Calendar Posted on September 17, 2013

> D | V| d es u p Work . »University of Houston Joins the OpenMP Effort

Input Register The University of Houston (UH) has joined tha OpenMP Consortium, a group of leadin

Alert the OpenMP.org and software vendors and research organizations crealing the standard for the most pc
. webmaster about new products, memory parallel programming model in use today.
> YOU teII it hOW to use events, or updates and well
postithers “We are excted o o the OpenP famly as an academic member’ says Barbara Ch
»webmaster@openmp.org Professor of Computer Science and director of the Center for Advanced Computing an

Systems (CACDS) at UH. “Through cOMPunity, we have been involved since the begi

variables, and what to A S
parallelize.

“This is a great step forward for the UH HPCTools research group. We look forward to

» Works by adding compiler

directives to code. Met

’ computeoca\cu\

Quick Example - C

/* examplel.c */ /* examplel.c */
int main() int main()
{ {
int i,sum; int i,sum;
sum=0; sum=0;

#pragma omp parallel
#pragma omp for reduction(+:sum

for (i=0; i<101; i++) for (i=0; i<101; i++)
sum+=i; = sum+=i;
return sum—5050; return sum—5050;
} }
> $CC examplel.c > $CC examplel.c -fopenmp
> ./a.out > export OMP_NUM_THREADS=8
./a.out

Scilet

) compute ca\cu\

Quick Example - Fortran

program examplel program examplel
integer i,sum integer i,sum
sum—0 sum—=0

I$omp parallel
I$omp do reduction(+:sum)

do i=1,100 do i=1,100
sum=sum—+i = sum=sum—+i
end do end do
I$omp end parallel
print *, sum—5050; print *, sum—5050;
end program examplel end program examplel
> $FC examplel.f90 > $FC examplel.f90 -fopenmp

Scilet

) compute ca\cu\

Memory Model in OpenMP (3.1)

private Sha red private
@ Memory @ memory

Sciliet

AAAAAA

Execution Model in OpenMP

Serial Part 1
Parallel Part 1 Parallel Part 1 Parallel Part 1 Parallel Part 1
Block 1 Block 2 Block 3 Block 4
Serial Part 2
Parallel Part 2 Parallel Part 2 Parallel Part 2 Parallel Part 2
Block 1 Block 2 Block 3 Block 4
Serial Part 3

Scilet

) compute-ca\cul

Execution Model in OpenMP with Tasks

Serial Part 1

Serial Part 3

Existing Features (OpenMP 3.1)

1. Create threads with shared and private memory;

2. Parallel sections and loops;

3. Different work scheduling algorithms for load balancing loops;
4. Lock, critical and atomic operations to avoid race conditions;
5. Combining results from different threads;

6. Nested parallelism;

7. Generating task to be executed by threads.

Supported by GCC, Intel, PGl and IBM XL compilers.

Scilet

Introducing OpenMP 4.0

> Released July 2013, OpenMP 4.0 is an API specification.

» As usual with standards, it's a mix of features that are
commonly implemented in another form and ones that have
never been implemented.

> As a result, compiler support varies. E.g. Intel compilers
v. 14.0 good at offloading to phi, gcc has more task support.

» OpenMP 4.0 is 248 page document (without appendices)
(OpenMP 1 C/C++ or Fortran was = 40 pages)

» No examples in this specification, no summary card either.

» But it has a lot of new features. ..

Scilet

New Features in OpenMP 4.0

1. Support for compute devices
2. SIMD constructs

3. Task enhancements

4. Thread affinity

5. Other improvements

Scilet

1. Support for Compute Devices

» Effort to support a wide variety of
compute devices:

GPUs, Xeon Phis, clusters(?)

» OpenMP 4.0 adds mechanisms to
describe regions of code where data
and/or computation should be moved to
another computing device.

» Moves away from shared memory per se.

> omp target.

Scilet

Memory Model in OpenMP 4.0

TEAM 3
MEMORY

Thread 12

Thread 11

Thread 9

Thread 10

Host Thread 1
HOST

MEMORY

Host Thread 3

Host Thread 2

Host Thread 4

Thread 2

DEVICE
MEMORY

Thread 3

/
T TEAM 1

\ e

Thread 4

Thread 1

Scilet

o compute «calcul
CANADA

Memory Model in OpenMP 4.0

» Device has its own data environment
» And its own shared memory
» Threads can be bundled in a teams of threads

» These threads can have memory shared among threads of the
same team

» Whether this is beneficial depends on the memory architecture
of the device. (team ~ CUDA thread blocks, MPI_.COMM?)

Scilet

Data mapping

» Host memory and device memory usually district.
» OpenMP 4.0 allows host and device memory to be shared.

» To accommodate both, the relation between variables on host
and memory gets expressed as a mapping

Different types:

> to: existing host variables copied to a corresponding variable
in the target before

» from: target variables copied back to a corresponding variable
in the host after

» tofrom: Both from and to

» alloc: Neither from nor to, but ensure the variable exists on
the target but no relation to host variable.

Note: arrays and array sections are supported.

Scilet

) compute ca\cu\

OpenMP Device Example using target

/* example2.c */
#include <stdio.h>
#include <omp.h>
int main()

{
int host_threads, trgt_threads;
host_threads = omp_get_max_threads();
#pragma omp target map(from:target_threads)
trgt_threads = omp_get_max_threads();
printf("host_threads = %d\n", host_threads);
printf("trgt_threads = %d\n", trgt_threads);

> $CC -fopenmp example2.c -o example?2
> ./example2

host_threads = 16

trgt_threads = 224

Scilet

’ compute ca\cu\

OpenMP Device Example using target

program example2

use omp_lib

integer host_threads, trgt_threads
host_threads = omp_get_max_threads()
I$omp target map(from:target_threads)
trgt_threads = omp_get_max_threads();
I$omp end target

print * "host_threads =", host_threads
print *, "trgt_threads =", trgt_threads

end program example2

> $FC -fopenmp example2.f90 -o example2

>

./example?2
host_threads = 16
trgt_threads = 224

Scilet

) compute ca\cu\

OpenMP Device Example using teams, distribute

#include <stdio.h>
#include <omp.h>
int main()
{
int ntprocs;
#pragma omp target map(from:ntprocs)
ntprocs = omp_get_num_procs();
int ncases=2240, nteams=4, chunk:ntprocs*Q;

#pragma omp target
#pragma omp teams num_teams(nteams) thread_limit(ntprocs/nteams)
#pragma omp distribute
for (int starti=0; starti<ncases; starti+=chunk)
#pragma omp parallel for
for (int i=starti; i<starti-+chunk; i++)
printf("case i=%d/%d by team=%d/%d thread=%d/%d\n",
i+1, ncases,
omp_get_team_num()+1, omp_get_num_teams(),
omp_get_thread_num()+1, omp_get_num_threads());

i SCilet

’ compute ca\cu\

OpenMP Device Example using teams, distribute

program example3
use omp_lib
integer i, ntprocs, ncases, nteams, chunk
I$omp target map(from:ntprocs)
ntprocs = omp_get_num_procs()
1$omp end target
ncases=2240
nteams=4
chunk=ntprocs*2
I$omp target
!$omp teams num_teams(nteams) thread_limit(ntprocs/nteams)
1$omp distribute
do starti=O0,ncases,chunk
I$omp parallel do
do i=starti,starti+chunk
print *,"i=",i,"team=",omp_get_team_num(),"thread=",omp_get_thread_num()
end do
!$omp end parallel
end do

$omp end target Met

end program example3 QP oS - calcul

Summary of directives

omp target [map]
marks a region to execute on device
omp teams
creates a league of thread teams
omp distribute
distributes a loop over the teams in the league
omp declare target / omp end declare target marks function(s) that can be called on the
device
® map maps the computation onto a device and some number of threads on that device.
® data allows the target to specify a region where data that is defined on the host is
mapped onto the device, and sent (received) at the beginning (end) of the target
region.
#pragma omp target device(mic0) data map(to: v1[0:N], v2[:N]) map(from: p[0:N])
omp get team numy()
omp get team size()
omp get num devices()

Vector parallelism
(SIMD parallelization)

for(int1=1;1<n;1++) {

j

Because of the dependence on
a, we cannot execute this as a
single parallel loop in OpenMP.
We can execute it as two

a[i] = b[i+1] + c[i]

~

b[i] = a[i-1] + c[i]

parallel loops, i.e.,

#pragma omp parallel for
for(int1=1;1<n;1++) {

j

#pragma omp parallel for
b[1] = a[1-1] + ¢[1]

j

a[i] = b[i+1] + c[i]

Consider the loop

all] = b[2] + c[1]
b[1]\= a[0] + c[1]
a[ZBV[B] + c[2]
b[2\= a[1] + c[2]
a[3>b[4] + C[3]
b[3]\= a[2] + ¢[3]
a[4]&b[5] o]
b[4\= a[3] + c[4]
a[S]Sb[ﬂ + e[
b[5N\= a[4] + c[5]
a[6]y§b[7] + C[6]

b[6] = a[5] + c[6]

What are other ways of
exploiting the latent
parallelism in this loop?

Dataflow Is one.

Dataflow

As soon as the operands for an
operation are ready, perform

the operation.

Green operands are operands
that are ready at step 1.

Red operands are operands
that must wait for a value to be
produced. (true or flow
dependence in compiler

terminology.

Purple operands are operands
that must wait for a value to be
produced. (anti dependence In
compiler terminology

a[1] = b[2] + c[1]

b[1\=/a[0] + c[1]
a[2]><@[3] + C[2]

b[2\=/a[1] + c[2]

al5]=9[6] + c[5]
b[SN\=/a[4] + c[5]

al6]y=b[7] + c[6]
b[6] = a[5] + c[6]

Anti dependences can be eliminated

with extra storage

Create alternate b elements.
We won’t worry about how to
address these.

a[1] = b[2] + c[1]

b[1]\= a[0] + c[1]
a[Z]XW[?v] + C[2]

o’[2)\= a[1] + c[2]
a[3]gg[4] + c[3] |
0'[3\= a[2] + c[3]
a[4]}>v[5] +cl4] |
b'[4)\= a[3] + c[4]
a[S]Sv[eS] +ols]

0’[5) = a]4] + c[5]
a[alxnm +c[6] |

b[6] = a[5] + c[6]

=1

[
N

All statements can be executed in 2 steps
given sufficient hardware

T=1 b[1]\= a[O] + c[1]
a[l] = b[2] + c[1], a]2] = b[3] + c[2],
a[3] = b[4] + c[3], a]4] = b[5] + c[4], = | = 2
a[5] = b[6] + c[5], a[6] = b[7] + c[6; b'[2} = a[1] + ¢[2]
= 1=3
b'[3}= a[2] + ¢[3]
= | = 4
o'[4\= a[3] + c[4]
= 1= 5

o’[5) = a[4] + c[5]
aﬁl{ﬁﬂ*ﬁ =6

b[6] = a[b] + c[6]

All statements can be executed in 2 steps
given sufficient hardware

b[1]\= a[O] + C[1]

= | =2
b'[2\= a[1] + c[2]
= | =3
b'[3}= a[2] + c[3]
b[6] = Q[5] + c[6] = =4
o= ARl eldl b'[4\= a[3] + c[4]
We are done in two time steps! = 1=5

b’[5Y = af4] + c[5]
aﬁl{ﬁﬂ*ﬁ =6

b[6] = a[b] + c[6]

MIT Monsoon project was the
largest data flow machine created

Storage freeing was an issue, array layout was
another one

Ran out of storage in a couple of weeks. Could a
different language and garbage collection help?
Probably not for array-based numerical languages.
Auto-parallelization failed because false unnecessary
dependences prevent parallelization

Data-flow failed because of hardware complexity and
the inability of data dependence to precisely show
when storage could be freed.

Note that register renaming and array privatization
are two technigues that break anti-dependences and
allow better auto-parallelization. One of the most
important techniques.

Dataflow Is not dead, however

Most modern processors implement Tomasulo’s
algorithm, or a variation of it.

First used in the IBM 360/91, 16.6M instructions/sec

Enables out-of-order instruction execution to use
multiple functional units in a processor

Parallelism for free, at least in terms of programmer
time.

Problems with this approach

®*This Is not under programmer control — the programmer
only specifies the instructions to be executed, not the
functional unit that executes the instruction.

®* Normal multi-functional unit processors need circuitry to
control and fire the functional units (Tomasulo’s algorithm)

®* Hardware must detect availability of operands and
functional unit, and schedule the operation onto a
particular hardware functional unit. Enables out-of-order
execution.

®Vectors allow multiple operations to occur with less control
logic.

Vector execution
for (inti=1;1i<n;it++) {
a[1] = b[1+1] + ¢[1]

b[i] = a[i-1] + c[i]

h
b[2] |b[3]|b[4]|b[3]| |c[1]|c[2]|c[3]|cl4]
+ + + +
a[1]|a[2]|a[3]|al4]
+ + + +
\
b[1]|b[2]|b[3]|b]4]

a[l] = b[2] + c[1]
b[1]\= a[0] + c[1]
a[2]‘§@[3] + c[2]
b[2\= a[1] + c[2]
a[3;§g[4] + C[3]
b[3]\= a[2] + c[3]
a[4]&b[5] - cfd]
b[4‘iz[3] + c[4]
a[5] =¥9|6] + c[3]
b[5N\= a[4] + c[5]

a[6] =[7] + c[6]
b[6] = a[5] + c[6]

Why vectors are good

®* With vector units there are architected vector registers
and vector functional units

®* These work on groups, or vectors of operands and
operations

®* Programmer/compiler generates the instructions

®* Control in hardware is almost no more complicated than
a scalar functional unit

®* Allows more operations to be done per clock with small
InCcrease in processor complexity

Vector execution
for (inti=1;1i<n;it++) {
a[1] = b[1+1] + ¢[1]

b[i] = a[i-1] + c[i]

h
b[2] |b[3]|b[4]|b[3]| |c[1]|c[2]|c[3]|cl4]
+ + + +
a[1]|a[2]|a[3]|al4]
+ + + +
\
b[1]|b[2]|b[3]|b]4]

4 operations in a time
step

No complicated control
circuitry needed

Modern Intel processors
have 2 512 AVX units,
allowing them to
execute 32 DP ops /
cycle, and up to 2 512
DP FMA / cycle

Vector parallelization

for(inti=1,1<n, 1+4+) { ?S[H blO], Dependences go from
O[] earlier to later statements.
_— : : _ 3 This is not good, as
ali] = b[i-1] + c[i+1]; (51) executing 4 iterations of
a1, Ab[l], S1 before S2 will cause S1
(S1) to get stale values.
b(2]
cli] = il + glil; (53) A
a[3], b[2],
} (S1)

b[3]

/\
a[4], bl3],
(S1)
bi4]

Vector parallelization

-8

for(inti=1,i<n,i++) {

ali] = bli-1] + c[i+1]; (S1)

b[i] = d[ilL+"eli]; (52)

h\

clil = fli] + glil; (53)

}

Vector parallelization

for (inti=1,i<n,i++4) { e ?
alil = b[i-1] + c[i+1]; (S1)

et (0— O

b[i] = d[eli]; (S2) é

clil = tli] + glil; (53)

} 4

for(inti=1,1<n,i++4+) {
bli] = d[i] + el[i]; (52)

~

ali] = b[i-1] + c[i+1]; (S1)

clil = tlil + glil; (S3)
}

Vector parallelization

for(inti=1,1<n,i++) { for (inti=1,i<n,i++){
bl[i] = d[i] + e[i]; (S2) bli] = d[i] + e[il]; (52)
~ -}

ali] = bl[i-1] + cl[i+1]; (S1) o | |
for (.Int | =.1, | < n, 1+4+) {
clil = fli] + qlil; (S3) } ali] = b[i-1] + c[i+1]; (S1)
}

for (inti=1,i<n,i++) {
for(inti=1,1i<n,i+=4) { clil = f[i] + alil: (S3
vadd b[i], d[i], e[il; (S2) / } [i] = f[i] + gli]; (S3)
}

for(inti=1,1i<n, i+=4) {
vadd ali], b[i-1], c[i+1]; (S1)
}

for(inti=1,1i<n, i+=4) {
vadd c[i], fTil, glil; (S3)
}

Why vectors?

® With vector units there are
For (inti=0:i < n: For (inti = 0:i < n: i+=4) {architected vector registers

i+4) { ali] = b[il*c[i]: and vector functional units

ali] = blil*clil; ali+1] = Dbli+1]*cli+1];

} # ali]l = b[i+2]*c[i+2]; *® These work on groups, or
ali] = bli+2]*c[i+2]; vectors of operands and
} operations

For (int i = 0; i < n; i+=4)pg®
{ | ®* Programmer/compiler

ldv rv1, bli] generates the instructions

ldv rv2, cli]
} vadd rv3, rvl, rv2 ® Control in hardware is almost

b[0] b[1] b[2] b[3] c[0] c[1] c[2] c[3] NO More Cor_nplicate.d than a
scalar functional unit

®* Allows more operations to be
done per clock with small
InCrease in processor
complexity

al0] a[l] a[2] a[3]

2. SIMD Constructs

]
]

—h

v

OpenMP can enable vectorization of
both serial as well as parallelized loops.

vectorization = processing multiple
elements of an array at the same time.

This is done using SIMD instructions.

SIMD=single instruction multiple data.
Usually 2, 4,or 8 SIMD lanes wide.

Can also indicate to OpenMP to create
versions of functions that can be invoked
across SIMD lanes.

Scilet

New Directives for SIMD Support

» omp simd
marks a loop to be executed using SIMD lanes

» omp declare simd
marks a function that can be called from a SIMD loop

» omp parallel for simd
marks a loop for thread work-sharing as well as SIMDing

Scilet

OpenMP SIMD Loop Example

#include <stdio.h>
#define N 262144
int main()
{
long long d1=0;
double a[N], b[N], c[N], d2=0.0;
#pragma omp simd reduction(+:d1)
for (int i=0;i<N;i++)
dl+=i*(N+1—1);
#pragma omp simd
for (int i=0; i<N;i++) {
a[i]=1;
b[i]=N+1—i;
}
#pragma omp parallel for simd reduction(+:d2)
for (int i=0; i<N; i++)
d2+=a[i]*b[i];
printf("resultl = %ld\nresult2 = %.21f\n", d1, d2);

Sciet
() comeits; Ei\cu\

OpenMPSIMD Toop Example

program simdex
integer, parameter :: N = 262144
integer(kind=8) :: i, d1
real(kind=8), dimension(N) :: a, b, ¢
real(kind=8) :: d2
d1=0 ; d2=0.
I$omp simd reduction(+:d1)
do i=1,N
dl = d1 + (i—1)*(N—1)
end do
I$omp end simd
I$omp simd
do i=1N
a(i)=i—1 ; b(i)=N—i
end do
I$omp end simd
I$omp parallel do simd reduction(+:d2)

do i=1,N
d2 = d2 + a(i)*b(i)
enddo
I$omp end parallel
print * "resultl =",d1,"result2 =" d2 Sﬁﬁ\let

. compute « ca\cu\
end program simdex ™

OpenMP SIMD Function Example

#include <stdio.h>
#pragma omp declare simd
double computeb(int i)

{ return N+1-1i; }
#define N 262144

int main()

{

long long d1=0;
double a[N], b[N], c[N], d2=0.0;
#pragma omp simd reduction(+:d1)
for (int i=0;i<N;i++)

dl += i*computeb(i);
#pragma omp simd
for (int i=0; i<N;i++) {

a[i]=1i; b[i]=computeb(i);

#pragma omp parallel for simd reduction(+:d2)
for (int i=0; i<N; i++)
d2 += a[i]*b[i];
printf("resultl = %ld\nresult2 = %.21f\n", d1, d2); Sﬁ?\let

} ’ compute ca\cu\

3. Task Enhancements

N R

TO DO

» Can abort parallel OpenMP execution by
conditional cancellation at implicit and
user-defined cancellation points.

» Tasks can be grouped to into task
groups can be aborted to reflect
completion of cooperative tasking
activities such as search.

» Task-to-task synchronization is

supported through the specification of
task dependency.

Scilet

OpenMP Task Cancellation Example

#include <stdio.h>
#define N 40
int main()
{
char haystack[N—|—1]:"abcabcabczabcabcabcxabcabcabczabcabcabcz";
char needle=’x’;
int pos;
#pragma omp parallel for
for (int i=0; i<N; i++) {
if (haystack[i]==needle) {
pos=i,;
#ifndef _OPENMP
break;
#else
#pragma omp cancel for
#endif

}
}
printf("\n’%c’ found at position %d in %s\n" ,needle,poshaystack);
} Scilet
QY oy sl

Overview of New Directives and Functions for Tasks

» omp cancel parallell|for|sections|taskgroup
starts cancellation of all tasks in the same construct

» omp cancelationpoint parallel|for|sections|taskgroup
marks a point at which this task may be canceled

» omp taskgroup
marks a region such that all tasks started in it belong to a group

» omp task depend([in|out|inout]:wvariable) clause
marks that a task depends on other task

cSél?\let

AAAAAA

Concurrent Execution w/ Dep. RWTHAACHEN

UNIVERS

ITY

» Note: variables in the depend clause do not necessarily have to

indicate the data flow

T1 has to be completed

vold process in parallel) ({
#pragma omp parallel
#pragma omp single executed.

{
int x = 1; T2 and can

executed in parallel.

for (int i = 0; 1 < T; ++1i) {

#pragma omp task shared(x, ...) depend(out: x) // Tl
preprocess some data(...);

#pragma omp task shared(x, ...) depend(in: x) // T2
do something with data(...);

#fpragma omp task shared(x, ...) depend(in: x)
do something independent with data(...);

}
} // end omp single, omp parallel

before T2 and can be

be

RZ: Christian Terboven Folie 20

4. Thread Affinity

OpenMP can now be told better where
to execute threads.

Can be used to get better locality, less
false sharing, more memory bandwidth.

To specify platform-specific data:
Environment variable OMP_PLACES

To describe thread binding to processor:

» Environment variable: OMP_PROC_BIND
> In code using omp parallel’s new
proc_bind clause.

Allowed values:
false, true, master, close, spread

cSeﬁ\let

AAAAAA

Example of Specifying Affinity See http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-affinity.html for more examples.

OMP_PLACES=sockets
On a node with two processors (i.e., two sockets, each of which contains a processor) and each processor has

8 cores, this will place threads like:
Processor0O (socket 0) = {t0, t2, t4, t6, t8, t10, t12, t14}

Processorl (socket 1) = {t1,t3,t5,t7,t9,t11,t13,t15}

In the same system, if you specify
OMP_PLACES=cores

OMP_PROC_BIND=close

You will get

Processor0O (socket 0), cores O - 7 have threads =10, t1, t2, t3, t4, t5, t6, t7
Processorl (socket 1), cores 8 - 15 =t8,t9, t10, t11,t12,t13,t14,t15

On the same system, if you specify
OMP_PLACES=cores

OMP_PROC_BIND=close

You will get
TO == core0, t1 == core 8, t2 = corel, t3 = core9, t4 = core2, t5 = corelO, ..., t14 = core7, thread15 = corel5

Processorl (socket 1) = {tl, t3,t5,t7,t9,t11,t13,tl15}

This is similar to OMP_PLACES=sockets, except that OMP_PLACES=sockets does not bind a thread to a
particular core, only to a particular socket

You can also specify
OMP_PLACES=0,8,1,9,2,10,3,11,4,12,5,13,6,14,7,15
And this will cause placing work to treat 0 and 8 as close, 8 and | as close, etc.

http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-affinity.html

5. Other improvements

» User-defined reductions:
Previously, OpenMP API only supported reductions with base
language operators and intrinsic procedures. With OpenMP
4.0 API, user-defined reductions are now also supported.

omp declare reduction

» Sequentially consistent atomics:
A clause has been added to allow a programmer to enforce
sequential consistency when a specific storage location is
accessed atomically.

omp atomic seq.-cst

» Optional dump all internal variables at program start:

OMP_DISPLAY ENV=TRUE|FALSE | VERBOSE

cSeﬁ\let

AAAAAA

