
OpenMP 4 - What’s New?

SciNet Developer Seminar

Ramses van Zon

September 25, 2013

Intro to OpenMP

I For shared memory systems.

I Add parallelism to
functioning serial code.

I For C, C++ and Fortran

I http://openmp.org

I Compiler/run-time does a
lot of work for you

I Divides up work

I You tell it how to use
variables, and what to
parallelize.

I Works by adding compiler
directives to code.

Quick Example - C

/* example1.c */
int main()
{
int i,sum;
sum=0;

for (i=0; i<101; i++)
sum+=i;

return sum�5050;
}

> $CC example1.c

> ./a.out

)

/* example1.c */
int main()
{
int i,sum;
sum=0;
#pragma omp parallel

#pragma omp for reduction(+:sum)
for (i=0; i<101; i++)
sum+=i;

return sum�5050;
}

> $CC example1.c -fopenmp

> export OMP NUM THREADS=8

> ./a.out

Quick Example - Fortran

program example1

integer i,sum
sum=0

do i=1,100
sum=sum+i

end do

print *, sum�5050;
end program example1

> $FC example1.f90

)

program example1

integer i,sum
sum=0

!$omp parallel

!$omp do reduction(+:sum)
do i=1,100

sum=sum+i

end do

!$omp end parallel

print *, sum�5050;
end program example1

> $FC example1.f90 -fopenmp

Memory Model in OpenMP (3.1)

Execution Model in OpenMP

Execution Model in OpenMP with Tasks

Existing Features (OpenMP 3.1)

1. Create threads with shared and private memory;

2. Parallel sections and loops;

3. Di↵erent work scheduling algorithms for load balancing loops;

4. Lock, critical and atomic operations to avoid race conditions;

5. Combining results from di↵erent threads;

6. Nested parallelism;

7. Generating task to be executed by threads.

Supported by GCC, Intel, PGI and IBM XL compilers.

Introducing OpenMP 4.0

I Released July 2013, OpenMP 4.0 is an API specification.

I As usual with standards, it’s a mix of features that are
commonly implemented in another form and ones that have
never been implemented.

I As a result, compiler support varies. E.g. Intel compilers
v. 14.0 good at o✏oading to phi, gcc has more task support.

I OpenMP 4.0 is 248 page document (without appendices)
(OpenMP 1 C/C++ or Fortran was ⇡ 40 pages)

I No examples in this specification, no summary card either.

I But it has a lot of new features. . .

New Features in OpenMP 4.0

1. Support for compute devices

2. SIMD constructs

3. Task enhancements

4. Thread a�nity

5. Other improvements

1. Support for Compute Devices

I E↵ort to support a wide variety of
compute devices:

GPUs, Xeon Phis, clusters(?)

I OpenMP 4.0 adds mechanisms to
describe regions of code where data
and/or computation should be moved to
another computing device.

I Moves away from shared memory per se.

I omp target.

Memory Model in OpenMP 4.0

Memory Model in OpenMP 4.0

I Device has its own data environment

I And its own shared memory

I Threads can be bundled in a teams of threads

I These threads can have memory shared among threads of the
same team

I Whether this is beneficial depends on the memory architecture
of the device. (team ⇡ CUDA thread blocks, MPI COMM?)

Data mapping

I Host memory and device memory usually district.

I OpenMP 4.0 allows host and device memory to be shared.

I To accommodate both, the relation between variables on host
and memory gets expressed as a mapping

Di↵erent types:
I to: existing host variables copied to a corresponding variable

in the target before
I from: target variables copied back to a corresponding variable

in the host after
I tofrom: Both from and to

I alloc: Neither from nor to, but ensure the variable exists on
the target but no relation to host variable.

Note: arrays and array sections are supported.

OpenMP Device Example using target

/* example2.c */
#include <stdio.h>
#include <omp.h>
int main()
{
int host threads, trgt threads;
host threads = omp get max threads();
#pragma omp target map(from:target threads)
trgt threads = omp get max threads();
printf("host_threads = %d\n", host threads);
printf("trgt_threads = %d\n", trgt threads);

}

> $CC -fopenmp example2.c -o example2

> ./example2

host threads = 16

trgt threads = 224

OpenMP Device Example using target

program example2

use omp lib

integer host threads, trgt threads

host threads = omp get max threads()
!$omp target map(from:target threads)
trgt threads = omp get max threads();
!$omp end target

print *, "host threads =", host threads

print *, "trgt threads =", trgt threads

end program example2

> $FC -fopenmp example2.f90 -o example2

> ./example2

host threads = 16

trgt threads = 224

OpenMP Device Example using teams, distribute
#include <stdio.h>
#include <omp.h>
int main()
{

int ntprocs;
#pragma omp target map(from:ntprocs)
ntprocs = omp get num procs();
int ncases=2240, nteams=4, chunk=ntprocs*2;

#pragma omp target

#pragma omp teams num teams(nteams) thread limit(ntprocs/nteams)
#pragma omp distribute

for (int starti=0; starti<ncases; starti+=chunk)
#pragma omp parallel for

for (int i=starti; i<starti+chunk; i++)
printf("case i=%d/%d by team=%d/%d thread=%d/%d\n",

i+1, ncases,
omp get team num()+1, omp get num teams(),
omp get thread num()+1, omp get num threads());

}

OpenMP Device Example using teams, distribute

program example3

use omp lib

integer i, ntprocs, ncases, nteams, chunk
!$omp target map(from:ntprocs)
ntprocs = omp get num procs()
!$omp end target

ncases=2240

nteams=4

chunk=ntprocs*2
!$omp target

!$omp teams num teams(nteams) thread limit(ntprocs/nteams)
!$omp distribute

do starti=0,ncases,chunk
!$omp parallel do

do i=starti,starti+chunk

print *,"i=",i,"team=",omp get team num(),"thread=",omp get thread num()
end do

!$omp end parallel

end do

!$omp end target

end program example3

Summary of directives
• omp target [map]  

marks a region to execute on device
• omp teams  

creates a league of thread teams
• omp distribute 

distributes a loop over the teams in the league
• omp declare target / omp end declare target marks function(s) that can be called on the

device
• map maps the computation onto a device and some number of threads on that device.
• data allows the target to specify a region where data that is defined on the host is

mapped onto the device, and sent (received) at the beginning (end) of the target
region.

#pragma omp target device(mic0) data map(to: v1[0:N], v2[:N]) map(from: p[0:N])
• omp get team num()  

omp get team size()  
omp get num devices()

Vector parallelism
(SIMD parallelization)

Consider the loop

for (int i = 1; i < n; i++) {
 a[i] = b[i+1] + c[i]

 b[i] = a[i-1] + c[i]
}

a[1] = b[2] + c[1] i = 1
b[1] = a[0] + c[1]

a[2] = b[3] + c[2] i = 2
b[2] = a[1] + c[2]

a[3] = b[4] + c[3] i = 3
b[3] = a[2] + c[3]

a[4] = b[5] + c[4] i = 4
b[4] = a[3] + c[4]

a[5] = b[6] + c[5] i = 5
b[5] = a[4] + c[5]

a[6] = b[7] + c[6] i = 6
b[6] = a[5] + c[6]

Because of the dependence on
a, we cannot execute this as a
single parallel loop in OpenMP.
We can execute it as two
parallel loops, i.e.,

#pragma omp parallel for
for (int i = 1; i < n; i++) {
 a[i] = b[i+1] + c[i]
}
#pragma omp parallel for
 b[i] = a[i-1] + c[i]
}

What are other ways of
exploiting the latent
parallelism in this loop?

Dataflow is one.

Dataflow

As soon as the operands for an
operation are ready, perform
the operation.

a[1] = b[2] + c[1] i = 1
b[1] = a[0] + c[1]

a[2] = b[3] + c[2] i = 2
b[2] = a[1] + c[2]

a[3] = b[4] + c[3] i = 3
b[3] = a[2] + c[3]

a[4] = b[5] + c[4] i = 4
b[4] = a[3] + c[4]

a[5] = b[6] + c[5] i = 5
b[5] = a[4] + c[5]

a[6] = b[7] + c[6] i = 6
b[6] = a[5] + c[6]

Green operands are operands
that are ready at step 1.

Red operands are operands
that must wait for a value to be
produced. (true or flow
dependence in compiler
terminology.

Purple operands are operands
that must wait for a value to be
produced. (anti dependence in
compiler terminology

Anti dependences can be eliminated
with extra storage

Create alternate b elements.
We won’t worry about how to
address these.

a[1] = b[2] + c[1] i = 1
b[1] = a[0] + c[1]

a[2] = b[3] + c[2] i = 2
b’[2] = a[1] + c[2]

a[3] = b[4] + c[3] i = 3
b’[3] = a[2] + c[3]

a[4] = b[5] + c[4] i = 4
b’[4] = a[3] + c[4]

a[5] = b[6] + c[5] i = 5
b’[5] = a[4] + c[5]

a[6] = b[7] + c[6] i = 6
b[6] = a[5] + c[6]

All statements can be executed in 2 steps
given sufficient hardware

T=1
a[1] = b[2] + c[1], a[2] = b[3] + c[2],
a[3] = b[4] + c[3], a[4] = b[5] + c[4],
a[5] = b[6] + c[5], a[6] = b[7] + c[6]

a[1] = b[2] + c[1] i = 1
b[1] = a[0] + c[1]

a[2] = b[3] + c[2] i = 2
b’[2] = a[1] + c[2]

a[3] = b[4] + c[3] i = 3
b’[3] = a[2] + c[3]

a[4] = b[5] + c[4] i = 4
b’[4] = a[3] + c[4]

a[5] = b[6] + c[5] i = 5
b’[5] = a[4] + c[5]

a[6] = b[7] + c[6] i = 6
b[6] = a[5] + c[6]

All statements can be executed in 2 steps
given sufficient hardware

T=1
a[1] = b[2] + c[1], a[2] = b[3] + c[2],
a[3] = b[4] + c[3], a[4] = b[5] + c[4],
a[5] = b[6] + c[5], a[6] = b[7] + c[6]

a[1] = b[2] + c[1] i = 1
b[1] = a[0] + c[1]

a[2] = b[3] + c[2] i = 2
b’[2] = a[1] + c[2]

a[3] = b[4] + c[3] i = 3
b’[3] = a[2] + c[3]

a[4] = b[5] + c[4] i = 4
b’[4] = a[3] + c[4]

a[5] = b[6] + c[5] i = 5
b’[5] = a[4] + c[5]

a[6] = b[7] + c[6] i = 6
b[6] = a[5] + c[6]

T=2
b[1] = a[0] + c[1],
b’[2] = a[1] + c[2], b’[3] = a[2] + c[3],
b’[4] = a[3] + c[4], b’[5] = a[4] + c[5],
b[6] = a[5] + c[6]

We are done in two time steps!

MIT Monsoon project was the
largest data flow machine created

• Storage freeing was an issue, array layout was
another one

• Ran out of storage in a couple of weeks. Could a
different language and garbage collection help?
Probably not for array-based numerical languages.

• Auto-parallelization failed because false unnecessary
dependences prevent parallelization

• Data-flow failed because of hardware complexity and
the inability of data dependence to precisely show
when storage could be freed.

• Note that register renaming and array privatization
are two techniques that break anti-dependences and
allow better auto-parallelization. One of the most
important techniques.

Dataflow is not dead, however

● Most modern processors implement Tomasulo’s
algorithm, or a variation of it.

● First used in the IBM 360/91, 16.6M instructions/sec
● Enables out-of-order instruction execution to use

multiple functional units in a processor
● Parallelism for free, at least in terms of programmer

time.

Problems with this approach

•This is not under programmer control — the programmer
only specifies the instructions to be executed, not the
functional unit that executes the instruction.

•Normal multi-functional unit processors need circuitry to
control and fire the functional units (Tomasulo’s algorithm)

•Hardware must detect availability of operands and
functional unit, and schedule the operation onto a
particular hardware functional unit. Enables out-of-order
execution.

•Vectors allow multiple operations to occur with less control
logic.

Vector execution
for (int i = 1; i < n; i++) {
 a[i] = b[i+1] + c[i]

 b[i] = a[i-1] + c[i]
}

a[1] = b[2] + c[1] i = 1
b[1] = a[0] + c[1]

a[2] = b[3] + c[2] i = 2
b[2] = a[1] + c[2]

a[3] = b[4] + c[3] i = 3
b[3] = a[2] + c[3]

a[4] = b[5] + c[4] i = 4
b[4] = a[3] + c[4]

a[5] = b[6] + c[5] i = 5
b[5] = a[4] + c[5]

a[6] = b[7] + c[6] i = 6
b[6] = a[5] + c[6]

b[2] b[3] b[4] b[5] c[1] c[2] c[3] c[4]

+ + + +

a[1] a[2] a[3] a[4]

+ + + +

b[1] b[2] b[3] b[4]

Why vectors are good

• With vector units there are architected vector registers
and vector functional units

• These work on groups, or vectors of operands and
operations

• Programmer/compiler generates the instructions

• Control in hardware is almost no more complicated than
a scalar functional unit

• Allows more operations to be done per clock with small
increase in processor complexity

Vector execution
for (int i = 1; i < n; i++) {
 a[i] = b[i+1] + c[i]

 b[i] = a[i-1] + c[i]
}

b[2] b[3] b[4] b[5] c[1] c[2] c[3] c[4]

+ + + +

a[1] a[2] a[3] a[4]

+ + + +

b[1] b[2] b[3] b[4]

4 operations in a time
step
No complicated control
circuitry needed

Modern Intel processors
have 2 512 AVX units,
allowing them to
execute 32 DP ops /
cycle, and up to 2 512
DP FMA / cycle

Vector parallelization
for (int i = 1, i < n, i++) {

 a[i] = b[i-1] + c[i+1]; (S1)

 b[i] = d[i] + e[i]; (S2)

 c[i] = f[i] + g[i]; (S3)

}

a[1], b[0], c[2]
(S1)
b[1]
(S2)
c[1]
(S3)a[2], b[1], c[3]
(S1)
b[2]
(S2)
c[2]
(S3)a[3], b[2], c[4]
(S1)
b[3]
(S2)
c[3]
(S3)a[4], b[3], c[5]
(S1)
b[4]
(S2)
c[4]
(S3)

Dependences go from
earlier to later statements.

 This is not good, as
executing 4 iterations of

S1 before S2 will cause S1
to get stale values.

Vector parallelization

S1

S2

S3

S2

S1

S3

for (int i = 1, i < n, i++) {

 a[i] = b[i-1] + c[i+1]; (S1)

 b[i] = d[i] + e[i]; (S2)

 c[i] = f[i] + g[i]; (S3)

}

Vector parallelization
for (int i = 1, i < n, i++) {

 a[i] = b[i-1] + c[i+1]; (S1)

 b[i] = d[i] + e[i]; (S2)

 c[i] = f[i] + g[i]; (S3)

}

S1

S2

S3

S2

S1

S3

for (int i = 1, i < n, i++) {
 b[i] = d[i] + e[i]; (S2)

 a[i] = b[i-1] + c[i+1]; (S1)

 c[i] = f[i] + g[i]; (S3)
}

Vector parallelization
for (int i = 1, i < n, i++) {
 b[i] = d[i] + e[i]; (S2)
}

for (int i = 1, i < n, i++) {
 a[i] = b[i-1] + c[i+1]; (S1)
}

for (int i = 1, i < n, i++) {
 c[i] = f[i] + g[i]; (S3)
}

for (int i = 1, i < n, i+=4) {
 vadd b[i], d[i], e[i]; (S2)
}

for (int i = 1, i < n, i+=4) {
 vadd a[i], b[i-1], c[i+1]; (S1)
}

for (int i = 1, i < n, i+=4) {
 vadd c[i], f[i], g[i]; (S3)
}

for (int i = 1, i < n, i++) {
 b[i] = d[i] + e[i]; (S2)

 a[i] = b[i-1] + c[i+1]; (S1)

 c[i] = f[i] + g[i]; (S3)
}

Why vectors?
• With vector units there are

architected vector registers
and vector functional units

• These work on groups, or
vectors of operands and
operations

• Programmer/compiler
generates the instructions

• Control in hardware is almost
no more complicated than a
scalar functional unit

• Allows more operations to be
done per clock with small
increase in processor
complexity

For (int i = 0; i < n;
 i++) {
 a[i] = b[i]*c[i];
}

For (int i = 0; i < n; i+=4) {
 a[i] = b[i]*c[i];
 a[i+1] = b[i+1]*c[i+1];
 a[i] = b[i+2]*c[i+2];
 a[i] = b[i+2]*c[i+2];
}

For (int i = 0; i < n; i+=4)
{
 ldv rv1, b[i]
 ldv rv2, c[i]
 vadd rv3, rv1, rv2
}

b[0] b[1] b[2] b[3] c[0] c[1] c[2] c[3]

a[0] a[1] a[2] a[3]

+

2. SIMD Constructs

I OpenMP can enable vectorization of
both serial as well as parallelized loops.

I
vectorization = processing multiple
elements of an array at the same time.

I This is done using SIMD instructions.

I SIMD=single instruction multiple data.
Usually 2, 4,or 8 SIMD lanes wide.

I Can also indicate to OpenMP to create
versions of functions that can be invoked
across SIMD lanes.

New Directives for SIMD Support

I omp simd

marks a loop to be executed using SIMD lanes

I omp declare simd

marks a function that can be called from a SIMD loop

I omp parallel for simd

marks a loop for thread work-sharing as well as SIMDing

OpenMP SIMD Loop Example

#include <stdio.h>
#define N 262144

int main()
{

long long d1=0;
double a[N], b[N], c[N], d2=0.0;
#pragma omp simd reduction(+:d1)
for (int i=0;i<N;i++)

d1+=i*(N+1�i);
#pragma omp simd

for (int i=0; i<N;i++) {
a[i]=i;
b[i]=N+1�i;

}
#pragma omp parallel for simd reduction(+:d2)
for (int i=0; i<N; i++)

d2+=a[i]*b[i];
printf("result1 = %ld\nresult2 = %.2lf\n", d1, d2);

}

OpenMP SIMD Loop Example
program simdex

integer, parameter :: N = 262144

integer(kind=8) :: i, d1
real(kind=8), dimension(N) :: a, b, c
real(kind=8) :: d2
d1=0 ; d2=0.

!$omp simd reduction(+:d1)
do i=1,N

d1 = d1 + (i�1)*(N�i)
end do

!$omp end simd

!$omp simd

do i=1,N
a(i)=i�1 ; b(i)=N�i

end do

!$omp end simd

!$omp parallel do simd reduction(+:d2)
do i=1,N

d2 = d2 + a(i)*b(i)
enddo

!$omp end parallel

print *,"result1 =",d1,"result2 =",d2
end program simdex

OpenMP SIMD Function Example

#include <stdio.h>
#pragma omp declare simd

double computeb(int i)
{ return N+1�i; }
#define N 262144

int main()
{

long long d1=0;
double a[N], b[N], c[N], d2=0.0;
#pragma omp simd reduction(+:d1)
for (int i=0;i<N;i++)

d1 += i*computeb(i);
#pragma omp simd

for (int i=0; i<N;i++) {
a[i]=i; b[i]=computeb(i);

}
#pragma omp parallel for simd reduction(+:d2)
for (int i=0; i<N; i++)

d2 += a[i]*b[i];
printf("result1 = %ld\nresult2 = %.2lf\n", d1, d2);

}

3. Task Enhancements

I Can abort parallel OpenMP execution by
conditional cancellation at implicit and
user-defined cancellation points.

I Tasks can be grouped to into task
groups can be aborted to reflect
completion of cooperative tasking
activities such as search.

I Task-to-task synchronization is
supported through the specification of
task dependency.

OpenMP Task Cancellation Example

#include <stdio.h>
#define N 40

int main()
{

char haystack[N+1]="abcabcabczabcabcabcxabcabcabczabcabcabcz";
char needle=’x’;
int pos;
#pragma omp parallel for

for (int i=0; i<N; i++) {
if (haystack[i]==needle) {

pos=i;
#ifndef OPENMP

break;
#else

#pragma omp cancel for

#endif

}
}
printf("\n’%c’ found at position %d in %s\n",needle,pos,haystack);

}

Overview of New Directives and Functions for Tasks

I omp cancel parallel|for|sections|taskgroup

starts cancellation of all tasks in the same construct

I omp cancelation point parallel|for|sections|taskgroup

marks a point at which this task may be canceled

I omp taskgroup

marks a region such that all tasks started in it belong to a group

I omp task depend([in|out|inout]:variable) clause
marks that a task depends on other task

 RZ: Christian Terboven Folie 20

` Note: variables in the depend clause do not necessarily have to
indicate the data flow

Concurrent Execution w/ Dep.

void process_in_parallel) {
 #pragma omp parallel
 #pragma omp single
 {
 int x = 1;
 ...
 for (int i = 0; i < T; ++i) {
 #pragma omp task shared(x, ...) depend(out: x) // T1
 preprocess_some_data(...);
 #pragma omp task shared(x, ...) depend(in: x) // T2
 do_something_with_data(...);
 #pragma omp task shared(x, ...) depend(in: x) // T3
 do_something_independent_with_data(...);
 }
 } // end omp single, omp parallel
}

T1 has to be completed
before T2 and T3 can be
executed.

T2 and T3 can be
executed in parallel.

4. Thread A�nity

I OpenMP can now be told better where
to execute threads.

I Can be used to get better locality, less
false sharing, more memory bandwidth.

I To specify platform-specific data:
Environment variable OMP PLACES

I To describe thread binding to processor:

I Environment variable: OMP PROC BIND
I In code using omp parallel’s new

proc bind clause.

Allowed values:
false, true, master, close, spread

Example of Specifying Affinity See http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-affinity.html for more examples.

OMP_PLACES=sockets
On a node with two processors (i.e., two sockets, each of which contains a processor) and each processor has
8 cores, this will place threads like:
Processor0 (socket 0) = {t0, t2, t4, t6, t8, t10, t12, t14}
Processor1 (socket 1) = {t1, t3, t5, t7, t9, t11, t13, t15}

In the same system, if you specify
OMP_PLACES=cores
OMP_PROC_BIND=close
You will get
Processor0 (socket 0), cores 0 - 7 have threads = t0, t1, t2, t3, t4, t5, t6, t7
Processor1 (socket 1), cores 8 - 15 = t8, t9, t10, t11, t12, t13, t14, t15

On the same system, if you specify
OMP_PLACES=cores
OMP_PROC_BIND=close
You will get
T0 == core0, t1 == core 8, t2 = core1, t3 = core9, t4 = core2, t5 = core10, …, t14 = core7, thread15 = core15
Processor1 (socket 1) = {t1, t3, t5, t7, t9, t11, t13, t15}

This is similar to OMP_PLACES=sockets, except that OMP_PLACES=sockets does not bind a thread to a
particular core, only to a particular socket

You can also specify
OMP_PLACES=0,8,1,9,2,10,3,11,4,12,5,13,6,14,7,15
And this will cause placing work to treat 0 and 8 as close, 8 and 1 as close, etc.

http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-affinity.html

5. Other improvements

I User-defined reductions:
Previously, OpenMP API only supported reductions with base
language operators and intrinsic procedures. With OpenMP
4.0 API, user-defined reductions are now also supported.

omp declare reduction

I Sequentially consistent atomics:
A clause has been added to allow a programmer to enforce
sequential consistency when a specific storage location is
accessed atomically.

omp atomic seq cst

I Optional dump all internal variables at program start:

OMP DISPLAY ENV=TRUE|FALSE|VERBOSE

