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You should now have 
a scholar account



What is OpenMP

• An open standard for shared memory 
programming in C/C++ and Fortran

• supported by Intel, Gnu, Microsoft, Apple, IBM, HP 
and others

• Compiler directives and library support

• OpenMP programs are typically still legal to 
execute sequentially

• Allows program to be incrementally 
parallelized

• Can be used with MPI -- will discuss that later
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Fork/Join Parallelism
• Program execution starts with a single 

master thread

• Master thread executes sequential code

• When parallel part of the program is 
encountered, a fork utilizes other worker 
threads

• At the end of the parallel region, a join 
kills or suspends the worker threads



join at end of omp 
parallel pragma

Typical thread level 
parallelism using 

OpenMP
master 
thread

Green is parallel execution
Red is sequential
Creating threads is not free 
-- would like to reuse them 
across different parallel 
regions

fork, e.g. omp 
parallel pragma

Reuse the 
threads in 
the next 
parallel 
region



Where is the work in programs?
• For many programs, most of the work is 

in loops

• C and Fortran often use loops to 
express data parallel operations

• the same operation applied to many 
independent data elements

for (i = first; i < size; i += prime)
marked[i] = 1;



OpenMP Pragmas

• OpenMP expresses parallelism and 
other information using pragmas

• A C/C++ or Fortran compiler is free 
to ignore a pragma -- this means 
that OpenMP programs have serial 
as well as parallel semantics

• outcome of the program should be 
the same in either case

• #pragma omp <rest of the pragma> is the 
general form of a pragma



pragma for parallel for

• OpenMP programmers use the parallel 
for pragma to tell the compiler a loop is 
parallel

#pragma omp parallel for
for (i=0; i < n; i++) {

a[i] = b[i] + c[i];



Syntax of the parallel for control 
clause

• start is an integer index variable

• rel-op is one of {<, <=, >=, >}

• val is an integer expression

• incr is one of {index++, ++index, index--, --index, 
index+=val, index-=val, index=index+val, 
index=val+index, index=index-val

• OpenMP needs enough information from the 
loop to run the loop on multiple threads 
when the loop begins executing

for (index = start; index rel-op val; incr)



Each thread has an 
execution context

• Each thread must be able to access all of the 
storage it references

• The execution context contains

• static and global variables

• heap allocated storage

• variables on the stack belonging to functions 
called along the way to invoking the thread

• a thread-local stack for functions invoked and 
block entered during the thread execution

shared/private



Example of context

int v1;
main( ) {

T1 *v2 = malloc(sizeof(T1));
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Consider the program below:

Variables v1, v2, v3 and v4, as 
well as heap allocated storage, 
are part of the context.



Context before call to f1

int v1;
main( ) {

T1 *v2 = malloc(sizeof(T1));
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared, 
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2



Context right after call to 
f1

int v1;
...
main( ) {

T1 *v2 = malloc(sizeof(T1));
...
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared, 
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3



Context at start of parallel 
for

int v1;
main( ) {

T1 *v2 = malloc(sizeof(T1));
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared, 
green is private to thread 0,
blue is private to thread 1

Note private loop index variables.
OpenMP automatically makes the 

parallel loop index private

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3
T0 stack
i
v4
v5

T1 stack
i
v4
v5



Context after first iteration of the parallel for

int v1;
main( ) {

T1 *v2 = malloc(sizeof(T1));
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared, 
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2

T0 stack
i
v4
v5

T1 stack
i
v4
v5

T1

T1



Context after parallel for finishes

int v1;
main( ) {

T1 *v2 = malloc(sizeof(T1));
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared, 
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

T1

T1



A slightly different program -- after each 
thread has run at least 1 iteration

int v1;
main( ) {

T1 *v2 = malloc(sizeof(T1));
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));
v2 = (T1) v5

}}

v2 points to one of the T2 objects that was allocated.
Which one?  It depends.

statics and globals: v1

hea
p
T1

global stack
main: v2
foo: v3

T1

T1
t0 stack
index: i
v4 
v5

t1 stack
index: i
v4
v5



int v1;
main( ) {

T1 *v2 = malloc(sizeof(T1));
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));
v2 = (T1) v5

}}

v2 points to the T2 allocated by t0 if t0 executes the 
statement v2=(T1) v5; last 

statics and globals: v1

hea
p
T1

global stack
main: v2
foo: v3

T1

T1

After each thread has run at least 1 iteration

t0 stack
index: i
v4 
v5

t1 stack
index: i
v4
v5



int v1;
main( ) {

T1 *v2 = malloc(sizeof(T1));
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));
v2 = (T1) v5

}}

v2 points to the T2 allocated by t1 if t1 executes the 
statement v2=(T1) v5; last

statics and globals: v1

hea
p
T1

global stack
main: v2
foo: v3

t0 stack
index: i
v4, v5

t1 stack
index: i
v4, v5

T1

T1

After each thread has run at least 1 iteration



int v1;
main( ) {

T1 *v2 = malloc(sizeof(T1));
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (i=0; i < n; i++) {
int v4;
T1 *v5 = 

malloc(sizeof(T2));
v2 = (T1) v5

}}

First – do we care which object v2 points to? 

Three (possible) problems with this code

Second – there is a race on v2

 Two threads write to v2, but 
there is no intervening 
synchronization

Races are very bad – don’t do 
them!



Another problem with this code

int v1;
...
main( ) {

T1 *v2 = malloc(sizeof(T1));
...
f1( );

}
void f1( ) {

int v3;
#pragma omp parallel for 

for (i=0; i < n; i++) {
int v4;
T2 *v5 = malloc(sizeof(T2));

}}

statics and globals: v1

heap
...

...

T1

global stack
main: v2
foo: v3

T2

T2

T2

T2

T2

T2

T2

T2

T2

There is a memory leak!



Querying the number of 
processors (really cores)

• Can query the number of physical 
processors

• returns the number of cores on a 
multicore machine without hyper 
threading

• returns the number of possible 
hyperthreads on a hyperthreaded 
machine

int omp_get_num_procs(void);



Setting the number of threads
• Number of threads can be more or less than the 

number of processors (cores)

• if less, some processors or cores will be idle

• if more, more than one thread will execute on a 
core/processor

• Operating system and runtime will assign 
threads to cores

• No guarantee same threads will always run on 
the same cores

• Default is number of  threads equals number of 
cores controlled by the OS image (typically 
#cores on node/processor)

int omp_set_num_threads(int t);



Making more than the parallel for 
index private

int i, j;
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

Forks and joins are 
serializing, and we 
know what that does 
to performance.

Either the i or the j loop 
can run in parallel.

We prefer the outer i loop, 
because there are fewer 
parallel loop starts and 
stops.



Making more than the parallel for index private

int i, j;
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

Why?  Because 
otherwise there is a 
race on j!  Different 
threads will be 
incrementing the 
same j index!

Either the i or the j 
loop can run in 
parallel.

To make the i loop 
parallel we need to 
make j private. 



Making the j index private

• clauses are optional parts of pragmas
• The private clause can be used to 

make variables private 
• private (<variable list>)

int i, j;
#pragma omp parallel for private(j)
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}



When is private needed?
• If a variable is declared in a parallel 

construct (e.g., a parallel for) no 
private is needed.

• Loop indices of parallel for is private by 
default.

#pragma omp parallel for 
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

j is private here because 
it is declared inside the 
parallel i loop



What if we don’t want a 
private variable?

• What if we want a variable that is 
private by default to be shared?

• Use the shared clause.

#pragma omp parallel for shared(t)
for (int i=0; i<n; i++) {
   int t;

for (int j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}



Initialization of private variables

double tmp = 52;
#pragma omp parallel for firstprivate(tmp)
for (i=0; i<n; i++) {

tmp = max(tmp,a[i]);
}
tmp is initially 52 for all threads within the loop

• use the firstprivate clause to give the private the value the 
variable with the same name, controlled by the master 
thread, had when the parallel for is entered.

• initialization happens once per thread, not once per 
iteration

• if a thread modifies the variable, its value in subsequent 
reads is the new value



Initialization of private variables

double tmp = 52;
#pragma omp parallel for firstprivate(tmp)
for (i=0; i<n; i++) {

tmp = max(tmp,a[i]);
}
z = tmp;

• What is the value of tmp at the end of the 
loop? 



Recovering the value of private variables 
from the last iteration of the loop

double tmp = 52;
#pragma omp parallel for lastprivate(tmp) firstprivate(tmp)
for (i=0; i<n; i++) {

tmp = max(tmp,a[i]);
}
z = tmp;

• use lastprivate to recover the last value written to 
the private variable in a sequential execution of the 
program

• z and tmp will have the value assigned in iteration i 
= n-1

• note that the value saved by lastprivate will be the 
value the variable has in iteration i=n-1.  What happens 
if a thread other than the one executing iteration i=n-1 
found the max value?



Let’s solve a problem
• Given an array a we would like the 

find the average of its elements

•  A simple sequential program is 
shown below

• We want to do this in parallel

for (i=0; i < n; i++) {
t = t + a[i];

}
t = t/n



First (and wrong) try:
• Make t private

• initialize it to zero outside the loop, 
and make it firstprivate and lastprivate

• Save the last value out

t = 0
#pragma omp parallel for firstprivate(t), lastprivate(t)
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n

What is wrong with this?



Second try – Let’s use a t 
shared across threads

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n

What is wrong with this?



Need to execute t+= a[i]; 
atomically!

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n



ordering and atomicity are important 
and different

a = getBalance(b);

a++;

setBalance(b, a);

a = getBalance(b);

a++;

setBalance(b, a);

thread 0 thread 1

Program Memory

account b

$497balance

Both threads 
can access the 
same object

Thread 0

a 

Thread 1

a 



thread 0 thread 1

Program Memory

thread 0

a $497

thread 1

a 

a = getBalance(b);

a++;

setBalance(b, a);

a = getBalance(b);

a++;

setBalance(b, a);

account b

$497balance



thread 0 thread 1

Program Memory

thread 0

a $497

thread 1

a $497

a = getBalance(b);

a++;

setBalance(b, a);

a = getBalance(b);

a++;

setBalance(b, a);

account b

$497balance



thread 0 thread 1

Program Memory

thread 0

a $498

thread 1

a $497

a = getBalance(b);

a++;

setBalance(b, a);

a = getBalance(b);

a++;

setBalance(b, a);

account b

$498balance



thread 0 thread 1

Program Memory

The end result 
probably 
should have 
been $499.  
One update is 
lost.

thread 0

a $498

thread 1

a $498

a = getBalance(b);

a++;

setBalance(b, a);

a = getBalance(b);

a++;

setBalance(b, a);

account b

$498balance



synchronization enforces atomicity

#pragma omp critical {
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

#pragma omp critical {
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

thread 0 thread 1

Program Memory

object b

$497balance

Make them 
atomic using 
critical

thread 0

a 

thread 1

a 



One thread acquires 
the lock

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

object b

$497balance

thread 0

a 

thread 1

a 

The other thread waits 
until the lock is free



One thread acquires 
the lock

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

object b

$498balance

thread 0

a 

thread 1

a $498

The other thread waits 
until the lock is free



One thread acquires 
the lock

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

#omp critical   
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

object b

$498balance

thread 0

a $498

thread 1

a $498

The other thread waits 
until the lock is free



One thread acquires 
the lock

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

object b

$499balance

thread 0

a $499

thread 1

a $498

The other thread waits 
until the lock is free



Locks typically do not enforce 
ordering

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

#omp critical
   a = b.getBalance();
   a++;
   b.setBalance(a);
}

Either order is 
possible

For many (but 
not all) 
programs, either 
order is correct



• Same thing as in the bank example can happen with our 
program

– A thread gets a value of t, 
– gets interrupted (or maybe just holds its value in a 

register), 
– the other thread gets the same value of t, increments it, 

and then 
– the original thread increment its copy.

• The first update of t is lost.

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n



Third (and correct, but too slow) 
attempt

• use a critical section in the code

• executes the following (possible 
compound) statement atomically

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {
#pragma omp critical

t += a[i];
}
t = t/n

What is wrong with this?



It is effectively serial, and too 
slow!

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {
#pragma omp critical

t = a[i];
}
t = t/n

i=1
t=a[0]

i=1
t=a[1]

i=3
t=a[2] . . . 

.

.

i=2
t=a[1]

i=n-1
t=a[n-1]time = O(n)



The operation we are trying to do is 
an example of a reduction

• Called a reduction because it takes 
something with d dimensions and 
reduces it to something with d-k, k > 0 
dimensions

• Reductions on commutative operations 
can be done in parallel



A partially parallel reduction

a[99]a[24] a[25] a[49] a[50] a[74] a[75] ...a[0] .........

T[0]+=
a[0:24]

t[3]+= 
a[75:99]

t[2]+= 
a[50:74]

t[1]+= 
a[25:49]

tmp = t[0]
for (i = 1, i < 4; i++)
   tmp += t[i];

25

4speedup = 100/29
           = 3.45

O(P) to sum 
the partial 

sums

Thread 0 Thread 1 Thread 2 Thread 3



How can we do this in OpenMP?
double t[4] = {0.0, 0.0, 0.0, 0.0}
int omp_set_num_threads(4);
#pragma omp parallel for
for (i=0; i < n; i++) {

t[omp_get_thread_num( )] += a[i];
}
avg = 0;
for (i=0; i < 4; i++) }

avg += t[i];
}
avg = avg / n;

This is getting 
messy and we 
still are using 
a O(#threads) 
summation of 
the partial 
sums.parallel

serial
OpenMP function



A better parallel reduction

25

a[99]a[24] a[25] a[49] a[50] a[74] a[75] ...a[0] .........

t[0]+=
a[0:24]

t[3]+= 
a[75:99]

t[2]+= 
a[50:74]

t[1]+= 
a[25:49]

t[2]+=t[3]t[0]+=t[1]

tmp=t[0]+t[1] speedup = 100/27
         = 3.7

Thread 0 Thread 1 Thread 2 Thread 3

Thread 0 Thread 2

Thread 0



OpenMP provides an easy way to 
do this

• Reductions are common enough that OpenMP 
provides support for them

• reduction clause for omp parallel pragma

• specify variable and operation

• OpenMP takes care of creating temporaries, 
computing partial sums, and computing the 
final sum



Dot product example

t=0;
for (i=0; i < n; i++) {

t = t + a[i]*c[i];
}

t=0;
#pragma omp parallel for reduction(+:t)
for (i=0; i < n; i++) {

t = t + (a[i]*c[i]);
}

OpenMP makes t private, 
puts the partial sums for 
each thread into t, and 
then forms the full sum 
of t as shown earlier 



Restrictions on Reductions
Operations on the reduction 
variable must be of the form

x = x op expr 

x = expr op x (except subtraction) 

x binop = expr 

x++ 

++x 

x-- 

--x

• x is a scalar variable in the list 

• expr is a scalar expression that 
does not reference x 

• op is not overloaded, and is one 
of +, *, -, /, &, ^, |, &&, || 

• binop is not overloaded, and is 
one of +, *, -, /, &, ^, |



Why the restrictions on where t can appear?

t = 0;
#pragma omp parallel for reduction(+:t)
// each element of a[i] = 1
for (i=0; i<n; i++) {

t += a[i]; 
b[i] = t; 

 }

Sequential:
i = 1 i=2 i=3 i=4 i=5 i=6 i=7 i=8
t1 = 1 t1 = 3 t1 = 6 t1 = 10 t1 = 15 t1 = 21 t1 = 28 t1 = 36

Parallel:
i = 1 i=2 i=3 i=4 i=5 i=6 i=7 i=8
t1 = 1 t1 = 3 t1 = 6 t1 = 10 t1 = 5 t1 = 11 t1 = 18 t1 = 26

Thread = 0 Thread = 1



Improving performance of parallel loops

#pragma omp parallel for reduction(+:t)
for (i=0; i < n; i++) {

t = t + (a[i]*c[i]);
}
• Parallel loop startup and teardown has a cost
• Parallel loops with few iterations can lead to 

slowdowns -- if clause allows us to avoid this
• This overhead is one reason to try and parallelize 

outermost loops.
#pragma omp parallel for reduction(+:t) if (n>1000)
for (i=0; i < n; i++) {

t = t + (a[i]*c[i]);
}



Assigning iterations to threads 
(thread scheduling)

• The schedule clause can guide how iterations of a 
loop are assigned to threads

• Two kinds of schedules:

• static: iterations are assigned to threads at the 
start of the loop.  Low overhead but possible 
load balance issues.

• dynamic: some iterations are assigned at the 
start of the loop, others as the loop progresses.  
Higher overheads but better load balance.

• A chunk is a contiguous set of iterations



The schedule clause - static
• schedule(type[, chunk]) where “[ ]” indicates optional

• (type [,chunk]) is

• (static): chunks of ~ n/t iterations per thread, no 
chunk specified.  The default.

• (static, chunk): chunks of size chunk distributed round-
robin.  No chunk specified means chunk = 1



Static

Chunk = 1 1, 4, 7, 10, 
13

0, 3, 6, 9, 
12

2, 5, 8, 11, 
14

thread 0 thread 1 thread 2

Chunk = 2 2, 3, 8, 9, 
14, 15

0, 1, 6, 7, 
12, 13

4, 5, 10, 11, 
16, 17 

thread 0 thread 1 thread 2

With no chunk size specified, the 
iterations are divided as evenly as 
possible among processors, with 
one chunk per processor.



The schedule clause - dynamic

• schedule(type[, chunk]) where “[ ]” 
indicates optional

• (type [,chunk]) is

• (dynamic): chunks of size of 1 
iteration distributed dynamically

• (dynamic, chunk): chunks of size chunk 
distributed dynamically

• As threads need work, they are 
given additional chunk iterations of 
work



The schedule clause – guided

• schedule(type[, chunk]) (type [,chunk]) is

• (guided,chunk): uses guided self 
scheduling heuristic.  Starts 
with big chunks and decreases 
to a minimum chunk size of 
chunk

• runtime - type depends on value 
of OMP_SCHEDULE environment 
variable, e.g. setenv 
OMP_SCHEDULE=”static,1”



Guided with two 
threads example

31 2 4 65 7 8 9



Dynamic schedule 
with large blocks

3

1 2

4

65

7 8

9

Large 
blocks 
reduce 

scheduling 
costs, but 

lead to 
large load 
imbalance



Dynamic schedule with small blocks

Small blocks have 
a smaller load 
imbalance, but 
with higher 
scheduling costs.

Would like the 
best of both 
methods.

1

3

5

7

9

11

23

25

27

. . .

Thread 0

2

4

6

8

10

12

24

26

. . .

Thread 1



Guided with two threads

By starting out with 
larger blocks, and 
then ending with 
small ones, 
scheduling 
overhead and load 
imbalance can both 
be minimized.

1 2

34
56
78

9



The nowait clause

#pragma omp parallel for
for (i=0; i < n; i++) {

if (a[i] > 0) a[i] += b[i];
}
barrier here
#pragma omp parallel for
for (i=0; i < n; i++) {

if (a[i] < 0) a[i] -= b[i];
}

without  nowait 
(the default)

i
i

j
j

time

Only the  static distribution with the same bounds 
guarantees the same thread will execute the same 
iterations from both loops.



The nowait clause

#pragma omp parallel for nowait
for (i=0; i < n; i++) {

if (a[i] > 0) a[i] += b[i];
}
NO barrier here
#pragma omp parallel for
for (i=0; i < n; i++) {

if (a[i] < 0) a[i] -= b[i];
}

with 
nowait

i
i

j
j

without  
nowait

i
i

j
j

time

Only the  static distribution with the same bounds 
guarantees the same thread will execute the same 
iterations from both loops.



The sections pragma
Used to specify task parallelism

#pragma omp parallel sections 
{

#pragma omp section /* optional */
{
v = f1( )
w = f2( )
}

#pragma omp section
  v = f3( )
}

v = 
f1( )
w = 
f2()

v = 
f3( )



The parallel pragma
#pragma omp parallel private(w)
{
   w = getWork Q);
   while (w != NULL) {
      doWork(w);
      w = getWork(Q);
   }
}

• every processor 
executes the 
statement following 
the parallel pragma

• There is parallelism 
across useful work in 
the example because 
independent and 
different work pulled 
off of the queue Q

• Q needs to be thread 
safe



The parallel pragma
#pragma omp parallel private(w)
{
#pragma omp critical
   w = getWork (Q);
   while (w != NULL) {
      doWork(w);
#pragma omp critical
      w = getWork(Q);
   }
}

• If data structure 
pointed to by Q is not 
thread safe, need to 
synchronize it in your 
code

• One way is to use a 
critical clause

single and master 
clauses can be useful in 
a parallel region.



The single directive

Differs from critical in 
that critical lets the 
statement execute on 
every thread executing 
the parallel region, but 
one at a time.

#pragma omp parallel private(w)
{
   w = getWork (q);
   while (w != NULL) {
      doWork(w);
      w = getWork(q);
   }
    #pragma omp single
       fprintf(“finishing work”);
}

Requires statement 
following the pragma to 
be executed by a single 
thread.



The master directive

Often the master thread is 
thread 0, but this is 
implementation dependent. 
 Master thread is the same 
thread for the life of the 
program.

#pragma omp parallel private(w)
{
   w = getWork (q);
   while (w != NULL) {
      doWork(w);
      w = getWork(q);
   }
    #pragma omp master
       fprintf(“finishing work”);
}

Requires statement 
following the pragma to be 
executed by the master 
thread.



Cannot use single/
master with for

Many different 
instances of the single 

#pragma omp parallel for
for (i=0; i < n; i++) {

if (a[i] > 0) {
a[i] += b[i];

#pragma omp single
printf(“exiting”);

}
}



Does OpenMP provide a 
way to specify: 

• what parts of the program execute in parallel with 
one another 

• how the work is distributed across different cores

• the order that reads and writes to memory will take 
place

• that a sequence of accesses to a variable will occur 
atomically or without interference from other threads.

• And, ideally, it will do this while giving good 
performance and allowing maintainable programs to 
be written.



What executes in parallel?

c = 57.0;
for (i=0; i < n; i+
+) {

a[i] = c + 
a[i]*b[i]
}

c = 57.0
#pragma omp 
parallel for
for (i=0; i < n; i++) 
{

a[i] = + c + 
a[i]*b[i]
}

• pragma appears like a comment to a 
non-OpenMP compiler

• pragma requests parallel code to be 
produced for the following for loop



The order that reads and writes to 
memory occur

c = 57.0
#pragma omp parallel for schedule(static) 
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}
#pragma omp parallel for schedule(static) 
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}

• Within an iteration, access to data appears in-
order

• Across iterations, no order is implied.  Races lead 
to undefined programs



The order that reads and writes to 
memory occur

c = 57.0
#pragma omp parallel for schedule(static) 
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}

#pragma omp parallel for schedule(static) 
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}
• Across loops, an implicit barrier prevents a loop from 

starting execution until all iterations and writes 
(stores) to memory in the previous loop are finished

• Parallel constructs execute after preceding sequential 
constructs finish



Relaxing the order that reads and 
writes to memory occur

c = 57.0
#pragma omp parallel for schedule(static) nowait
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

#pragma omp parallel for schedule(static) 
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

The nowait clause allows a thread to begin executing its 
part of the code after the nowait loop as soon as it finishes 
its part of the nowait loop

no barrier



Accessing variables without 
interference from other threads

#pragma omp 
parallel for 
for (i=0; i < n; i++) {

a = a + b[i]
}

Dangerous -- all 
iterations are 
updating a at the 
same time -- a race 
(or data race). 

#pragma omp parallel 
for 
for (i=0; i < n; i++) {
#pragma omp critical

a = a + b[i];
}

Inefficient but correct -- 
critical pragma allows 
only one thread to 
execute the next 
statement at a time.   
Potentially slow -- but ok 
if you have enough work 
in the rest of the loop to 
make it worthwhile.



Program Translation for 
Microtasking Scheme

   Subroutine x
   ...
C$OMP PARALLEL DO
   DO j=1,n
     a(j)=b(j)
   ENDDO
   …
   END

subroutine x
…
call scheduler(1,n,a,b,loopsub)
…
END

subroutine loopsub(lb,ub,a,b)
integer lb,ub
DO jj=lb,ub
   a(jj)=b(jj)
ENDDO
END



How are loops scheduled?

● A work queue is maintained with work for threads to 
get

● An entry for an chunk of the loop, represented by 
loopsub, is something like:

int lb 
int ub
ptr to a and b

A ptr to subroutine loopsub
●  As each thread completes a work item, it grabs a work 

item from the queue, invokes the subroutine pointed 
to passing the other members of the struct as 
arguments. 



Parallel ExecutionScheme

• Most widely used: Microtasking scheme

Main
task

Helper
tasks

 Main task creates helpers

Parallel loop

Parallel loop

Wake up helpers, grab work off 
of the queue

Wake up helpers, grab work off of 
the queue

Barrier, helpers go back to sleep

Barrier, helpers go back to sleep
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