
Basic OpenMP

Last updated 12:38, January 14. Previously updated January 11, 2019 at 3:08PM

You should now have
a scholar account

What is OpenMP

• An open standard for shared memory
programming in C/C++ and Fortran

• supported by Intel, Gnu, Microsoft, Apple, IBM, HP
and others

• Compiler directives and library support

• OpenMP programs are typically still legal to
execute sequentially

• Allows program to be incrementally
parallelized

• Can be used with MPI -- will discuss that later

Basic OpenMP Hardware Model

Uniform
memory
access
shared

memory
machine

is
assumed

CPU

cache

bus

cache cache cache

I/O devices

CPUCPUCPU

Memory

Fork/Join Parallelism
• Program execution starts with a single

master thread

• Master thread executes sequential code

• When parallel part of the program is
encountered, a fork utilizes other worker
threads

• At the end of the parallel region, a join
kills or suspends the worker threads

join at end of omp
parallel pragma

Typical thread level
parallelism using

OpenMP
master
thread

Green is parallel execution
Red is sequential
Creating threads is not free
-- would like to reuse them
across different parallel
regions

fork, e.g. omp
parallel pragma

Reuse the
threads in
the next
parallel
region

Where is the work in programs?
• For many programs, most of the work is

in loops

• C and Fortran often use loops to
express data parallel operations

• the same operation applied to many
independent data elements

for (i = first; i < size; i += prime)
marked[i] = 1;

OpenMP Pragmas

• OpenMP expresses parallelism and
other information using pragmas

• A C/C++ or Fortran compiler is free
to ignore a pragma -- this means
that OpenMP programs have serial
as well as parallel semantics

• outcome of the program should be
the same in either case

• #pragma omp <rest of the pragma> is the
general form of a pragma

pragma for parallel for

• OpenMP programmers use the parallel
for pragma to tell the compiler a loop is
parallel

#pragma omp parallel for
for (i=0; i < n; i++) {

a[i] = b[i] + c[i];

Syntax of the parallel for control
clause

• start is an integer index variable

• rel-op is one of {<, <=, >=, >}

• val is an integer expression

• incr is one of {index++, ++index, index--, --index,
index+=val, index-=val, index=index+val,
index=val+index, index=index-val

• OpenMP needs enough information from the
loop to run the loop on multiple threads
when the loop begins executing

for (index = start; index rel-op val; incr)

Each thread has an
execution context

• Each thread must be able to access all of the
storage it references

• The execution context contains

• static and global variables

• heap allocated storage

• variables on the stack belonging to functions
called along the way to invoking the thread

• a thread-local stack for functions invoked and
block entered during the thread execution

shared/private

Example of context

int v1;
main() {

T1 *v2 = malloc(sizeof(T1));
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Consider the program below:

Variables v1, v2, v3 and v4, as
well as heap allocated storage,
are part of the context.

Context before call to f1

int v1;
main() {

T1 *v2 = malloc(sizeof(T1));
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared,
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2

Context right after call to
f1

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared,
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

Context at start of parallel
for

int v1;
main() {

T1 *v2 = malloc(sizeof(T1));
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (int i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared,
green is private to thread 0,
blue is private to thread 1

Note private loop index variables.
OpenMP automatically makes the

parallel loop index private

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3
T0 stack
i
v4
v5

T1 stack
i
v4
v5

Context after first iteration of the parallel for

int v1;
main() {

T1 *v2 = malloc(sizeof(T1));
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared,
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2

T0 stack
i
v4
v5

T1 stack
i
v4
v5

T1

T1

Context after parallel for finishes

int v1;
main() {

T1 *v2 = malloc(sizeof(T1));
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));

}}

Storage, assuming two threads
red is shared,
green is private to thread 0,
blue is private to thread 1

statics and globals: v1

heap

T1

global stack
main: v2
foo: v3

T1

T1

A slightly different program -- after each
thread has run at least 1 iteration

int v1;
main() {

T1 *v2 = malloc(sizeof(T1));
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));
v2 = (T1) v5

}}

v2 points to one of the T2 objects that was allocated.
Which one? It depends.

statics and globals: v1

hea
p
T1

global stack
main: v2
foo: v3

T1

T1
t0 stack
index: i
v4
v5

t1 stack
index: i
v4
v5

int v1;
main() {

T1 *v2 = malloc(sizeof(T1));
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));
v2 = (T1) v5

}}

v2 points to the T2 allocated by t0 if t0 executes the
statement v2=(T1) v5; last

statics and globals: v1

hea
p
T1

global stack
main: v2
foo: v3

T1

T1

After each thread has run at least 1 iteration

t0 stack
index: i
v4
v5

t1 stack
index: i
v4
v5

int v1;
main() {

T1 *v2 = malloc(sizeof(T1));
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T1 *v5 = malloc(sizeof(T1));
v2 = (T1) v5

}}

v2 points to the T2 allocated by t1 if t1 executes the
statement v2=(T1) v5; last

statics and globals: v1

hea
p
T1

global stack
main: v2
foo: v3

t0 stack
index: i
v4, v5

t1 stack
index: i
v4, v5

T1

T1

After each thread has run at least 1 iteration

int v1;
main() {

T1 *v2 = malloc(sizeof(T1));
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T1 *v5 =

malloc(sizeof(T2));
v2 = (T1) v5

}}

First – do we care which object v2 points to?

Three (possible) problems with this code

Second – there is a race on v2

 Two threads write to v2, but
there is no intervening
synchronization

Races are very bad – don’t do
them!

Another problem with this code

int v1;
...
main() {

T1 *v2 = malloc(sizeof(T1));
...
f1();

}
void f1() {

int v3;
#pragma omp parallel for

for (i=0; i < n; i++) {
int v4;
T2 *v5 = malloc(sizeof(T2));

}}

statics and globals: v1

heap
...

...

T1

global stack
main: v2
foo: v3

T2

T2

T2

T2

T2

T2

T2

T2

T2

There is a memory leak!

Querying the number of
processors (really cores)

• Can query the number of physical
processors

• returns the number of cores on a
multicore machine without hyper
threading

• returns the number of possible
hyperthreads on a hyperthreaded
machine

int omp_get_num_procs(void);

Setting the number of threads
• Number of threads can be more or less than the

number of processors (cores)

• if less, some processors or cores will be idle

• if more, more than one thread will execute on a
core/processor

• Operating system and runtime will assign
threads to cores

• No guarantee same threads will always run on
the same cores

• Default is number of threads equals number of
cores controlled by the OS image (typically
#cores on node/processor)

int omp_set_num_threads(int t);

Making more than the parallel for
index private

int i, j;
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

Forks and joins are
serializing, and we
know what that does
to performance.

Either the i or the j loop
can run in parallel.

We prefer the outer i loop,
because there are fewer
parallel loop starts and
stops.

Making more than the parallel for index private

int i, j;
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

Why? Because
otherwise there is a
race on j! Different
threads will be
incrementing the
same j index!

Either the i or the j
loop can run in
parallel.

To make the i loop
parallel we need to
make j private.

Making the j index private

• clauses are optional parts of pragmas
• The private clause can be used to

make variables private
• private (<variable list>)

int i, j;
#pragma omp parallel for private(j)
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

When is private needed?
• If a variable is declared in a parallel

construct (e.g., a parallel for) no
private is needed.

• Loop indices of parallel for is private by
default.

#pragma omp parallel for
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

j is private here because
it is declared inside the
parallel i loop

What if we don’t want a
private variable?

• What if we want a variable that is
private by default to be shared?

• Use the shared clause.

#pragma omp parallel for shared(t)
for (int i=0; i<n; i++) {
 int t;

for (int j=0; j<n; j++) {
a[i][j] = max(b[i][j],a[i][j]);

}
}

Initialization of private variables

double tmp = 52;
#pragma omp parallel for firstprivate(tmp)
for (i=0; i<n; i++) {

tmp = max(tmp,a[i]);
}
tmp is initially 52 for all threads within the loop

• use the firstprivate clause to give the private the value the
variable with the same name, controlled by the master
thread, had when the parallel for is entered.

• initialization happens once per thread, not once per
iteration

• if a thread modifies the variable, its value in subsequent
reads is the new value

Initialization of private variables

double tmp = 52;
#pragma omp parallel for firstprivate(tmp)
for (i=0; i<n; i++) {

tmp = max(tmp,a[i]);
}
z = tmp;

• What is the value of tmp at the end of the
loop?

Recovering the value of private variables
from the last iteration of the loop

double tmp = 52;
#pragma omp parallel for lastprivate(tmp) firstprivate(tmp)
for (i=0; i<n; i++) {

tmp = max(tmp,a[i]);
}
z = tmp;

• use lastprivate to recover the last value written to
the private variable in a sequential execution of the
program

• z and tmp will have the value assigned in iteration i
= n-1

• note that the value saved by lastprivate will be the
value the variable has in iteration i=n-1. What happens
if a thread other than the one executing iteration i=n-1
found the max value?

Let’s solve a problem
• Given an array a we would like the

find the average of its elements

• A simple sequential program is
shown below

• We want to do this in parallel

for (i=0; i < n; i++) {
t = t + a[i];

}
t = t/n

First (and wrong) try:
• Make t private

• initialize it to zero outside the loop,
and make it firstprivate and lastprivate

• Save the last value out

t = 0
#pragma omp parallel for firstprivate(t), lastprivate(t)
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n

What is wrong with this?

Second try – Let’s use a t
shared across threads

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n

What is wrong with this?

Need to execute t+= a[i];
atomically!

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n

ordering and atomicity are important
and different

a = getBalance(b);

a++;

setBalance(b, a);

a = getBalance(b);

a++;

setBalance(b, a);

thread 0 thread 1

Program Memory

account b

$497balance

Both threads
can access the
same object

Thread 0

a

Thread 1

a

thread 0 thread 1

Program Memory

thread 0

a $497

thread 1

a

a = getBalance(b);

a++;

setBalance(b, a);

a = getBalance(b);

a++;

setBalance(b, a);

account b

$497balance

thread 0 thread 1

Program Memory

thread 0

a $497

thread 1

a $497

a = getBalance(b);

a++;

setBalance(b, a);

a = getBalance(b);

a++;

setBalance(b, a);

account b

$497balance

thread 0 thread 1

Program Memory

thread 0

a $498

thread 1

a $497

a = getBalance(b);

a++;

setBalance(b, a);

a = getBalance(b);

a++;

setBalance(b, a);

account b

$498balance

thread 0 thread 1

Program Memory

The end result
probably
should have
been $499.
One update is
lost.

thread 0

a $498

thread 1

a $498

a = getBalance(b);

a++;

setBalance(b, a);

a = getBalance(b);

a++;

setBalance(b, a);

account b

$498balance

synchronization enforces atomicity

#pragma omp critical {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

#pragma omp critical {
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

thread 0 thread 1

Program Memory

object b

$497balance

Make them
atomic using
critical

thread 0

a

thread 1

a

One thread acquires
the lock

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

object b

$497balance

thread 0

a

thread 1

a

The other thread waits
until the lock is free

One thread acquires
the lock

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

object b

$498balance

thread 0

a

thread 1

a $498

The other thread waits
until the lock is free

One thread acquires
the lock

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

object b

$498balance

thread 0

a $498

thread 1

a $498

The other thread waits
until the lock is free

One thread acquires
the lock

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

object b

$499balance

thread 0

a $499

thread 1

a $498

The other thread waits
until the lock is free

Locks typically do not enforce
ordering

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

#omp critical
 a = b.getBalance();
 a++;
 b.setBalance(a);
}

Either order is
possible

For many (but
not all)
programs, either
order is correct

• Same thing as in the bank example can happen with our
program

– A thread gets a value of t,
– gets interrupted (or maybe just holds its value in a

register),
– the other thread gets the same value of t, increments it,

and then
– the original thread increment its copy.

• The first update of t is lost.

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {

t += a[i];
}
t = t/n

Third (and correct, but too slow)
attempt

• use a critical section in the code

• executes the following (possible
compound) statement atomically

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {
#pragma omp critical

t += a[i];
}
t = t/n

What is wrong with this?

It is effectively serial, and too
slow!

t = 0
#pragma omp parallel for
for (i=0; i < n; i++) {
#pragma omp critical

t = a[i];
}
t = t/n

i=1
t=a[0]

i=1
t=a[1]

i=3
t=a[2] . . .

.

.

i=2
t=a[1]

i=n-1
t=a[n-1]time = O(n)

The operation we are trying to do is
an example of a reduction

• Called a reduction because it takes
something with d dimensions and
reduces it to something with d-k, k > 0
dimensions

• Reductions on commutative operations
can be done in parallel

A partially parallel reduction

a[99]a[24] a[25] a[49] a[50] a[74] a[75] ...a[0]

T[0]+=
a[0:24]

t[3]+=
a[75:99]

t[2]+=
a[50:74]

t[1]+=
a[25:49]

tmp = t[0]
for (i = 1, i < 4; i++)
 tmp += t[i];

25

4speedup = 100/29
 = 3.45

O(P) to sum
the partial

sums

Thread 0 Thread 1 Thread 2 Thread 3

How can we do this in OpenMP?
double t[4] = {0.0, 0.0, 0.0, 0.0}
int omp_set_num_threads(4);
#pragma omp parallel for
for (i=0; i < n; i++) {

t[omp_get_thread_num()] += a[i];
}
avg = 0;
for (i=0; i < 4; i++) }

avg += t[i];
}
avg = avg / n;

This is getting
messy and we
still are using
a O(#threads)
summation of
the partial
sums.parallel

serial
OpenMP function

A better parallel reduction

25

a[99]a[24] a[25] a[49] a[50] a[74] a[75] ...a[0]

t[0]+=
a[0:24]

t[3]+=
a[75:99]

t[2]+=
a[50:74]

t[1]+=
a[25:49]

t[2]+=t[3]t[0]+=t[1]

tmp=t[0]+t[1] speedup = 100/27
 = 3.7

Thread 0 Thread 1 Thread 2 Thread 3

Thread 0 Thread 2

Thread 0

OpenMP provides an easy way to
do this

• Reductions are common enough that OpenMP
provides support for them

• reduction clause for omp parallel pragma

• specify variable and operation

• OpenMP takes care of creating temporaries,
computing partial sums, and computing the
final sum

Dot product example

t=0;
for (i=0; i < n; i++) {

t = t + a[i]*c[i];
}

t=0;
#pragma omp parallel for reduction(+:t)
for (i=0; i < n; i++) {

t = t + (a[i]*c[i]);
}

OpenMP makes t private,
puts the partial sums for
each thread into t, and
then forms the full sum
of t as shown earlier

Restrictions on Reductions
Operations on the reduction
variable must be of the form

x = x op expr

x = expr op x (except subtraction)

x binop = expr

x++

++x

x--

--x

• x is a scalar variable in the list

• expr is a scalar expression that
does not reference x

• op is not overloaded, and is one
of +, *, -, /, &, ^, |, &&, ||

• binop is not overloaded, and is
one of +, *, -, /, &, ^, |

Why the restrictions on where t can appear?

t = 0;
#pragma omp parallel for reduction(+:t)
// each element of a[i] = 1
for (i=0; i<n; i++) {

t += a[i];
b[i] = t;

 }

Sequential:
i = 1 i=2 i=3 i=4 i=5 i=6 i=7 i=8
t1 = 1 t1 = 3 t1 = 6 t1 = 10 t1 = 15 t1 = 21 t1 = 28 t1 = 36

Parallel:
i = 1 i=2 i=3 i=4 i=5 i=6 i=7 i=8
t1 = 1 t1 = 3 t1 = 6 t1 = 10 t1 = 5 t1 = 11 t1 = 18 t1 = 26

Thread = 0 Thread = 1

Improving performance of parallel loops

#pragma omp parallel for reduction(+:t)
for (i=0; i < n; i++) {

t = t + (a[i]*c[i]);
}
• Parallel loop startup and teardown has a cost
• Parallel loops with few iterations can lead to

slowdowns -- if clause allows us to avoid this
• This overhead is one reason to try and parallelize

outermost loops.
#pragma omp parallel for reduction(+:t) if (n>1000)
for (i=0; i < n; i++) {

t = t + (a[i]*c[i]);
}

Assigning iterations to threads
(thread scheduling)

• The schedule clause can guide how iterations of a
loop are assigned to threads

• Two kinds of schedules:

• static: iterations are assigned to threads at the
start of the loop. Low overhead but possible
load balance issues.

• dynamic: some iterations are assigned at the
start of the loop, others as the loop progresses.
Higher overheads but better load balance.

• A chunk is a contiguous set of iterations

The schedule clause - static
• schedule(type[, chunk]) where “[]” indicates optional

• (type [,chunk]) is

• (static): chunks of ~ n/t iterations per thread, no
chunk specified. The default.

• (static, chunk): chunks of size chunk distributed round-
robin. No chunk specified means chunk = 1

Static

Chunk = 1 1, 4, 7, 10,
13

0, 3, 6, 9,
12

2, 5, 8, 11,
14

thread 0 thread 1 thread 2

Chunk = 2 2, 3, 8, 9,
14, 15

0, 1, 6, 7,
12, 13

4, 5, 10, 11,
16, 17

thread 0 thread 1 thread 2

With no chunk size specified, the
iterations are divided as evenly as
possible among processors, with
one chunk per processor.

The schedule clause - dynamic

• schedule(type[, chunk]) where “[]”
indicates optional

• (type [,chunk]) is

• (dynamic): chunks of size of 1
iteration distributed dynamically

• (dynamic, chunk): chunks of size chunk
distributed dynamically

• As threads need work, they are
given additional chunk iterations of
work

The schedule clause – guided

• schedule(type[, chunk]) (type [,chunk]) is

• (guided,chunk): uses guided self
scheduling heuristic. Starts
with big chunks and decreases
to a minimum chunk size of
chunk

• runtime - type depends on value
of OMP_SCHEDULE environment
variable, e.g. setenv
OMP_SCHEDULE=”static,1”

Guided with two
threads example

31 2 4 65 7 8 9

Dynamic schedule
with large blocks

3

1 2

4

65

7 8

9

Large
blocks
reduce

scheduling
costs, but

lead to
large load
imbalance

Dynamic schedule with small blocks

Small blocks have
a smaller load
imbalance, but
with higher
scheduling costs.

Would like the
best of both
methods.

1

3

5

7

9

11

23

25

27

. . .

Thread 0

2

4

6

8

10

12

24

26

. . .

Thread 1

Guided with two threads

By starting out with
larger blocks, and
then ending with
small ones,
scheduling
overhead and load
imbalance can both
be minimized.

1 2

34
56
78

9

The nowait clause

#pragma omp parallel for
for (i=0; i < n; i++) {

if (a[i] > 0) a[i] += b[i];
}
barrier here
#pragma omp parallel for
for (i=0; i < n; i++) {

if (a[i] < 0) a[i] -= b[i];
}

without nowait
(the default)

i
i

j
j

time

Only the static distribution with the same bounds
guarantees the same thread will execute the same
iterations from both loops.

The nowait clause

#pragma omp parallel for nowait
for (i=0; i < n; i++) {

if (a[i] > 0) a[i] += b[i];
}
NO barrier here
#pragma omp parallel for
for (i=0; i < n; i++) {

if (a[i] < 0) a[i] -= b[i];
}

with
nowait

i
i

j
j

without
nowait

i
i

j
j

time

Only the static distribution with the same bounds
guarantees the same thread will execute the same
iterations from both loops.

The sections pragma
Used to specify task parallelism

#pragma omp parallel sections
{

#pragma omp section /* optional */
{
v = f1()
w = f2()
}

#pragma omp section
 v = f3()
}

v =
f1()
w =
f2()

v =
f3()

The parallel pragma
#pragma omp parallel private(w)
{
 w = getWork Q);
 while (w != NULL) {
 doWork(w);
 w = getWork(Q);
 }
}

• every processor
executes the
statement following
the parallel pragma

• There is parallelism
across useful work in
the example because
independent and
different work pulled
off of the queue Q

• Q needs to be thread
safe

The parallel pragma
#pragma omp parallel private(w)
{
#pragma omp critical
 w = getWork (Q);
 while (w != NULL) {
 doWork(w);
#pragma omp critical
 w = getWork(Q);
 }
}

• If data structure
pointed to by Q is not
thread safe, need to
synchronize it in your
code

• One way is to use a
critical clause

single and master
clauses can be useful in
a parallel region.

The single directive

Differs from critical in
that critical lets the
statement execute on
every thread executing
the parallel region, but
one at a time.

#pragma omp parallel private(w)
{
 w = getWork (q);
 while (w != NULL) {
 doWork(w);
 w = getWork(q);
 }
 #pragma omp single
 fprintf(“finishing work”);
}

Requires statement
following the pragma to
be executed by a single
thread.

The master directive

Often the master thread is
thread 0, but this is
implementation dependent.
 Master thread is the same
thread for the life of the
program.

#pragma omp parallel private(w)
{
 w = getWork (q);
 while (w != NULL) {
 doWork(w);
 w = getWork(q);
 }
 #pragma omp master
 fprintf(“finishing work”);
}

Requires statement
following the pragma to be
executed by the master
thread.

Cannot use single/
master with for

Many different
instances of the single

#pragma omp parallel for
for (i=0; i < n; i++) {

if (a[i] > 0) {
a[i] += b[i];

#pragma omp single
printf(“exiting”);

}
}

Does OpenMP provide a
way to specify:

• what parts of the program execute in parallel with
one another

• how the work is distributed across different cores

• the order that reads and writes to memory will take
place

• that a sequence of accesses to a variable will occur
atomically or without interference from other threads.

• And, ideally, it will do this while giving good
performance and allowing maintainable programs to
be written.

What executes in parallel?

c = 57.0;
for (i=0; i < n; i+
+) {

a[i] = c +
a[i]*b[i]
}

c = 57.0
#pragma omp
parallel for
for (i=0; i < n; i++)
{

a[i] = + c +
a[i]*b[i]
}

• pragma appears like a comment to a
non-OpenMP compiler

• pragma requests parallel code to be
produced for the following for loop

The order that reads and writes to
memory occur

c = 57.0
#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}
#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}

• Within an iteration, access to data appears in-
order

• Across iterations, no order is implied. Races lead
to undefined programs

The order that reads and writes to
memory occur

c = 57.0
#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}

#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c + a[i]*b[i]
}
• Across loops, an implicit barrier prevents a loop from

starting execution until all iterations and writes
(stores) to memory in the previous loop are finished

• Parallel constructs execute after preceding sequential
constructs finish

Relaxing the order that reads and
writes to memory occur

c = 57.0
#pragma omp parallel for schedule(static) nowait
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

#pragma omp parallel for schedule(static)
for (i=0; i < n; i++) {

a[i] = c[i] + a[i]*b[i]
}

The nowait clause allows a thread to begin executing its
part of the code after the nowait loop as soon as it finishes
its part of the nowait loop

no barrier

Accessing variables without
interference from other threads

#pragma omp
parallel for
for (i=0; i < n; i++) {

a = a + b[i]
}

Dangerous -- all
iterations are
updating a at the
same time -- a race
(or data race).

#pragma omp parallel
for
for (i=0; i < n; i++) {
#pragma omp critical

a = a + b[i];
}

Inefficient but correct --
critical pragma allows
only one thread to
execute the next
statement at a time.
Potentially slow -- but ok
if you have enough work
in the rest of the loop to
make it worthwhile.

Program Translation for
Microtasking Scheme

 Subroutine x
 ...
C$OMP PARALLEL DO
 DO j=1,n
 a(j)=b(j)
 ENDDO
 …
 END

subroutine x
…
call scheduler(1,n,a,b,loopsub)
…
END

subroutine loopsub(lb,ub,a,b)
integer lb,ub
DO jj=lb,ub
 a(jj)=b(jj)
ENDDO
END

How are loops scheduled?

● A work queue is maintained with work for threads to
get

● An entry for an chunk of the loop, represented by
loopsub, is something like:

int lb
int ub
ptr to a and b

A ptr to subroutine loopsub
● As each thread completes a work item, it grabs a work

item from the queue, invokes the subroutine pointed
to passing the other members of the struct as
arguments.

Parallel ExecutionScheme

• Most widely used: Microtasking scheme

Main
task

Helper
tasks

 Main task creates helpers

Parallel loop

Parallel loop

Wake up helpers, grab work off
of the queue

Wake up helpers, grab work off of
the queue

Barrier, helpers go back to sleep

Barrier, helpers go back to sleep

	Slide 3
	Slide 4
	What is OpenMP
	Basic OpenMP Hardware Model
	Fork/Join Parallelism
	Typical thread level parallelism using OpenMP
	Where is the work in programs?
	OpenMP Pragmas
	pragma for parallel for
	Syntax of the parallel for control clause
	Each thread has an execution context
	Example of context
	Context before call to f1
	Context right after call to f1
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Another problem with this code
	Querying the number of processors (really cores)
	Setting the number of threads
	Making more than the parallel for index private
	Slide 34
	Making the j index private
	When is private needed?
	When is private needed?
	Initialization of private variables
	Initialization of private variables
	Slide 40
	Let’s solve a problem
	First (and wrong) try:
	Second try:
	Second try:
	ordering and atomicity are important and different
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	synchronization enforces atomicity
	One thread acquires the lock
	One thread acquires the lock
	One thread acquires the lock
	One thread acquires the lock
	Locks typically do not enforce ordering
	Slide 56
	Third (and correct but slow) try:
	Why this is slow
	The operation we are trying to do is an example of a reduction
	A partially parallel reduction
	How can we do this in OpenMP?
	Slide 62
	OpenMP provides an easy way to do this
	Dot product example
	Restrictions on Reductions
	Why the restrictions on where t can appear?
	Improving performance of parallel loops
	Assigning iterations to threads (thread scheduling)
	The schedule clause - static
	Static
	The schedule clause - dynamic
	The schedule clause
	Guided with two threads example
	Dynamic schedule with large blocks
	Dynamic schedule with small blocks
	Guided with two threads
	Slide 78
	The nowait clause
	The sections pragma
	The parallel pragma
	The parallel pragma
	The single directive
	The master directive
	Cannot use single/master with for
	Does OpenMP provide a way to specify:
	What executes in parallel?
	The order that reads and writes to memory occur
	Slide 91
	Relaxing the order that reads and writes to memory occur
	Accessing variables without interference from other threads
	Program Translation for Microtasking Scheme
	Slide 96
	Parallel ExecutionScheme

