
PThreads

Thanks to LLNL for their tutorial
from which these slides are

derived
http://www.llnl.gov/computing/tutorials/worksh
ops/workshop/pthreads/MAIN.html

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html

Processes and threads
• Understanding what a thread means knowing the

relationship between a process and a thread. A
process is created by the operating system.

– Processes contain information about program
resources and program execution state,
including:

• Process ID, process group ID, user ID,
and group ID, address space

• Environment, working directory
• Program instructions, registers, stack,

heap
• File descriptors, inter-process

communication tools (such as message
queues, pipes, semaphores, or shared
memory), signal actions

• Shared libraries

Processes and threads, cont.
• Threads use and exist within

these process resources, yet are
able to be scheduled by the
operating system and run as
independent entities within a
process

Processes and threads, cont.
• A thread can possess an

independent flow of control
and be schedulable because it
maintains its own:

–Stack pointer
–Registers
–Scheduling properties (such
as policy or priority)

–Set of pending and blocked
signals

–Thread specific data.

Processes and threads, cont.
• A process can have multiple threads, all of

which share the resources within a process
and all of which execute within the same
address space

• Within a multi-threaded program, there are
at any time multiple points of execution

Processes and threads, cont.
• Because threads within the same process share

resources:
–Changes made by one thread to shared

system resources (such as closing a file) will
be seen by all other threads

–Two pointers having the same value point to
the same data

–Reading and writing to the same memory
locations is possible, and therefore requires
explicit synchronization by the programmer

What are Pthreads?
• Historically, hardware vendors implemented their own proprietary

versions of threads.
–Standardization required for portable multi-threaded

programming
–For Unix, this interface specified by the IEEE POSIX 1003.1c

standard (1995).
• Implementations of this standard are called POSIX threads,

or Pthreads.
• Most hardware vendors now offer Pthreads in addition to

their proprietary API's
• Pthreads are defined as a set of C language programming

types and procedure calls, implemented with a pthread.h
header/include file and a thread library

–Multiple drafts before standardization -- this led to problems

Posix Threads - 3 kinds
• "Real" POSIX threads, based on the IEEE POSIX

1003.1c-1995 (also known as the ISO/IEC 9945-
1:1996) standard, part of the ANSI/IEEE 1003.1, 1996
edition, standard. POSIX implementations are, not
surprisingly, the standard on Unix systems. POSIX
threads are usually referred to as Pthreads.

• DCE threads are based on draft 4 (an early draft) of
the POSIX threads standard (which was originally
named 1003.4a, and became 1003.1c upon
standardization).

• Unix International (UI) threads, also known as Solaris
threads, are based on the Unix International threads
standard (a close relative of the POSIX standard).

What are threads used for?
• Tasks that may be suitable for threading include

tasks that
–Block for potentially long waits (Tera

MTA/HEP)
– Use many CPU cycles
–Must respond to asynchronous events
–Are of lesser or greater importance than other

tasks
– Are able to be performed in parallel with other

tasks
• Note that numerical computing and parallelism are

a small part of what parallelism is used for

Three classes of Pthreads routines
• Thread management: creating, detaching, and joining

threads, etc. They include functions to set/query thread
attributes (joinable, scheduling etc.)

• Mutexes: Mutex functions provide for creating,
destroying, locking and unlocking mutexes. They are
also supplemented by mutex attribute functions that set
or modify attributes associated with mutexes.

• Condition variables: The third class of functions
address communications between threads that share a
mutex. They are based upon programmer specified
conditions. This class includes functions to create,
destroy, wait and signal based upon specified variable
values. Functions to set/query condition variable
attributes are also included.

Creating threads
• pthread_create (thread, attr, start_routine, arg)
• This routine creates a new thread and makes it

executable. Typically, threads are first created from
within main() inside a single process.
– Once created, threads are peers, and may create
other threads

– The pthread_create subroutine returns the new
thread ID via the thread argument. This ID should
be checked to ensure that the thread was
successfully created

– The attr parameter is used to set thread attributes.
Can be an object, or NULL for the default values

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_create.html

Creating threads
• pthread_create (thread, attr, start_routine,

arg)
– start_routine is the C routine that the

thread will execute once it is created.
A single argument may be passed to
start_routine via arg as a void pointer.

– The maximum number of threads that
may be created by a process is
implementation dependent.

• Question: After a thread has been created,
how do you know when it will be
scheduled to run by the operating
system...especially on an SMP machine?
You don’t!

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_create.html

Terminating threads
• How threads are terminated:

• The thread returns from its starting
routine (the main routine for the initial
thread)

• The thread makes a call to the
pthread_exit subroutine

• The thread is canceled by another thread
via the pthread_cancel routine
•Some problems can exist with data

consistency
• The entire process is terminated due to a

call to either the exec or exit subroutines.

pthread_exit(status)
• pthread_exit() routine is called after a thread has

completed its work and is no longer required to exist
• If main() finishes before the threads it has created,

and exits with pthread_exit(), the other threads
will continue to execute.
– Otherwise, they will be automatically terminated

when main() finishes
• The programmer may optionally specify a termination

status, which is stored as a void pointer for any thread
that may join the calling thread

•Cleanup
– pthread_exit() routine does not close files
– Recommended to use pthread_exit() to exit

from all threads...especially main().

void* PrintHello(void *threadid){
 printf(”\n%d: Hello World!\n", threadid);
 pthread_exit(NULL);
}
int main (int argc, char *argv[]){
 pthread_t threads[NUM_THREADS];
 int args[NUM_THREADS];
 int rc, t;
 for(t=0;t < NUM_THREADS;t++){
 printf("Creating thread %d\n", t);
 args[t] = t;
 rc = pthread_create(&threads[t], NULL, PrintHello,
 (void *) args[t]);
 if (rc) {
 printf("ERROR: pthread_create rc is %d\n", rc);
 exit(-1);
 }
 }
 pthread_exit(NULL);
}

Passing arguments to a thread
• Thread startup is non-deterministic
• It is implementation dependent
• If we do not know when a thread

will start, how do we pass data to
the thread knowing it will have the
right value at startup time?
–Don’t pass data as arguments

that can be changed by another
thread

– In general, use a separate
instance of a data structure for
each thread.

Passing data to a thread (a simple integer)

int *taskids[NUM_THREADS];
for(t=0;t < NUM_THREADS;t++) {
 taskids[t] = (int *)
 malloc(sizeof(int));
 *taskids[t] = t;
 printf("Creating thread %d\n", t);
 rc = pthread_create(&threads[t], NULL,
 PrintHello,
 (void *) &t);
 …
}

time
Thread 0 Thread k

What is the value of t that is used in this call to f?
The value is indeterminate.

t = 0;

pthread_create(..., f, t);

t = 1

pthread_create(..., f, t);

t = 2

thread spawn

f(t);

x = t;

In general
• Unless you know something is read-only

–Only good way to know what the value is
when the thread starts is to have a separate
copy of argument for each thread.

–Complicated data structures may share data
at a deeper level
•This not so much of a problem with
numerical codes since the data structures
are often simpler than with integer codes
(although not true with sparse codes and
complicated meshes)

Thread identifiers
• pthread_t pthread_self ()

– pthread_self() routine returns the unique,
system assigned thread ID of the calling thread

• int pthread_equal (thread1, thread2)
– pthread_equal() routine compares two thread

IDs.
• 0 if different, non-zero if the same.
• Note that for both of these routines, the thread

identifier objects are opaque
• Because thread IDs are opaque objects, the C

language equivalence operator == should not be
used to compare two thread IDs against each
other, or to compare a single thread ID against
another value.

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_self.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_equal.html

• pthread_join (threadId, status)
• The pthread_join() subroutine blocks the

calling thread until the specified threadId thread
terminates

• The programmer is able to obtain the target
thread's termination return status if specified
through pthread_exit(), in the status
parameter
– This can be a void pointer and point to anything

• It is impossible to join a detached thread
(discussed next)

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_join.html

Detatched threads are not joinable
• pthread_attr_init (attr)
• Pthread_attr_setdetachstate(attr,
detachstate)

• Pthread_attr_getdetachstate(attr,
detatchstate)

• Pthread_attr_destroy (attr)
• Pthread_detach (threadid, status)
•According to the Pthreads standard, all threads

should default to joinable, but older implementations
may not be compliant.

See PThreadsAttr.pdf (next page)

include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 3
void *BusyWork(void *null) {
 int i;
 double result=0.0;
 for (i=0; i < 1000000; i++) {
 result = result + (double)random();
 }
 printf("result = %e\n",result);
 pthread_exit((void *) 0);
}

int main (int argc, char *argv[]) {
 pthread_t thread[NUM_THREADS];
 pthread_attr_t attr;
 int rc, t, status;
 /* Initialize and set thread detached attribute */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr,

 PTHREAD_CREATE_JOINABLE);
 for(t=0;t < NUM_THREADS;t++) {
 printf("Creating thread %d\n", t);
 rc = pthread_create(&thread[t], &attr, BusyWork, NULL);
 if (rc) {
 printf("ERROR; pthread_create() rc is %d\n", rc);
 exit(-1);
 }
 }

 /* Free attribute and wait for the other threads */
 pthread_attr_destroy(&attr);
 for(t=0;t < NUM_THREADS;t++) {
 rc = pthread_join(thread[t], (void **)&status);
 if (rc) {
 printf("ERROR; pthread_create() rc is %d\n", rc);
 exit(-1);
 }
 printf("Completed join with thread %d status= %d\n",t,
status);
 }
 pthread_exit(NULL);
}

this is ok

Locks in pthreads: allow
critical sections to be formed

• Unlike Java, locks and objects are
disjoint because unlike Java, can’t
assume you have objects

• pthread_mutex_init (mutex, attr)
• pthread_mutex_destroy (mutex)
• pthread_mutexattr_init (attr)
• pthread_mutexattr_destroy (attr)

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_init.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_destroy.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutexattr_init.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutexattr_destroy.html

Using locks
• pthread_mutex_lock (mutex)

–Acquire lock if available
–Otherwise wait until lock is available

• pthread_mutex_trylock (mutex)
–Acquire lock if available
–Otherwise return lock-busy error

• pthread_mutex_unlock (mutex)
–Release the lock to be acquired by another

pthread_mutex_lock or trylock call
–Cannot make assumptions about which thread

aquire the lock next

• See

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html
for an example

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_lock.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_trylock.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/man/pthread_mutex_unlock.html
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html

Using barriers
pthread_barrier_t barrier;

pthread_barrierattr_t attr;
unsigned count;
int ret;
 ret = pthread_barrierattr_init(&attr);
 ret = pthread_barrier_init(&barrier, &attr, count);
 ret = pthread_barrier_wait(&barrier);
 ret = pthread_barrier_destroy(&barrier);

The only barrier attribute is the process shared
attribute. The default is PTHREAD_PROCESS_PRIVATE:
only threads that belong to the process that created
the barrier can wait on a barrier with this attribute.
PTHREAD_PROCESS_SHARED allows threads of any
process that accesses the memory the barrier is
allocated in to access the barrier.

Using condition variables

• Allows one thread to signal to another
thread that a condition is true

• Prevents programmer from having to
loop on a mutex call to poll if a condition
is true.

Condition variable scenario

• Main Thread
– Declare and initialize global

data/variables which require
synchronization (such as
"count")

– Declare and initialize a
condition variable object

– Declare and initialize an
associated mutex

– Create threads A and B to do
work

• Thread A
• Execute up to where some

condition should be true (e.g.
count = some value)

• Lock associated mutex and
check value of a global variable
(e.g. count). If valid value:

• Call pthread_cond_wait()
–performs a blocking wait for

signal from Thread-B.
call to pthread_cond_wait()
unlocks the associated mutex
variable so Thread-B can use it.
Wake up on signal -- Mutex is
automatically and atomically
locked
Explicitly unlock mutex

Continue

•Thread B
•Do work
•Lock associated mutex

• Change the value of
the global variable
that Thread-A is
waiting on

• Check if the value of
the global Thread-A
wait variable fulfills
the desired condition

• signal Thread-A.
• Unlock mutex
• Continue

OpenMP --> Pthreads
• omp parallel for

The programmer must partition the loop iteration space
and give different parts of the iteration space to different
threads. Need a barrier at the end
• omp parallel

Have the appropriate number of threads execute
the task in the parallel region
• omp parallel sections

Code in each section sent to a different thread with
a barrier at the end
• tasks

Just spawn a thread with the task as the called routine.

Summary

• OpenMP build on Pthreads
• Consistency model for Pthreads

between synchronization and thread
creation/destruction calls is up to the
individual compiler

	PThreads
	Processes and threads
	Processes and threads, cont.
	Slide 4
	Slide 5
	Processes and threads, cont._clipboard0
	What are Pthreads?
	Posix Threads - 3 kinds
	What are threads used for?
	Three classes of Pthreads routines
	Creating threads
	Slide 12
	Terminating threads
	pthread_exit(status)
	Slide 15
	Passing arguments to a thread
	Passing data to a thread (a simple integer)
	Slide 18
	In general
	Thread identifiers
	Slide 21
	Detatched threads are not joinable
	Slide 23
	Slide 24
	Slide 25
	Locks in pthreads: allow critical sections to be formed
	Using locks
	Using barriers
	Using condition variables
	Condition variable scenario
	Slide 31
	OpenMP <--> Pthreads
	Summary

