
Unified Parallel C
UPC

Slides based on those found at http://www2.hpcl.gwu.edu/pgas09/tutorials/upc_tut.pdf

see upc.gwu.edu for more UPC information, or the Berkeley site

Friday, April 1, 16

http://www2.hpcl.gwu.edu/pgas09/tutorials/upc_tut.pdf
http://www2.hpcl.gwu.edu/pgas09/tutorials/upc_tut.pdf

Contrast with MPI
MPI OpenMP UPC

Programming Model Message passing Shared Memory Dist. Shared Memory

Expressing Parallelism Library Library Directives C Extension

Architecture supported MIMD SMP MIMD

Incremental parallelizing Not really Yes Not really

Locality exploitation Yes, using dist and comm NO Yes: blocking and affinity

Collective operations Yes Compiler/Pgmmer input Compiler/Pgmmer Input

Data distribution in Declarations No N/A Yes

Memory Consistency N/A Strict Strict or relaxed

Dynamic memory alloc Private only Yes Private or shared, w/or without blocking

pointers to dist. data N/A N/A Yes

Synchronization Barriers/Wait critical sect, locks, etc. barriers, locks, cons. ctl

Friday, April 1, 16

UPC -- design philosophy

• Start with C

• Keep C low-level control features (addresses, pointers, etc.)

• Add parallelism, learn from previous languages

• Take input and suggestions from the developer’s community

• Integrate and work with experts from government, vendors,
academia

Friday, April 1, 16

UPC design philosophy

• Assume programmers know what they are doing

• Put programmers close to the hardware, let them exploit hardware
properties

• Can get good performance without super-powerful compilers

• Can also get into trouble

• Concise and efficient syntax like C

• Easy to implement on different architectures

• High performance at the system and node levels

Friday, April 1, 16

UPC a PGAS language

• PGAS is Partitioned Global Address Space

• Unlike MPI, one address space covers all objects (“objects” in the
sense of something in memory, not in the OO sense)

• Unlike OpenMP/Pthreads/Java, address space is assumed to be
partitioned across multiple nodes and (perhaps) physically disjoint
address spaces

Friday, April 1, 16

Friday, April 1, 16

Friday, April 1, 16

Vector add in UPC

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];
void main() {
 int i;
 for (i=MYTHREAD; i < N; I+= THREADS)
 v1plusv2[i] = v1[i] + v2[i];
}

Friday, April 1, 16

A better implementation using
upc_forall

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];
void main() {
 int i;
 upc_forall (i=0; i < N; i++;)
 v1plusv2[i] = v1[i] + v2[i];
}

• upc_forall handles distribution
of work

• Easier since UPC keeps track
of assignment of work to
threads

Friday, April 1, 16

Shared and private data in UPC
Assume THREADS=3

shared int x; /* x has an affinity for process 0 */
share int y[THREADS]
int z; // private -- one per thread

Friday, April 1, 16

Shared and private data (2)

shared int A[4][THREADS]
Data is spread across the processors in a
round-robin fashion

Friday, April 1, 16

Different distributions of data

• Default block size is 1 -- gives a cyclic distribution

• Other block sizes can be specified to achieve a block or block-cyclic
distribution

• Thread affinity is given by

shared [block-size] type array-name[N]

shared[4] int a[16]

Friday, April 1, 16

Shared and private data

• Assume THREADS = 4

• shared [3] int A[4][THREADS]

• will result in the following layout:
block 2

block 1

block 3 block 4

block 5

block 6

Query operators
provided to determine
blocking information and
affinity information of
arrays and types

UPC provided string functions can be
used to move blocks of data among
threads

Friday, April 1, 16

UPC Pointers

• Two attributes

• location of storage pointed to

• location of the pointer itself

data location/
pointer location

private shared

private PP PS

shared SP SS

Where pointer is

Where pointed
to data is

Friday, April 1, 16

UPC Pointers
int *p1; /* private pointer pointing to local storage */

shared int *p2; /* private pointer pointing into shared space. A “pointer to
shared” */

int *shared p3; /* shared pointer pointing locally */

shared int* shared p4; /*shared pointer pointing into the shared space */

People sometimes use shared pointer to mean a pointer pointing into the
shared space (p2), but could also be a pointer residing in the shared
space (p4)

a bad idea. Why?

Friday, April 1, 16

UPC Pointers

int *p1; /* private pointer pointing to local storage */

shared int *p2; /* private pointer pointing into shared space. A “pointer to
shared” */

int *shared p3; /* shared pointer pointing locally */

shared int* shared p4; /*shared pointer pointing into the shared space */

a bad idea. Why?
shared ptr

private pointer (no shared)

private int (no shared)

shared int shared ptr

Friday, April 1, 16

UPC Pointersint *p1; /* private point pointing to local storage */

shared int *p2; /* private point pointing into shared space */

int *shared p3; /* shared pointer pointing locally */

shared int *shared p4; /*shared pointer pointing into the shared space */

Friday, April 1, 16

Implementation of pointer to
shared objects

• UPC pointers to shared objects have three fields:

• thread number: thread whose storage that contains to the
object being pointed to

• Block address: local address of the block that contains the
object

• Phase: contains the location of the object within the block

Friday, April 1, 16

UPC Pointers manipulations

• Pointer arithmetic supports blocked and non-blocked array
distributions

• Casting of shared to private is legal, but not vice versa

• Casting from pointer-to-shared to pointer-to-private may lose the
“owning” thread number information

• Casting from pointer-to-shared to pointer-to-private is well defined
only if the private pointer resides on the same thread as the data

Friday, April 1, 16

UPC pointer arithmetic
Assume THREADS=4
#define N 16
shared int x[N];
shared int *dp=&x[5], *dp1;
dp1 = dp+9;

Friday, April 1, 16

blocking is part of type -- can lead
to interesting pointer arithmetic

Assume THREADS=4
shared int x[N];
shared[3] int *dp = &x[5], *dp1;
dp1 = dp + 9;

9 elements past by
array index value

9 elements past
assuming blocks of size 3

Pointer declared with
blocksize of 3 points to array
with default blocksize of 1

Friday, April 1, 16

Why do this?

• Allows pointer arithmetic to be used to scan elements within a block and
to exploit locality

• Pointer follows its own declared blocking and not that of what it points
to

shared int x[N];
shared[3] int *dp = &x[5], *dp1;

Friday, April 1, 16

More pointer fun

• Given the declarations

shared[3] int *p;

shared[5] int *q;

• Then

p=q is acceptable (may need an explicit cast w/some implementations)

• Pointer p, however, will follow pointer arithmetic for blocks of 3, not 5

Friday, April 1, 16

UPC forall

• Distributes work across threads

• Simple C-like syntax and semantics

• upc_forall(init; test; incr; affinity);

• affinity can be an integer expression or

• a reference to (address of) a shared object

Friday, April 1, 16

Exploiting locality with upc_forall

Example 1:

shared int a[100], b[100], c[100];
int i;
upc_forall (i=0; i < 100; i++; &a[i])
 a[i] = b[i]*c[i];

Iteration i executes on the
processor that a[i] resides on

Example 2:

shared int a[100], b[100], c[100];
int i;
upc_forall (i=0; i < 100; i++; i)
 a[i] = b[i]*c[i];

expression mod THREADS gives
the thread iteration executes on.
Same distribution as in example 1.

Friday, April 1, 16

More working sharing with upc_forall
Example 3: distribute by chunks

shared int a[100], 1[100], a[100]
int i;
upc_forall (i=0; i < 100; i++; (i*THREADS)/100)
 a[i] = b[i] * c[i];

Friday, April 1, 16

Other supported functionality

• Dynamic memory allocation

• Synchronization

• Memory consistency models

Friday, April 1, 16

Dynamic memory allocation
• Collective operations executed by every thread, allocates a contiguous

chunk in the shared space, all threads get the same value

Dynamic memory allocationDynamic memory allocation

Friday, April 1, 16

• non-collective operations allocate a contiguous region in the shared
space

• each thread invoking this allocates a different region and gets a
pointer to that region

Friday, April 1, 16

Local shared memory allocation

Friday, April 1, 16

UPC free

• UPC_free frees up storage pointed-to by a shared pointer

• local allocations to local pointers can be done by malloc

Friday, April 1, 16

UPC synchronization

• barriers that can involve various subsets of threads

• Can be blocking or non-blocking

• With non-blocking, hit the barrier, do some work, then wait for
the barrier when data written before the barrier is needed

• Locks, lock_attempt allows a lock to be checked

Friday, April 1, 16

Memory models

• Can either have a relaxed or strict memory model

• Strict is SC

• Can be specified on a per-variable basis

• The compiler enforces this

Friday, April 1, 16

Friday, April 1, 16

