
Unified Parallel C
UPC

Slides based on those found at http://www2.hpcl.gwu.edu/pgas09/tutorials/upc_tut.pdf

see upc.gwu.edu for more UPC information, or the Berkeley site
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Contrast with MPI
MPI OpenMP UPC

Programming Model Message passing Shared Memory Dist. Shared Memory

Expressing Parallelism Library Library Directives C Extension

Architecture supported MIMD SMP MIMD

Incremental parallelizing Not really Yes Not really

Locality exploitation Yes, using dist and comm NO Yes: blocking and affinity

Collective operations Yes Compiler/Pgmmer input Compiler/Pgmmer Input

Data distribution in Declarations No N/A Yes

Memory Consistency N/A Strict Strict or relaxed

Dynamic memory alloc Private only Yes Private or shared, w/or without blocking

pointers to dist. data N/A N/A Yes

Synchronization Barriers/Wait critical sect, locks, etc. barriers, locks, cons. ctl
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UPC -- design philosophy

• Start with C

• Keep C low-level control features (addresses, pointers, etc.)

• Add parallelism, learn from previous languages

• Take input and suggestions from the developer’s community

• Integrate and work with experts from government, vendors, 
academia
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UPC design philosophy

• Assume programmers know what they are doing

• Put programmers close to the hardware, let them exploit hardware 
properties

• Can get good performance without super-powerful compilers

• Can also get into trouble

• Concise and efficient syntax like C

• Easy to implement on different architectures

• High performance at the system and node levels

Friday, April 1, 16



UPC a PGAS language

• PGAS is Partitioned Global Address Space

• Unlike MPI, one address space covers all objects (“objects” in the 
sense of something in memory, not in the OO sense)

• Unlike OpenMP/Pthreads/Java, address space is assumed to be 
partitioned across multiple nodes and (perhaps) physically disjoint 
address spaces
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Vector add in UPC

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];
void main( ) {
   int i;
   for (i=MYTHREAD; i < N; I+= THREADS) 
       v1plusv2[i] = v1[i] + v2[i];
}
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A better implementation using 
upc_forall

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];
void main( ) {
   int i;
   upc_forall (i=0; i < N; i++;) 
       v1plusv2[i] = v1[i] + v2[i];
}

• upc_forall handles distribution
of work

• Easier since UPC keeps track 
of assignment of work to 
threads 
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Shared and private data in UPC
Assume THREADS=3

shared int x; /* x has an affinity for process 0 */
share int y[THREADS] 
int z; // private -- one per thread
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Shared and private data (2)

shared int A[4][THREADS]
Data is spread across the processors in a 
round-robin fashion
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Different distributions of data

• Default block size is 1 -- gives a cyclic distribution

• Other block sizes can be specified to achieve a block or block-cyclic 
distribution

• Thread affinity is given by

shared [block-size] type array-name[N]

shared[4] int a[16]
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Shared and private data

• Assume THREADS = 4

• shared [3] int A[4][THREADS]

• will result in the following layout:
block 2

block 1

block 3 block 4

block 5

block 6

Query operators 
provided to determine 
blocking information and 
affinity information of 
arrays and types

UPC provided string functions can be 
used to move blocks of data among 
threads
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UPC Pointers

• Two attributes

• location of storage pointed to

• location of the pointer itself

data location/
pointer location

private shared

private PP PS

shared SP SS

Where pointer is

Where pointed 
to data is
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UPC Pointers
int *p1;  /* private pointer pointing to local storage */

shared int *p2; /* private pointer pointing into shared space.  A “pointer to 
shared”  */

int *shared p3; /* shared pointer pointing locally */

shared int* shared p4; /*shared pointer pointing into the shared space */

People sometimes use shared pointer to mean a pointer pointing into the 
shared space (p2), but could also be a pointer residing in the shared 
space (p4)

a bad idea.  Why?
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UPC Pointers

int *p1;  /* private pointer pointing to local storage */

shared int *p2; /* private pointer pointing into shared space.  A “pointer to 
shared”  */

int *shared p3; /* shared pointer pointing locally */

shared int* shared p4; /*shared pointer pointing into the shared space */

a bad idea.  Why?
shared ptr

private pointer (no shared)

private int (no shared)

shared int shared ptr
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UPC Pointersint *p1;  /* private point pointing to local storage */

shared int *p2; /* private point pointing into shared space */

int *shared p3; /* shared pointer pointing locally */

shared int *shared p4; /*shared pointer pointing into the shared space */
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Implementation of pointer to 
shared objects

• UPC pointers to shared objects have three fields:

• thread number: thread whose storage that contains to the 
object being pointed to

• Block address: local address of the block that contains the 
object

• Phase: contains the location of the object within the block
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UPC Pointers manipulations

• Pointer arithmetic supports blocked and non-blocked array 
distributions

• Casting of shared to private is legal, but not vice versa

• Casting from pointer-to-shared to pointer-to-private may lose the 
“owning” thread number information

• Casting from pointer-to-shared to pointer-to-private is well defined 
only if the private pointer resides on the same thread as the data

Friday, April 1, 16



UPC pointer arithmetic
Assume THREADS=4
#define N 16
shared int x[N];
shared int *dp=&x[5], *dp1;
dp1 = dp+9;
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blocking is part of type -- can lead 
to interesting pointer arithmetic

Assume THREADS=4
shared int x[N];
shared[3] int *dp = &x[5], *dp1;
dp1 = dp + 9;

9 elements past by 
array index value

9 elements past 
assuming blocks of size 3

Pointer declared with 
blocksize of 3 points to array 
with default blocksize of 1
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Why do this?

• Allows pointer arithmetic to be used to scan elements within a block and 
to exploit locality

• Pointer follows its own declared blocking and not that of what it points 
to

shared int x[N]; 
shared[3] int *dp = &x[5], *dp1; 
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More pointer fun

• Given the declarations

shared[3] int *p;

shared[5] int *q;

• Then

p=q is acceptable (may need an explicit cast w/some implementations)

• Pointer p, however, will follow pointer arithmetic for blocks of 3, not 5
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UPC forall

• Distributes work across threads

• Simple C-like syntax and semantics

• upc_forall(init; test; incr; affinity);

• affinity can be an integer expression or

• a reference to (address of) a shared object
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Exploiting locality with upc_forall

Example 1:

shared int a[100], b[100], c[100];
int i;
upc_forall (i=0; i < 100; i++; &a[i])
   a[i] = b[i]*c[i];

Iteration i executes on the 
processor that a[i] resides on

Example 2:

shared int a[100], b[100], c[100];
int i;
upc_forall (i=0; i < 100; i++; i)
   a[i] = b[i]*c[i];

expression mod THREADS gives 
the thread iteration executes on.  
Same distribution as in example 1.
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More working sharing with upc_forall
Example 3: distribute by chunks

shared int a[100], 1[100], a[100]
int i;
upc_forall (i=0; i < 100; i++; (i*THREADS)/100)
   a[i] = b[i] * c[i];
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Other supported functionality

• Dynamic memory allocation

• Synchronization

• Memory consistency models
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Dynamic memory allocation
• Collective operations executed by every thread, allocates a contiguous 

chunk in the shared space, all threads get the same value

Dynamic memory allocationDynamic memory allocation
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• non-collective operations allocate a contiguous region in the shared 
space

• each thread invoking this allocates a different region and gets a 
pointer to that region
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Local shared memory allocation
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UPC free 

• UPC_free frees up storage pointed-to by a shared pointer

• local allocations to local pointers can be done by malloc
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UPC synchronization

• barriers that can involve various subsets of threads

• Can be blocking or non-blocking

• With non-blocking, hit the barrier, do some work, then wait for 
the barrier when data written before the barrier is needed

• Locks, lock_attempt allows a lock to be checked
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Memory models

• Can either have a relaxed or strict memory model

• Strict is SC

• Can be specified on a per-variable basis

• The compiler enforces this
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