NAS FT Variants Performance Summary

4/1/16 CS267 Lecture: UPC Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

FFT Performance on BlueGene/P

- PGAS implementations consistently outperform MPI
- Leveraging communication/ computation overlap yields best performance
 - More collectives in flight and more communication leads to better performance
 - At 32k cores, overlap algorithms yield 17% improvement in overall application time
- Numbers are getting close to HPC record
 - Future work to try to beat the record

HPC Challenge Peak as of July 09 is ~4.5 Tflops on 128k Cores

Case Study: LU Factorization

- Direct methods have complicated dependencies
 - Especially with pivoting (unpredictable communication)
 - Especially for sparse matrices (dependence graph with holes)
- LU Factorization in UPC
 - Use overlap ideas and multithreading to mask latency
 - Multithreaded: UPC threads + user threads + threaded BLAS
 - Panel factorization: Including pivoting
 - Update to a block of U
 - Trailing submatrix updates
- Status:
 - Dense LU done: HPL-compliant
 - Sparse version underway

UPC HPL Performance

• MPI HPL numbers from HPCC database

•Large scaling:

- •2.2 TFlops on 512p,
- •4.4 TFlops on 1024p (Thunder)

- Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
 - ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
 - UPC LU (block size 256) 33.60 GFlop/s, (block size 64) 26.47 GFlop/s
- n = 32000 on a 4x4 process grid
 - ScaLAPACK 43.34 GFlop/s (block size = 64)
 - UPC 70.26 Gflop/s (block size = 200)

Joint work with Parry Husbands