

Machine Learning from 100000 feet

For a great intuitive look at this with beautiful
animations, see

https://www.youtube.com/watch?v=aircAruvnKk

https://www.youtube.com/watch?v=aircAruvnKk

What is a neural network
● It’s not AI
● It’s basically a connected graph organized in

layers
● By tuning the neural network it will match data

to buckets established by training
● They are opaque

The problem we’re going to show

● MNIST is the “hello world” of
machine learning

● The idea is to match take handwritten
digits, represent them as pixels, and
automatically recognize them.

● Each number is represented by a 28
x 28 array of pixels

A neural network

● 784 inputs
correspond to the
784 (28 x 28)
pixels in each
image.

● 10 outputs
correspond to the
digits 0 .. 9

782

783

2

1

0

2

1

0

n-1

2

1

0

m-1

2

1

0

9

A neural network
● Nodes or neurons

values are
activations

● Nodes are
connected to other
nodes that they can
stimulate

● Analogous to brains
and neurons

782

783

2

1

0

2

1

0

n-1

2

1

0

m-1

2

1

0

9

A neural network
● Values of the input

nodes are the value
of the corresponding
pixel

● Value of the output
node is a numeric
representation of the
likelihood this is the
number whose pixels
are inputs.

782

783

2

1

0

2

1

0

n-1

2

1

0

m-1

2

1

0

9

A neural network
● Input values and

values on nodes are
normalized to be
between 0 and 1

● Number of layers
and number of
neurons in a layer
affect the
performance of the
Neural network.

782

783

2

1

0

2

1

0

n-1

2

1

0

m-1

2

1

0

9

A neural network
● This is a

multilayer
percepton

● The gray nodes
are hidden layers

782

783

2

1

0

2

1

0

n-1

2

1

0

m-1

2

1

0

9

Parameters of the neural network
● Some parameters of the neural network are

– The number of layers,
– The number of nodes,
– How values are normalized to be between 0 and 1

● Selecting parameters is more art than science
● Initially just play with it.
● To small of a network leads to poor accuracy
● To large of a network leads to overfitting and poor

accuracy.

● Activation values are
represented as ax

y,
where x is the position
with a layer and y is
the layer.

● Each connection from
some ax

y to az
(y+1) has a

weight wx
y, associated

with the originating
and destination nodes.

782

783

2

1

0

2

1

0

n-1

2

1

0

m-1

2

1

0

9

8

a
0

(0)

a
1

(0)

a
2

(0)

a
782

(0)

a
783

(0)

a
0

(1)

a
n-1

(1)

a
1

(2)

a
m-1

(1]2)

w
0,0

w
0,1

w
n-1,2

● To find the value for some node ar
(c), we use the

formula a’
r
(c) = σ(Awc-1+b), where w and b are vectors

of weights and biases. a’
0
(2)=Σni=0(ai(1)*wi,1)+b

● To get the number between 0 and 1, a regularizer
function is used. The sigmoid function is one such
regularizer, i.e., a1

(0)=σ(1/(1+e-a’)
● Biases can be used to ensure a value is greater than

some other value, e.g., a’
1

(0)=Σi=0783(a0(i)*w0,i)-10

This can be written as
● This computes

one element
● A full matrix

multiply
computes all
of the a’s of
row 1

w
0,0

, w
0,1

 … w
0,n

W
0,0,

w
0,1

…

w

0,n

. . .

W
0,0,

w
0,1

…

w

0,n

a
0

(0)

a
1

(0)

. . .
a

n
(0)

a
0

(1)

=

We’ll see the effect this has
on TPU architectures.

Apply the regularizer function to this
to normalize (the sigmoid function,

in our case

w
0,0

, w
0,1

 … w
0,n

W
0,0,

w
0,1

…

w

0,n

. . .

W
0,0,

w
0,1

…

w

0,n

a
0
(0)

a
1
(0)

. . .
a

n
(0)

a
0
(1)

=

b
0
(1)

b
1
(1)

. . .
b

n
(1)

+

What does it mean to train the neural
network?

● Training is simply the setting of the weights and biases appropriately.
● We can do this using gradient descent and back propagation, which

we discuss next.
● To train the network using a data set with inputs and labels that are

the correct answer.
● We train for a given number of epochs (passes over the training

data) or until a loss function says we are good. In either case, the
loss function is a measure of how good the algorithm recognizes the
training data.

● We’ll start out with random weights and biases and train them to
something better.

The loss function (cost in the tutorial
mentioned in the title slide)

● Many cost functions are available – we’ll discuss a little
more with tensorflow

● We’ll use sum of squares of the error, because it is simple
● Let’s return to our number recognition problem.

– If a 2 is the number to recognize, ideally the last layer will have 1
for node for 2, and 0 for everything else.

– Loss is how far we deviate from this.

782

783

2

1

0

2

1

0

n-1

2

1

0

m-1

2

1

0

9

loss=Σ10i=0(ai(3)-expected)2

Basic training strategy
● Feed the training data into the randomly

initialized neural network
● Compute the loss function
● Use gradient descent, or another optimizer, to

tune the weights and biases
● Repeat until satisfied with the level of training

A neural network is a function
● We have 13002 weights and biases
● The neural network is a function of these

weights and biases
● We want to adjust the weights and balances to

minimize the loss function

● A function in
one variable

● Minimum found
using derivative
of the function

● Local minima
are an issue.

● A fairly nice
function in 2
variables

● Visualization of a
function
represented by
some neural
network

● We have thousands of inputs, 13002 weights and biases of
our function, X variables, one output (the loss)

● We have local minima that should be avoided
● The negative of the gradient gives us the direction of steepest

descent, drives us to the closest (local or global) minimum by
giving us the changes in each of the 13002 weights and
biases to move towards the local or global minimum.

● Having continuous activations is necessary to make this work,
whereas biological neurons are more binary

Back propagation, input is 2

782

783

2

1

0

2

1

0

n-1

2

1

0

m-1

0.2

0.8

0.05

1.0

0

1

2

9

The 0 output is pretty
close, but the
contribution of the 9
output, is very high
and contributes most to
the error.

But let’s focus on the
neuron we want to
increase.

● a’
2

(4)=Σn
i=0(ai

(3)*wi,3)+b

● Three ways t change the value of 2’s
neuron:
– Change the value of the bias, b

– Increase wi,3

– Change the value of ai
(3)

● Changing the weights associated with
brighter, high valued neurons feeding into 2
has more of an effect than changing the
value of darker low-valued neurons.;

2

1

0

m-1

0.2

0.8

0.05

1.0

0

1

2

9

● Changing the values of the activations,
i.e., the a values, associated with the
nodes feeding into two will change the
value of 2

● Increasing a values with positive weights,
and decreasing those with negative
weights, will increase the value of two.

● Again, changes of values associated with
with weights with a larger magnitude will
have a larger effect.

2

1

0

m-1

0.2

0.8

0.05

1.0

0

1

2

9

The other output neurons affect this
● The non-two neurons need to be considered
● Add together of all the desired effects on non-two nodes and the

two-node tells us how to nudge weights and biases from the
previous layer

● Apply this recursively to more previous layers
● These nudges are, roughly proportional to the negative gradient

discussed previously
● This is back propagation.

Computational issues
● Doing this for every input data point on every

training step (epoch) is computationally
complex.

● Solution:
– Batch the data into chunks of data
– In each epoch, train on one batch at a time

A problem with neural networks
● You might think that different layers begin to identify

characteristics of the network, the next layers puts these
together into larger parts of the number, and finally it identifies
a 2
– That’s not what happens
– State of a layer looks pretty random compared to what it is

recognizing

● Random patterns will often be strongly identified as a number.

Adversarial networks
https://arxiv.org/pdf/1712.09665.pdf

https://arxiv.org/pdf/1712.09665.pdf

Perturbed images are pasted onto
signs https://spectrum.ieee.org/cars-that-think/transportation/sensors/slight-street-sign-modifications-can-fool-machine-learning-algorithms

● Stop signs
identified as
speed limit 45
signs, right
turn as stop
signs

https://spectrum.ieee.org/cars-that-think/transportation/sensors/slight-street-sign-modifications-can-fool-machine-learning-algorithms

TPU Architecture
● Training is expensive – hours, days and weeks
● A result of real neural networks being complicated,

and training data sets needing to be large (tens to
hundreds of thousands of elements for classifiers).
MNIST is ~10K images, and is small in overall size.

● Training involves lots of matrix multiplies
● So build a processor to do that

● Google had an ASIC (application specific
integrated circuit) in 2006

A convolution
● Weights = {w1, w2, …, wk}, inputs x = {x1, x2, …, xk}

and outputs y {y1, y2 ,…, yk}

● yi = wixi + wi+1xi+1 + wi+2xi+2 + … + wkxk

● As an example, let k = 3
● y1 = w1x1 + w2x2 + w2x2

● y2 = w2x2 + w3x3 + 0

● y3 = w3x3 + 0 + 0

Computing this on a simple processor
● Assume each input is read for each operation.
● 12 input values read for 3 results, bad I/O from

memory balance
● y1 = w1x1 + w2x2 + w2x2

● y2 = w2x2 + w3x3 + 0

● y3 = w3x3 + 0 + 0

● Systolic arrays, which “pump” data through the
processor, can help

A simple
systolic
array

x
3

x
2

x
1

w
1

w
2

w
3y

3
y

2
y

1

w
i

y
in

x
in

y
out

6 data elements are
fetched to do the
computation. Even for
this small problem, 50%
less data

Step 1

x
3

x
2

x
1

w
1

y
1

x
1

w
2

x
1

w
3

y
3

y
2

y
1

Step 2

x
3

x
2

w
1

y
2

x
2

W
2

y
1

x
2

w
3

y
3

y
2

y
1

Step 3

x
3

w
1

y
3

x
3

W
2

y
2

x
3

W
3

y
1

y
3

y
1y

2

After step 3, in this small
example, pump out the values
for y

2
 and y

3

Can do the
same thing in 2

dimensionsX
0

X
1

X
2

X
3

Y
0

Y
1

Y
2

Y
3

TPUs

● https://cloud.google.com/blog/products/gcp/an-
in-depth-look-at-googles-first-tensor-
processing-unit-tpu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

