
  

Machine Learning from 100000 feet

For a great intuitive look at this with beautiful 
animations, see 

https://www.youtube.com/watch?v=aircAruvnKk 

https://www.youtube.com/watch?v=aircAruvnKk


  

What is a neural network
● It’s not AI
● It’s basically a connected graph organized in 

layers
● By tuning the neural network it will match data 

to buckets established by training
● They are opaque  



  

The problem we’re going to show

● MNIST is the “hello world” of 
machine learning

● The idea is to match take handwritten 
digits, represent them as pixels, and 
automatically recognize them.

● Each number is represented by a 28 
x 28 array of pixels



  

A neural network

● 784 inputs 
correspond to the 
784 (28 x 28) 
pixels in each 
image.

● 10 outputs 
correspond to the 
digits 0 .. 9
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A neural network
● Nodes or neurons 

values are 
activations

● Nodes are 
connected to other 
nodes that they can 
stimulate

● Analogous to brains 
and neurons
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A neural network
● Values of the input 

nodes are the value 
of the corresponding 
pixel

● Value of the output 
node is a numeric 
representation of the 
likelihood this is the 
number whose pixels 
are inputs.
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A neural network
● Input values and 

values on nodes are 
normalized to be 
between 0 and 1

● Number of layers 
and number of 
neurons in a layer 
affect the 
performance of the 
Neural network.
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A neural network
● This is a 

multilayer 
percepton

● The gray nodes 
are hidden layers
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Parameters of the neural network
● Some parameters of the neural network are 

– The number of layers, 
– The number of nodes,
– How values are normalized to be between 0 and 1

● Selecting parameters is more art than science
● Initially just play with it.
● To small of a network leads to poor accuracy
● To large of a network leads to overfitting and poor 

accuracy.



  

● Activation values are 
represented as ax

y, 
where x is the position 
with a layer and y is 
the layer.

● Each connection from 
some ax

y to az
(y+1) has a 

weight wx
y, associated 

with the originating 
and destination nodes.
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● To find the value for some node ar
(c), we use the 

formula a’
r
(c) = σ(Awc-1+b), where w and b are vectors 

of weights and biases.  a’
0
(2)=Σni=0(ai(1)*wi,1)+b

● To get the number between 0 and 1, a regularizer 
function is used.  The sigmoid function is one such 
regularizer, i.e., a1

(0)=σ(1/(1+e-a’)
● Biases can be used to ensure a value is greater than 

some other value, e.g., a’
1

(0)=Σi=0783(a0(i)*w0,i)-10



  

This can be written as
● This computes 

one element
● A full matrix 

multiply 
computes all  
of the a’s of 
row 1
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We’ll see the effect this has 
on TPU architectures.



  

Apply the regularizer function to this 
to normalize (the sigmoid function, 

in our case
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What does it mean to train the neural 
network?

● Training is simply the setting of the weights and biases appropriately.
● We can do this using gradient descent and back propagation, which 

we discuss next.
● To train the network using a data set with inputs and labels that are 

the correct answer.
● We train for a given number of epochs (passes over the training 

data) or until a loss function says we are good.  In either case, the 
loss function is a measure of how good the algorithm recognizes the 
training data.

● We’ll start out with random weights and biases and train them to 
something better.



  

The loss function (cost in the tutorial 
mentioned in the title slide)

● Many cost functions are available – we’ll discuss a little 
more with tensorflow

● We’ll use sum of squares of the error, because it is simple
● Let’s return to our number recognition problem.

– If a 2 is the number to recognize, ideally the last layer will have 1 
for node for 2, and 0 for everything else.

– Loss is how far we deviate from this.
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loss=Σ10i=0(ai(3)-expected)2



  

Basic training strategy
● Feed the training data into the randomly 

initialized neural network
● Compute the loss function
● Use gradient descent, or another optimizer, to 

tune the weights and biases
● Repeat until satisfied with the level of training



  

A neural network is a function
● We have 13002 weights and biases
● The neural network is a function of these 

weights and biases
● We want to adjust the weights and balances to 

minimize the loss function



  

● A function in 
one variable

● Minimum found 
using derivative 
of the function

● Local minima 
are an issue.



  

● A fairly nice 
function in 2 
variables



  

● Visualization of a 
function 
represented by 
some neural 
network



  

● We have thousands of inputs, 13002 weights and biases of 
our function, X variables, one output (the loss)

● We have local minima that should be avoided
● The negative of the gradient gives us the direction of steepest 

descent,  drives us to the closest (local or global) minimum by 
giving us the changes in each of the 13002 weights and 
biases to move towards the local or global minimum.

● Having continuous activations is necessary to make this work, 
whereas biological neurons are more binary



  

Back propagation, input is 2
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The 0 output is pretty 
close, but the 
contribution of the 9 
output,  is very high 
and contributes most to 
the error.

But let’s focus on the 
neuron we want to 
increase.



  

● a’
2

(4)=Σn
i=0(ai

(3)*wi,3)+b

● Three ways t change the value of 2’s 
neuron:
– Change the value of the bias, b

– Increase wi,3

– Change the value of ai
(3) 

● Changing the weights associated with 
brighter, high valued neurons feeding into 2 
has more of an effect than changing the 
value of darker low-valued neurons.; 
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● Changing the values of the activations, 
i.e., the a values, associated with the 
nodes feeding into two will change the 
value of 2

● Increasing a values with positive weights, 
and decreasing those with negative 
weights, will increase the value of two.

● Again, changes of values associated with 
with weights with a larger magnitude will 
have a larger effect.
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The other output neurons affect this
● The non-two neurons need to be considered
● Add together of all the desired effects on non-two nodes and the 

two-node tells us how to nudge weights and biases from the 
previous layer

● Apply this recursively to more previous layers
● These nudges are, roughly proportional to the negative gradient 

discussed previously
● This is back propagation.



  

Computational issues
● Doing this for every input data point on every 

training step (epoch) is computationally 
complex.

● Solution:
– Batch the data into chunks of data
– In each epoch, train on one batch at a time



  

A problem with neural networks
● You might think that different layers begin to identify 

characteristics of the network, the next layers puts these 
together into larger parts of the number, and finally it identifies 
a 2
– That’s not what happens
– State of a layer looks pretty random compared to what it is 

recognizing

● Random patterns will often be strongly identified as a number.



  

Adversarial networks
https://arxiv.org/pdf/1712.09665.pdf

https://arxiv.org/pdf/1712.09665.pdf


  

Perturbed images are pasted onto 
signs https://spectrum.ieee.org/cars-that-think/transportation/sensors/slight-street-sign-modifications-can-fool-machine-learning-algorithms

● Stop signs 
identified as 
speed limit 45 
signs, right 
turn as stop 
signs

https://spectrum.ieee.org/cars-that-think/transportation/sensors/slight-street-sign-modifications-can-fool-machine-learning-algorithms


  

TPU Architecture
● Training is expensive – hours, days and weeks
● A result of real neural networks being complicated, 

and training data sets needing to be large (tens to 
hundreds of thousands of elements for classifiers).  
MNIST is ~10K images, and is small in overall size.

● Training involves lots of matrix multiplies
● So build a processor to do that



  

● Google had an ASIC (application specific 
integrated circuit) in 2006



  

A convolution
● Weights = {w1, w2, …, wk}, inputs x = {x1, x2, …, xk} 

and outputs y {y1, y2 ,…, yk}

● yi = wixi + wi+1xi+1 + wi+2xi+2 + … + wkxk

● As an example, let k = 3
● y1 = w1x1 + w2x2 + w2x2 

● y2 = w2x2 + w3x3 + 0

●  y3 = w3x3 + 0 + 0



  

Computing this on a simple processor
● Assume each input is read for each operation.
● 12 input values read for 3 results, bad I/O from 

memory balance
● y1 = w1x1 + w2x2 + w2x2 

● y2 = w2x2 + w3x3 + 0

●  y3 = w3x3 + 0 + 0

● Systolic arrays, which “pump” data through the 
processor, can help



  

A simple 
systolic 
array
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Step 1
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Step 2
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Step 3
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Can do the 
same thing in 2 
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TPUs



  

● https://cloud.google.com/blog/products/gcp/an-
in-depth-look-at-googles-first-tensor-
processing-unit-tpu
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