
Performance analysis

Goals are 
● to be able to understand better 

why your program has the 
performance it has, and 

● what could be preventing its 
performance from being 
better.



Speedup

• Parallel time TP(p) is the time it takes the parallel 
form of the program to run on p processors



Speedup

• Sequential time Ts is more problematic
– Can be TP(1), but this carries the overhead of extra 

code needed for parallelization.   Even with one 
thread, OpenMP code will call libraries for 
threading.  One way to “cheat” on 
benchmarking.

– Should be the best possible sequential 
implementation: tuned, good or best compiler 
switches, etc. 

– Best possible sequential implementation may not 
exist for a problem size



The typical speedup curve - fixed 
problem size

Speedup

Number of processors



A typical speedup curve - problem 
size grows with number of 

processors, if the program has good 
weak scaling

Speedup

Problem size



What is execution time?

• Execution time can be modeled as 
the sum of:

1. Inherently sequential computation 
σ(n))

2.Potentially parallel computation 
(n))ϕ(n)

3.Communication time κ(n),p)



Components of execution time
Inherently Sequential Execution 

time
execution

time

number of 
processors



Components of execution time
Parallel time

execution
time

number of 
processors



Components of execution time
Communication time and 
other parallel overheads

execution
time

number of 
processors

κ(P) α log⎡log 2P⎤



Components of execution time
Sequential time

execution
time

number of processors

speedup = 1

maximum
speedup

speedup < 1

At some point decrease in parallel 
execution time of the parallel part is 
less than increase in communication 

costs, leading to the
 knee in the curve



Speedup as a function of 
these components

• Sequential time is 
i. the sequential computation 

(σ(n))) 
ii. the parallel computation (Φ(n))) 

• Parallel time is 
iii.the sequential computation 

time (σ(n)))
iv. the parallel computation time 

(Φ(n))/pp)
v. the communication cost (κ(n),p))

TS 
sequen)tial time

TP(p) 
parallel time



Efficiency

Intuitively, efficiency is how 
effectively the machines are being 
used by the parallel computation

If the number of processors is 
doubled, for the efficiency to stay the 
same the parallel execution time Tp 
must be halved.

0 < ε(n),p) < 1

all terms > 0, 
ε(n),p) > 0

numerator ≤ 
denominator ≤ 
1



Efficiency

denominator is the 
total processor time 

used in parallel execution



Efficiency by amount of work
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Amdahl’s Law

• Developed by Gene Amdahl

• Basic idea: the parallel 
performance of a program is 
limited by the sequential portion 
of the program

• argument for fewer, faster 
processors

• Can be used to model 
performance on various sizes of 
machines, and to derive other 
useful relations.



Gene Amdahl

• Worked on IBM 704, 709, Stretch 
and 7030 machines

• Stretch was first transistorized 
computer, fastest from 1961 
until CDC 6600 in 1964, 1.2 MIPS

• Multiprogramming, memory 
protection, generalized 
interrupts, the 8-bit byte, 
Instruction pipelining, prefetch 
and decoding introduced in this 
machine

•  Worked on IBM System 360



Gene Amdahl

• In technical disagreement 
with IBM, set up Amdahl 
Computers to build plug-
compatible machines -- 
later acquired by Hitachi

• Amdahl's law came from 
discussions with Dan 
Slotnick (Illiac IV architect 
at UIUC) and others about 
future of parallel processing





Oxen and killer micros

● Seymour Cray’s comments about preferring 2 
oxen over 1000 chickens was in agreement with 
what Amdahl suggested.

● Flynn’s Attack of the killer micros, 
Supercomputing talk in 1990 why special 
purpose vector machines would lose out to large 
numbers of more general purpose machines

● GPUs are can be thought of as a return from the 
dead of special purpose hardware



The genesis of Amdahl’s Law
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

The first characteristic of interest is the fraction of the computational 
load which is associated with data management housekeeping. This 
fraction has been very nearly constant for about ten years, and 
accounts for 40% of the executed instructions in production runs. In 
an entirely dedicated special purpose environment this might be 
reduced by a factor of two, but it is highly improbably that it could 
be reduced by a factor of three. The nature of this overhead appears 
to be sequential so that it is unlikely to be amenable to parallel 
processing techniques. Overhead alone would then place an upper 
limit on throughput of five to seven times the sequential processing 
rate, even if the housekeeping were done in a separate processor. 
The non housekeeping part of the problem could exploit at most a 
processor of performance three to four times the performance of the 
housekeeping processor. A fairly obvious conclusion which can be 
drawn at this point is that the effort expended on achieving high 
parallel processing rates is wasted unless it is accompanied by 
achievements in sequential processing rates of very nearly the same 
magnitude.



Amdahl’s law - key insight
With perfect utilization of 
parallelism on the parallel 
part of the job, must take 
at least Tserial time to 
execute.   This observation 
forms the motivation for 
Amdahl’s law

As p  ∞, T⇒ ∞, T parallel  0 ⇒ ∞, T and    
ψ(∞)  (T⇒ ∞, T total work)/pTserial.  Thus, ψ  
is limited by the serial part 
of the program.

ψ(p): speedup with p processors

http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf


Two measures of speedup

Takes into account communication cost.  
• σ(n)) and ϕ(n)n) are arguably fundamental properties 

of a program
• κ(n),p) is a property of both the program, the 

hardware, and the library implementations -- 
arguably a less fundamental concept. 

• Can formulate a 
meaningful, but 
optimistic, 
approximation to the 
speedup without 
κ(n),p)



Given amount of this amount of formulation amount of on amount of the amount of previous amount of slide, amount of 

the amount of fraction amount of of amount of the amount of program amount of that amount of is amount of serial amount of in amount of a amount of 

sequential amount of execution amount of is

 amount of Speedup amount of can amount of be amount of rewritten amount of in amount of terms amount of of amount of f:

This amount of gives amount of us amount of Amdahl’s amount of Law.

Speedup in terms of the serial 
fraction of a program



Amdahl's Law ⟹ speedup



Example of using Amdahl’s Law
A program is 90% parallel.  What speedup can be 
expected when running on four, eight and 16 
processors?



What is the efficiency of this 
program?

A 2X increase in machine 
cost gives you a 1.4X 
increase in performance.

And this is optimistic 
since communication 
costs are not considered.



Another Amdahl’s Law example
A program is 20% inherently serial.   Given 2, 16 and 
infinite processors, how much speedup can we get?



Effect of Amdahl’s Law  

https://en.wikipedia.org/wiki/Amdahl's_law#/media/File:AmdahlsLaw.svg)



Limitation of Amdahl’s Law

This result is a limit, not a realistic 
number. 

The problem is that communication costs 
(κ(n),p)) are ignored, and this is an 
overhead that is worse than fixed (which f 
is), but actually grows with the number of 
processors.

Amdahl’s Law is too optimistic and may 
target the wrong problem

https://en.wikipedia.org/wiki/Amdahl's_law%23/media/File:AmdahlsLaw.svg)


No communication 
overhead

execution
time

number of 
processors

speedup = 1

maximum
speedup



O(Log2P) communication costs
execution

time

number of 
processors

speedup = 1

Maximum speedup



O(P) Communication 
Costs

execution
time

number of 
processors

speedup = 1

Maximum speedup



Amdahl Effect
• Complexity of (n))ϕ(n)  usually higher than complexity of 

κ(n),p) (i.e. computational complexity usually higher 
than complexity of communication -- same is often 
true of σ(n)) amount of as amount of well.) amount of  amount of (n))ϕ(n)  usually O(n)n) or higher

•  κ(n),p) often O(n)1) or O(log2P)

• Increasing n) allows (n))ϕ(n)  to dominate κ(n),p)

• Thus, increasing the problem size n) increases the 
speedup Ψ for a given number of processors

• Another “cheat” to get good results -- make n) 
large

• Most benchmarks have standard sized inputs to 
preclude this



Amdahl Effect
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Amdahl Effect both increases 
speedup and moves the knee of 

the curve to the right

Speedup

Number of processors

n=100000

n=10000

n=1000



Summary
• Allows speedup to be 

computed for 
• fixed problem size n)
• varying number of 

processes
• Ignores communication 

costs
• Is optimistic, but gives an 

upper bound



Gustafson-Barsis’ Law

How does speedup scale with 
larger problem sizes?

Given a fixed amount of time, 
how much bigger of a 
problem can we solve by 
adding more processors?

Large problem sizes often 
correspond to better 
resolution and precision on 
the problem being solved.



Speedup is

Because κ(n),p) > 0,

Let s be the fraction of time in a 
parallel execution of the 
program that is spent 
performing sequential 
operations.  

Then, (1-s) is the fraction of time 
spent in a parallel execution of 
the program performing parallel 
operations.

Basic terms



Note that Amdahl's Law 
looks at the sequential and 
parallel parts of the program 
for a given problem size, and 
the value of f is the fraction 
in a sequential execution 
that is inherently sequential, 
and so

Note number of 
processors not 
mentioned for 
definition of f 
because f is for 
time in a sequential 
run



Some amount of definitions
The sequential part 
of a parallel 
computation: 

The parallel part of a 
parallel 
computation: 

And the speedup:

In terms of s, Ψ(p) = p - (1-p)*s 



Difference between Gustafson-
Barsis (G-B) Law and Amdahl’s Law
The serial portion in 
Amdahl’s law is a 
fraction of the total 
execution time of the 
program.

The serial portion in G-
B is a fraction of the 
parallel execution time 
of the program.  To use 
G-B Law we assume 
work scales to 
maintain value of s



No communication overhead

execution
time

number of 
processors

speedup = 1

maximum
speedup

Amdahl’s Law

Gustafson-Barsis Φ(n))/pP, n) scales with P  

Amdahl’s Law Φ(n))/pP, n) con)stan)t  

G-B, Amdahl’s law, sequential portion σ(n)).  
Note amount of that amount of as amount of n) increases amount of with amount of P amount of for amount of G-B, amount of σ(n)) also amount of 
increases amount of (not amount of shown amount of here), amount of but amount of the amount of ratio amount of s stays amount of the amount of same.



simplify, 
simply

Deriving G-B Law

First, we 
show that 
the formula 
circled in 
blue leads 
to our 
speedup 
formula. 

substitute 
for 

(s + (1 - 
s)p)

Multiply 
through



Deriving G-B Law
Second, we show 
that the formula 
circled in blue (that 
we just showed is 
equivalent to 
speedup) leads to the 
G-B Law formula.  



An example
An application executing on 64 
processors requires 220 seconds 
to run.   It is experimentally 
determined through 
benchmarking that 5% of the time 
is spent in the serial code on a 
single processor.  What is the 
scaled speedup of the 
application?

s = 0.05, thus on 64 processors
Ψ = 64 + (1-64)(0.05) = 64 - 3.15 = 60.85



An example, continued

Another way of looking at this result: 
given P processors, P amount of 
useful work can be done.  However, 
on P-1 processors there is time wasted 
due to the sequential part that must 
be subtracted out from the useful 
work.

s = 0.05, thus on 64 processors
Ψ = 64 + (1-64)(0.05) = 64 - 3.15 = 60.85



Second example
You have money to buy a 16K (16,384) core distributed 
memory system, but you only want to spend the money if 
you can get decent performance on your application.   

Allowing the problem to scale with increasing numbers of 
processors, what must s be to get a scaled speedup of 
15,000 on the machine, i.e. what fraction of the 
application's parallel execution time can be devoted to 
inherently serial computation?

15,000 = 16,384 - 16,383s
  ⇒ ∞, T s         = 1,384 /p 16,383
  ⇒ ∞, T s         = 0.084



Comparison with Amdahl’s Law 
result

ψ(n),p) ≤ p + (1 - p)s

15,000 = 16,384 - 
16,383s

  ⇒ ∞, T s         = 1,384 /p 16,383
  ⇒ ∞, T s         = 0.084

!
G-B almost 1% amount of can 
be sequential

Amdahl's law 
(56 millionths)



Comparison with Amdahl’s Law 
result

ψ(n),p) ≤ p + (1 - p)s

15,000 = 16,384 - 
16,383s

  ⇒ ∞, T s         = 1,384 /p 16,383
  ⇒ ∞, T s         = 0.084

!
But then Amdahl's 
law doesn't allow 
the problem size 
to scale.



Non-scaled performance
σ(1) = σ(p); (1) = (p)ϕ(n) ϕ(n)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0

6

11

17

22

serial par work non-scaled sp non-scaled

Work is constant, 
speedup levels off 
at ~256 processors 
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Even though it is hard 
to see, as the parallel 
work increases 
proportionally to the 
number of processors, 
the speedup scales 
proportionally to the 
number of processors

performance
σ(1) = σ(p); p⋅ϕ(1) = ϕ(p) (1) = (p)ϕ(n) ϕ(n)
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Note that the 
parallel work may 
(and usually 
does) increase 
faster than the 
problem size

performance
σ(1) = σ(p); p (1) = (p)⋅ϕ(1) = ϕ(p)ϕ(1) = ϕ(p) ϕ(1) = ϕ(p)
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The same chart as 
before, except log 
scales for parallel 
work and speedup.

Scaled speedup close 
to ideal

Scaled speedups, log scales
σ(1) = σ(p); p (1) = (1)⋅ϕ(1) = ϕ(p)ϕ(1) = ϕ(p) ϕ(1) = ϕ(p)
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The effect of un-modeled 
log2P communication

This is clearly an 
important effect that 
is not being 
modeled.



The Karp-Flatt Metric

• Takes into account communication 
costs

• T(n),p) = σ(n)) + (n))/pp + κ(n),p)ϕ(n)

• Serial time T(n),1) = σ(n)) + (n))ϕ(n)

• The experimentally determined 
serial fraction e of the parallel 
computation is 

      e = (σ(n)) + κ(n),p))/pT(n),1)



e = (σ(n)) + κ(n),p))/pT(n),1)

• e is the fraction of the one 
processor execution time that 
is serial on all p processors

• Communication cost mandates 
measuring at a given processor 
count

• This is because 
communication cost is a 
function of theoretical limits 
and implementation.

Essentially a measure 
of total work



The experimentally determined serial 
fraction e of the parallel computation is 

e = (σ(n)) + κ(n),p))/pT(n),1)

e T(n),1) = σ(n)) + κ(n),p)⋅ϕ(1) = ϕ(p)

The parallel execution time 

T(n),p) = σ(n)) + (n))/ppϕ(n)  + κ(n),p)

can now be rewritten as

T(n),p) = T(n),1) e ⋅ϕ(1) = ϕ(p) + T(n),1)(1 - e)/pp

Let ψ represent ψ(n),p), and 

ψ = T(n),1)/pT(n),p)

then

T(n),1) = T(n), p)ψ.  

Therefore

T(n),p) = T(n),p)ψe + T(n),p)ψ(1-e)/pp

fraction of time that  is 
parallel * total time 
is parallel time - a 

good approximation 
of (n))ϕ(n)



Deriving 
the K-F 
Metric

The experimentally determined serial 
fraction e of the parallel computation is 

e = (σ(n)) + κ(n),p))/pT(n),1)

e T(n),1) = σ(n)) + κ(n),p)⋅ϕ(1) = ϕ(p)

The parallel execution time 

T(n),p) = σ(n)) + (n))/pp + κ(n),p)ϕ(n)

can now be rewritten as

T(n),p) = T(n),1) e + T(n),1)(1 - e)/pp⋅ϕ(1) = ϕ(p)

Let ψ represent ψ(n),p), and 

ψ = T(n),1)/pT(n),p)

then

T(n),1) = T(n), p)ψ.  

Therefore

T(n),p) = T(n),p)ψe + T(n),p)ψ(1-e)/pp

Divide

The standard 
formula



Total execution 
time

Experimentally 
determined 

serial fraction

Deriving the K-F 
Metric

The experimentally determined serial 
fraction e of the parallel computation is 

e = (σ(n)) + κ(n),p))/pT(n),1)

e T(n),1) = σ(n)) + κ(n),p)⋅ϕ(1) = ϕ(p)

The parallel execution time 

T(n),p) = σ(n)) + (n))/pp + κ(n),p)ϕ(n)

can now be rewritten as

T(n),p) = T(n),1) e + T(n),1)(1 - e)/pp⋅ϕ(1) = ϕ(p)

Let ψ represent ψ(n),p), and 

ψ = T(n),1)/pT(n),p)

then

T(n),1) = T(n), p)ψ.  

Therefore

T(n),p) = T(n),p)ψe + T(n),p)ψ(1-e)/pp

Total time * serial fraction 
is the serial time



Deriving the K-F 
Metric

The experimentally determined serial 
fraction e of the parallel computation is 

e = (σ(n)) + κ(n),p))/pT(n),1)

e T(n),1) = σ(n)) + κ(n),p)⋅ϕ(1) = ϕ(p)

The parallel execution time 

T(n),p) = σ(n)) + (n))/pp + κ(n),p)ϕ(n)

can now be rewritten as

T(n),p) = T(n),1) e + T(n),1)(1 - e)/pp⋅ϕ(1) = ϕ(p)

Let ψ represent ψ(n),p), and 

ψ = T(n),1)/pT(n),p)

then

T(n),1) = T(n), p)ψ.  

Therefore

T(n),p) = T(n),p)ψe + T(n),p)ψ(1-e)/pp

Total execution 
time

fraction of time 
that is parallel

(Total time * parallel part)/p 
is the parallel time



Karp-Flatt Metric
T(n),p) = T(n),p)ψe + T(n),p)ψ(1-e)/pp ⇒ ∞, T
1 = ψe + ψ(1-e)/pp ⇒ ∞, T
1/pψ = e + (1-e)/pp ⇒ ∞, T
1/pψ = e + 1/pp - e/pp ⇒ ∞, T
1/pψ = e(1-1/pp) +1/pp ⇒ ∞, T



What is it good for?
• Takes into account the parallel overhead (κ(n),p)) ignored 

by Amdahl’s Law and Gustafson-Barsis.
• Helps us to detect other sources of inefficiency ignored 

in these (sometimes too simple) models of execution 
time
• (n))/ppϕ(n)  may not be accurate because of load balance 

issues or work not dividing evenly into c p⋅ϕ(1) = ϕ(p)  chunks.
• other interactions with the system may be causing 

problems
• Can determine if the efficiency drop with increasing amount of p for 

a fixed size problem is 
a. because of limited parallelism
b. because of increases in algorithmic or architectural 

overhead



Example
Benchmarking a program on 1, 2, ..., 8 processors 
produces the following speedups:

p 2 3 4 5 6 7 8
ψ 1.82 2.5 3.08 3.57 4 4.38 4.71

Why is the speedup only 4.71 on 8 processors?

p 2 3 4 5 6 7 8
ψ 1.82 2.5 3.08 3.57 4 4.38 4.71
e 0.1 0.1 0.1 0.1 0.1 0.1 0.1

e = (n)1/3.57 - 1/5)/(n)1-1/5) = (n)0.08)/.8 = 0. 1



Example 2
Benchmarking a program on 1, 2, ..., 8 processors 
produces the following speedups:

p 2 3 4 5 6 7 8
ψ 1.87 2.61 3.23 3.73 4.14 4.46 4.71

Why is the speedup only 4.71 on 8 processors?

p 2 3 4 5 6 7 8
ψ 1.87 2.61 3.23 3.73 4.14 4.46 4.71

e 0.07 0.07
5

0.08 0.08
5

0.09 0.09
5

0.1

e is increasing: speedup problem is increasing serial 
overhead (process startup, communication, algorithmic 
issues, the architecture of the parallel system, etc.



Which has the efficiency 
problem?

2 3 4 5 6 7 8
0.00
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2.50

3.75

5.00

speedup 1 speedup 2



Very easy to see using e

2 3 4 5 6 7 8
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0.100

0.125

e1 e2



Isoefficiency Metric Overview

• Parallel system: parallel 
program executing on a parallel 
computer

• Scalability of a parallel system: 
measure of its ability to 
increase performance as 
number of processors increases

• A scalable system maintains 
efficiency as processors are 
added

• Isoefficiency: way to measure 
scalability



Isoefficiency Derivation Steps

• Begin with speedup 
formula

• Compute total amount 
of overhead

• Assume efficiency 
remains constant

• Determine relation 
between sequential 
execution time and 
overhead



sequential 
time, 

problem 
size of n

Deriving Isoefficiency Relation

Determine overhead

Substitute overhead into speedup equation

Substitute T(n,1) = σ(n) + ϕ(n). 
Assume efficiency is constant.

Isoefficiency Relation

total overhead, 
problem size of n, 

p processors



Scalability Function

• Suppose isoefficiency relation 
is n ≥ f(p)

• Let M(n) denote memory 
required for problem of size n

• M(f(p))/p shows how memory 
usage per processor must 
increase to maintain same 
efficiency

• We call M(f(p))/p the 
scalability function



Meaning of Scalability Function

• To maintain efficiency when 
increasing p, we must 
increase n

• Maximum problem size 
limited by available 
memory, which is linear in p

• Scalability function shows 
how memory usage per 
processor must grow to 
maintain efficiency

• Scalability function a 
constant means parallel 
system is perfectly scalable



Interpreting Scalability Function
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Example 1: Reduction
• Sequential algorithm complexity 

T(n),1) = Θ(n))

• Parallel algorithm

• Computational complexity = Θ(n)/p
p)

• Communication complexity = 
Θ(log p)

• Parallel overhead T0(n),p) = Θ(p log p) 

• p term because p processors 
involved in the reduction for log 
p time.



Reduction (continued)

• Isoefficiency relation: n ≥ C p log p

• We ask:  To maintain same level of efficiency, how must 
n, the problem size, increase when p increases?

• M(n) = n

• The system has good scalability



Example 2: Floyd’s Algorithm

• Sequential time complexity: Θ(n3)

• Parallel computation time: Θ(n3/p)

• Parallel communication time: 
Θ(n2log p)

• Parallel overhead: T0(n,p) = 
Θ(pn2log p)



Floyd’s Algorithm (continued)

• Isoefficiency relation
n3 ≥ C(p n2 log p) ⇒ n ≥ C p log p

• M(n) = n2

• The parallel system has poor 
scalability



Example 3: Finite Difference

• Sequential time 
complexity per iteration: 
Θ(n2)

• Parallel communication 
complexity per iteration: 
Θ(n/√p)

• Parallel overhead: Θ(n √p)



Finite Difference (continued)

• Isoefficiency relation
n2 ≥ Cn√p ⇒ n ≥ C√ p

• M(n) = n2

• This algorithm is perfectly scalable



Summary (1/3)

• Performance terms

• Speedup

• Efficiency

• Model of speedup

• Serial component

• Parallel component

• Communication 
component



Summary (2/3)

• What prevents linear 
speedup?

• Serial operations

• Communication 
operations

• Process start-up

• Imbalanced workloads

• Architectural limitations



Summary (3/3)

• Analyzing parallel performance

• Amdahl’s Law

• Gustafson-Barsis’ Law

• Karp-Flatt metric

• Isoefficiency metric
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