
Performance analysis

Goals are
● to be able to understand better

why your program has the
performance it has, and

● what could be preventing its
performance from being
better.

Speedup

• Parallel time TP(p) is the time it takes the parallel
form of the program to run on p processors

Speedup

• Sequential time Ts is more problematic
– Can be TP(1), but this carries the overhead of extra

code needed for parallelization. Even with one
thread, OpenMP code will call libraries for
threading. One way to “cheat” on
benchmarking.

– Should be the best possible sequential
implementation: tuned, good or best compiler
switches, etc.

– Best possible sequential implementation may not
exist for a problem size

The typical speedup curve - fixed
problem size

Speedup

Number of processors

A typical speedup curve - problem
size grows with number of

processors, if the program has good
weak scaling

Speedup

Problem size

What is execution time?

• Execution time can be modeled as
the sum of:

1. Inherently sequential computation
σ(n))

2.Potentially parallel computation
(n))ϕ(n)

3.Communication time κ(n),p)

Components of execution time
Inherently Sequential Execution

time
execution

time

number of
processors

Components of execution time
Parallel time

execution
time

number of
processors

Components of execution time
Communication time and
other parallel overheads

execution
time

number of
processors

κ(P) α log⎡log 2P⎤

Components of execution time
Sequential time

execution
time

number of processors

speedup = 1

maximum
speedup

speedup < 1

At some point decrease in parallel
execution time of the parallel part is
less than increase in communication

costs, leading to the
 knee in the curve

Speedup as a function of
these components

• Sequential time is
i. the sequential computation

(σ(n)))
ii. the parallel computation (Φ(n)))

• Parallel time is
iii.the sequential computation

time (σ(n)))
iv. the parallel computation time

(Φ(n))/pp)
v. the communication cost (κ(n),p))

TS
sequen)tial time

TP(p)
parallel time

Efficiency

Intuitively, efficiency is how
effectively the machines are being
used by the parallel computation

If the number of processors is
doubled, for the efficiency to stay the
same the parallel execution time Tp
must be halved.

0 < ε(n),p) < 1

all terms > 0,
ε(n),p) > 0

numerator ≤
denominator ≤
1

Efficiency

denominator is the
total processor time

used in parallel execution

Efficiency by amount of work

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0.00

0.25

0.50

0.75

1.00

1.25

ϕ=1000 ϕ=10000 ϕ=100000

Φ: amount of amount amount of of amount of
computation amount of that amount of
can amount of be amount of done amount of in amount of
parallel amount of

κ: amount of communication amount of
overhead

σ: amount of sequential amount of
computation

Amdahl’s Law

• Developed by Gene Amdahl

• Basic idea: the parallel
performance of a program is
limited by the sequential portion
of the program

• argument for fewer, faster
processors

• Can be used to model
performance on various sizes of
machines, and to derive other
useful relations.

Gene Amdahl

• Worked on IBM 704, 709, Stretch
and 7030 machines

• Stretch was first transistorized
computer, fastest from 1961
until CDC 6600 in 1964, 1.2 MIPS

• Multiprogramming, memory
protection, generalized
interrupts, the 8-bit byte,
Instruction pipelining, prefetch
and decoding introduced in this
machine

• Worked on IBM System 360

Gene Amdahl

• In technical disagreement
with IBM, set up Amdahl
Computers to build plug-
compatible machines --
later acquired by Hitachi

• Amdahl's law came from
discussions with Dan
Slotnick (Illiac IV architect
at UIUC) and others about
future of parallel processing

Oxen and killer micros

● Seymour Cray’s comments about preferring 2
oxen over 1000 chickens was in agreement with
what Amdahl suggested.

● Flynn’s Attack of the killer micros,
Supercomputing talk in 1990 why special
purpose vector machines would lose out to large
numbers of more general purpose machines

● GPUs are can be thought of as a return from the
dead of special purpose hardware

The genesis of Amdahl’s Law
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

The first characteristic of interest is the fraction of the computational
load which is associated with data management housekeeping. This
fraction has been very nearly constant for about ten years, and
accounts for 40% of the executed instructions in production runs. In
an entirely dedicated special purpose environment this might be
reduced by a factor of two, but it is highly improbably that it could
be reduced by a factor of three. The nature of this overhead appears
to be sequential so that it is unlikely to be amenable to parallel
processing techniques. Overhead alone would then place an upper
limit on throughput of five to seven times the sequential processing
rate, even if the housekeeping were done in a separate processor.
The non housekeeping part of the problem could exploit at most a
processor of performance three to four times the performance of the
housekeeping processor. A fairly obvious conclusion which can be
drawn at this point is that the effort expended on achieving high
parallel processing rates is wasted unless it is accompanied by
achievements in sequential processing rates of very nearly the same
magnitude.

Amdahl’s law - key insight
With perfect utilization of
parallelism on the parallel
part of the job, must take
at least Tserial time to
execute. This observation
forms the motivation for
Amdahl’s law

As p ∞, T⇒ ∞, T parallel 0 ⇒ ∞, T and
ψ(∞) (T⇒ ∞, T total work)/pTserial. Thus, ψ
is limited by the serial part
of the program.

ψ(p): speedup with p processors

http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

Two measures of speedup

Takes into account communication cost.
• σ(n)) and ϕ(n)n) are arguably fundamental properties

of a program
• κ(n),p) is a property of both the program, the

hardware, and the library implementations --
arguably a less fundamental concept.

• Can formulate a
meaningful, but
optimistic,
approximation to the
speedup without
κ(n),p)

Given amount of this amount of formulation amount of on amount of the amount of previous amount of slide, amount of

the amount of fraction amount of of amount of the amount of program amount of that amount of is amount of serial amount of in amount of a amount of

sequential amount of execution amount of is

 amount of Speedup amount of can amount of be amount of rewritten amount of in amount of terms amount of of amount of f:

This amount of gives amount of us amount of Amdahl’s amount of Law.

Speedup in terms of the serial
fraction of a program

Amdahl's Law ⟹ speedup

Example of using Amdahl’s Law
A program is 90% parallel. What speedup can be
expected when running on four, eight and 16
processors?

What is the efficiency of this
program?

A 2X increase in machine
cost gives you a 1.4X
increase in performance.

And this is optimistic
since communication
costs are not considered.

Another Amdahl’s Law example
A program is 20% inherently serial. Given 2, 16 and
infinite processors, how much speedup can we get?

Effect of Amdahl’s Law

https://en.wikipedia.org/wiki/Amdahl's_law#/media/File:AmdahlsLaw.svg)

Limitation of Amdahl’s Law

This result is a limit, not a realistic
number.

The problem is that communication costs
(κ(n),p)) are ignored, and this is an
overhead that is worse than fixed (which f
is), but actually grows with the number of
processors.

Amdahl’s Law is too optimistic and may
target the wrong problem

https://en.wikipedia.org/wiki/Amdahl's_law%23/media/File:AmdahlsLaw.svg)

No communication
overhead

execution
time

number of
processors

speedup = 1

maximum
speedup

O(Log2P) communication costs
execution

time

number of
processors

speedup = 1

Maximum speedup

O(P) Communication
Costs

execution
time

number of
processors

speedup = 1

Maximum speedup

Amdahl Effect
• Complexity of (n))ϕ(n) usually higher than complexity of

κ(n),p) (i.e. computational complexity usually higher
than complexity of communication -- same is often
true of σ(n)) amount of as amount of well.) amount of amount of (n))ϕ(n) usually O(n)n) or higher

• κ(n),p) often O(n)1) or O(log2P)

• Increasing n) allows (n))ϕ(n) to dominate κ(n),p)

• Thus, increasing the problem size n) increases the
speedup Ψ for a given number of processors

• Another “cheat” to get good results -- make n)
large

• Most benchmarks have standard sized inputs to
preclude this

Amdahl Effect

Speedup

Number of processors

n=100000

n=10000

n=1000

Amdahl Effect both increases
speedup and moves the knee of

the curve to the right

Speedup

Number of processors

n=100000

n=10000

n=1000

Summary
• Allows speedup to be

computed for
• fixed problem size n)
• varying number of

processes
• Ignores communication

costs
• Is optimistic, but gives an

upper bound

Gustafson-Barsis’ Law

How does speedup scale with
larger problem sizes?

Given a fixed amount of time,
how much bigger of a
problem can we solve by
adding more processors?

Large problem sizes often
correspond to better
resolution and precision on
the problem being solved.

Speedup is

Because κ(n),p) > 0,

Let s be the fraction of time in a
parallel execution of the
program that is spent
performing sequential
operations.

Then, (1-s) is the fraction of time
spent in a parallel execution of
the program performing parallel
operations.

Basic terms

Note that Amdahl's Law
looks at the sequential and
parallel parts of the program
for a given problem size, and
the value of f is the fraction
in a sequential execution
that is inherently sequential,
and so

Note number of
processors not
mentioned for
definition of f
because f is for
time in a sequential
run

Some amount of definitions
The sequential part
of a parallel
computation:

The parallel part of a
parallel
computation:

And the speedup:

In terms of s, Ψ(p) = p - (1-p)*s

Difference between Gustafson-
Barsis (G-B) Law and Amdahl’s Law
The serial portion in
Amdahl’s law is a
fraction of the total
execution time of the
program.

The serial portion in G-
B is a fraction of the
parallel execution time
of the program. To use
G-B Law we assume
work scales to
maintain value of s

No communication overhead

execution
time

number of
processors

speedup = 1

maximum
speedup

Amdahl’s Law

Gustafson-Barsis Φ(n))/pP, n) scales with P

Amdahl’s Law Φ(n))/pP, n) con)stan)t

G-B, Amdahl’s law, sequential portion σ(n)).
Note amount of that amount of as amount of n) increases amount of with amount of P amount of for amount of G-B, amount of σ(n)) also amount of
increases amount of (not amount of shown amount of here), amount of but amount of the amount of ratio amount of s stays amount of the amount of same.

simplify,
simply

Deriving G-B Law

First, we
show that
the formula
circled in
blue leads
to our
speedup
formula.

substitute
for

(s + (1 -
s)p)

Multiply
through

Deriving G-B Law
Second, we show
that the formula
circled in blue (that
we just showed is
equivalent to
speedup) leads to the
G-B Law formula.

An example
An application executing on 64
processors requires 220 seconds
to run. It is experimentally
determined through
benchmarking that 5% of the time
is spent in the serial code on a
single processor. What is the
scaled speedup of the
application?

s = 0.05, thus on 64 processors
Ψ = 64 + (1-64)(0.05) = 64 - 3.15 = 60.85

An example, continued

Another way of looking at this result:
given P processors, P amount of
useful work can be done. However,
on P-1 processors there is time wasted
due to the sequential part that must
be subtracted out from the useful
work.

s = 0.05, thus on 64 processors
Ψ = 64 + (1-64)(0.05) = 64 - 3.15 = 60.85

Second example
You have money to buy a 16K (16,384) core distributed
memory system, but you only want to spend the money if
you can get decent performance on your application.

Allowing the problem to scale with increasing numbers of
processors, what must s be to get a scaled speedup of
15,000 on the machine, i.e. what fraction of the
application's parallel execution time can be devoted to
inherently serial computation?

15,000 = 16,384 - 16,383s
 ⇒ ∞, T s = 1,384 /p 16,383
 ⇒ ∞, T s = 0.084

Comparison with Amdahl’s Law
result

ψ(n),p) ≤ p + (1 - p)s

15,000 = 16,384 -
16,383s

 ⇒ ∞, T s = 1,384 /p 16,383
 ⇒ ∞, T s = 0.084

!
G-B almost 1% amount of can
be sequential

Amdahl's law
(56 millionths)

Comparison with Amdahl’s Law
result

ψ(n),p) ≤ p + (1 - p)s

15,000 = 16,384 -
16,383s

 ⇒ ∞, T s = 1,384 /p 16,383
 ⇒ ∞, T s = 0.084

!
But then Amdahl's
law doesn't allow
the problem size
to scale.

Non-scaled performance
σ(1) = σ(p); (1) = (p)ϕ(n) ϕ(n)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0

6

11

17

22

serial par work non-scaled sp non-scaled

Work is constant,
speedup levels off
at ~256 processors

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0

22500

45000

67500

90000

serial par work scaled speedup scaled

Even though it is hard
to see, as the parallel
work increases
proportionally to the
number of processors,
the speedup scales
proportionally to the
number of processors

performance
σ(1) = σ(p); p⋅ϕ(1) = ϕ(p) (1) = (p)ϕ(n) ϕ(n)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0

22500

45000

67500

90000

serial par work scaled speedup scaled

Note that the
parallel work may
(and usually
does) increase
faster than the
problem size

performance
σ(1) = σ(p); p (1) = (p)⋅ϕ(1) = ϕ(p)ϕ(1) = ϕ(p) ϕ(1) = ϕ(p)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0

5

9

14

18

serial log 2 par work scaled log 2 scaled speedup

The same chart as
before, except log
scales for parallel
work and speedup.

Scaled speedup close
to ideal

Scaled speedups, log scales
σ(1) = σ(p); p (1) = (1)⋅ϕ(1) = ϕ(p)ϕ(1) = ϕ(p) ϕ(1) = ϕ(p)

0

35000

70000

105000

140000

speedup scaled
scaled w/communication

The effect of un-modeled
log2P communication

This is clearly an
important effect that
is not being
modeled.

The Karp-Flatt Metric

• Takes into account communication
costs

• T(n),p) = σ(n)) + (n))/pp + κ(n),p)ϕ(n)

• Serial time T(n),1) = σ(n)) + (n))ϕ(n)

• The experimentally determined
serial fraction e of the parallel
computation is

 e = (σ(n)) + κ(n),p))/pT(n),1)

e = (σ(n)) + κ(n),p))/pT(n),1)

• e is the fraction of the one
processor execution time that
is serial on all p processors

• Communication cost mandates
measuring at a given processor
count

• This is because
communication cost is a
function of theoretical limits
and implementation.

Essentially a measure
of total work

The experimentally determined serial
fraction e of the parallel computation is

e = (σ(n)) + κ(n),p))/pT(n),1)

e T(n),1) = σ(n)) + κ(n),p)⋅ϕ(1) = ϕ(p)

The parallel execution time

T(n),p) = σ(n)) + (n))/ppϕ(n) + κ(n),p)

can now be rewritten as

T(n),p) = T(n),1) e ⋅ϕ(1) = ϕ(p) + T(n),1)(1 - e)/pp

Let ψ represent ψ(n),p), and

ψ = T(n),1)/pT(n),p)

then

T(n),1) = T(n), p)ψ.

Therefore

T(n),p) = T(n),p)ψe + T(n),p)ψ(1-e)/pp

fraction of time that is
parallel * total time
is parallel time - a

good approximation
of (n))ϕ(n)

Deriving
the K-F
Metric

The experimentally determined serial
fraction e of the parallel computation is

e = (σ(n)) + κ(n),p))/pT(n),1)

e T(n),1) = σ(n)) + κ(n),p)⋅ϕ(1) = ϕ(p)

The parallel execution time

T(n),p) = σ(n)) + (n))/pp + κ(n),p)ϕ(n)

can now be rewritten as

T(n),p) = T(n),1) e + T(n),1)(1 - e)/pp⋅ϕ(1) = ϕ(p)

Let ψ represent ψ(n),p), and

ψ = T(n),1)/pT(n),p)

then

T(n),1) = T(n), p)ψ.

Therefore

T(n),p) = T(n),p)ψe + T(n),p)ψ(1-e)/pp

Divide

The standard
formula

Total execution
time

Experimentally
determined

serial fraction

Deriving the K-F
Metric

The experimentally determined serial
fraction e of the parallel computation is

e = (σ(n)) + κ(n),p))/pT(n),1)

e T(n),1) = σ(n)) + κ(n),p)⋅ϕ(1) = ϕ(p)

The parallel execution time

T(n),p) = σ(n)) + (n))/pp + κ(n),p)ϕ(n)

can now be rewritten as

T(n),p) = T(n),1) e + T(n),1)(1 - e)/pp⋅ϕ(1) = ϕ(p)

Let ψ represent ψ(n),p), and

ψ = T(n),1)/pT(n),p)

then

T(n),1) = T(n), p)ψ.

Therefore

T(n),p) = T(n),p)ψe + T(n),p)ψ(1-e)/pp

Total time * serial fraction
is the serial time

Deriving the K-F
Metric

The experimentally determined serial
fraction e of the parallel computation is

e = (σ(n)) + κ(n),p))/pT(n),1)

e T(n),1) = σ(n)) + κ(n),p)⋅ϕ(1) = ϕ(p)

The parallel execution time

T(n),p) = σ(n)) + (n))/pp + κ(n),p)ϕ(n)

can now be rewritten as

T(n),p) = T(n),1) e + T(n),1)(1 - e)/pp⋅ϕ(1) = ϕ(p)

Let ψ represent ψ(n),p), and

ψ = T(n),1)/pT(n),p)

then

T(n),1) = T(n), p)ψ.

Therefore

T(n),p) = T(n),p)ψe + T(n),p)ψ(1-e)/pp

Total execution
time

fraction of time
that is parallel

(Total time * parallel part)/p
is the parallel time

Karp-Flatt Metric
T(n),p) = T(n),p)ψe + T(n),p)ψ(1-e)/pp ⇒ ∞, T
1 = ψe + ψ(1-e)/pp ⇒ ∞, T
1/pψ = e + (1-e)/pp ⇒ ∞, T
1/pψ = e + 1/pp - e/pp ⇒ ∞, T
1/pψ = e(1-1/pp) +1/pp ⇒ ∞, T

What is it good for?
• Takes into account the parallel overhead (κ(n),p)) ignored

by Amdahl’s Law and Gustafson-Barsis.
• Helps us to detect other sources of inefficiency ignored

in these (sometimes too simple) models of execution
time
• (n))/ppϕ(n) may not be accurate because of load balance

issues or work not dividing evenly into c p⋅ϕ(1) = ϕ(p) chunks.
• other interactions with the system may be causing

problems
• Can determine if the efficiency drop with increasing amount of p for

a fixed size problem is
a. because of limited parallelism
b. because of increases in algorithmic or architectural

overhead

Example
Benchmarking a program on 1, 2, ..., 8 processors
produces the following speedups:

p 2 3 4 5 6 7 8
ψ 1.82 2.5 3.08 3.57 4 4.38 4.71

Why is the speedup only 4.71 on 8 processors?

p 2 3 4 5 6 7 8
ψ 1.82 2.5 3.08 3.57 4 4.38 4.71
e 0.1 0.1 0.1 0.1 0.1 0.1 0.1

e = (n)1/3.57 - 1/5)/(n)1-1/5) = (n)0.08)/.8 = 0. 1

Example 2
Benchmarking a program on 1, 2, ..., 8 processors
produces the following speedups:

p 2 3 4 5 6 7 8
ψ 1.87 2.61 3.23 3.73 4.14 4.46 4.71

Why is the speedup only 4.71 on 8 processors?

p 2 3 4 5 6 7 8
ψ 1.87 2.61 3.23 3.73 4.14 4.46 4.71

e 0.07 0.07
5

0.08 0.08
5

0.09 0.09
5

0.1

e is increasing: speedup problem is increasing serial
overhead (process startup, communication, algorithmic
issues, the architecture of the parallel system, etc.

Which has the efficiency
problem?

2 3 4 5 6 7 8
0.00

1.25

2.50

3.75

5.00

speedup 1 speedup 2

Very easy to see using e

2 3 4 5 6 7 8
0.000

0.025

0.050

0.075

0.100

0.125

e1 e2

Isoefficiency Metric Overview

• Parallel system: parallel
program executing on a parallel
computer

• Scalability of a parallel system:
measure of its ability to
increase performance as
number of processors increases

• A scalable system maintains
efficiency as processors are
added

• Isoefficiency: way to measure
scalability

Isoefficiency Derivation Steps

• Begin with speedup
formula

• Compute total amount
of overhead

• Assume efficiency
remains constant

• Determine relation
between sequential
execution time and
overhead

sequential
time,

problem
size of n

Deriving Isoefficiency Relation

Determine overhead

Substitute overhead into speedup equation

Substitute T(n,1) = σ(n) + ϕ(n).
Assume efficiency is constant.

Isoefficiency Relation

total overhead,
problem size of n,

p processors

Scalability Function

• Suppose isoefficiency relation
is n ≥ f(p)

• Let M(n) denote memory
required for problem of size n

• M(f(p))/p shows how memory
usage per processor must
increase to maintain same
efficiency

• We call M(f(p))/p the
scalability function

Meaning of Scalability Function

• To maintain efficiency when
increasing p, we must
increase n

• Maximum problem size
limited by available
memory, which is linear in p

• Scalability function shows
how memory usage per
processor must grow to
maintain efficiency

• Scalability function a
constant means parallel
system is perfectly scalable

Interpreting Scalability Function

Number of processors

M
e
m

o
ry

 n
e
e
d
e
d
 p

e
r

p
ro

ce
ss

o
r

Cplogp

Cp

Clogp

C

Memory Size per node

Can maintain
efficiency

Cannot maintain
efficiency

Example 1: Reduction
• Sequential algorithm complexity

T(n),1) = Θ(n))

• Parallel algorithm

• Computational complexity = Θ(n)/p
p)

• Communication complexity =
Θ(log p)

• Parallel overhead T0(n),p) = Θ(p log p)

• p term because p processors
involved in the reduction for log
p time.

Reduction (continued)

• Isoefficiency relation: n ≥ C p log p

• We ask: To maintain same level of efficiency, how must
n, the problem size, increase when p increases?

• M(n) = n

• The system has good scalability

Example 2: Floyd’s Algorithm

• Sequential time complexity: Θ(n3)

• Parallel computation time: Θ(n3/p)

• Parallel communication time:
Θ(n2log p)

• Parallel overhead: T0(n,p) =
Θ(pn2log p)

Floyd’s Algorithm (continued)

• Isoefficiency relation
n3 ≥ C(p n2 log p) ⇒ n ≥ C p log p

• M(n) = n2

• The parallel system has poor
scalability

Example 3: Finite Difference

• Sequential time
complexity per iteration:
Θ(n2)

• Parallel communication
complexity per iteration:
Θ(n/√p)

• Parallel overhead: Θ(n √p)

Finite Difference (continued)

• Isoefficiency relation
n2 ≥ Cn√p ⇒ n ≥ C√ p

• M(n) = n2

• This algorithm is perfectly scalable

Summary (1/3)

• Performance terms

• Speedup

• Efficiency

• Model of speedup

• Serial component

• Parallel component

• Communication
component

Summary (2/3)

• What prevents linear
speedup?

• Serial operations

• Communication
operations

• Process start-up

• Imbalanced workloads

• Architectural limitations

Summary (3/3)

• Analyzing parallel performance

• Amdahl’s Law

• Gustafson-Barsis’ Law

• Karp-Flatt metric

• Isoefficiency metric

	Slide 2
	Speedup
	Slide 4
	The typical speedup curve - fixed problem size
	Slide 6
	What is execution time?
	Slide 8
	Components of execution time Parallel time
	Slide 10
	Components of execution time Sequential time
	Speedup as a function of these components
	Efficiency
	Slide 14
	Efficiency by amount of work
	Amdahl’s Law
	Gene Amdahl
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Amdahl’s law - key insight
	Two measures of speedup
	Speedup in terms of the serial fraction of a program
	Amdahl's Law ⟹ speedup
	Example of using Amdahl’s Law
	What is the efficiency of this program?
	Another Amdahl’s Law example
	Effect of Amdahl’s Law (from Wikipedia,
	Limitation of Amdahl’s Law
	No communication overhead
	O(Log2P) communication costs
	O(P) Communication Costs
	Amdahl Effect
	Amdahl Effect
	Slide 36
	Summary
	Gustafson-Barsis’ Law
	Basic terms
	Slide 40
	Some definitions
	Difference between Gustafson-Barsis (G-B) Law and Amdahl’s Law
	No communication overhead
	Deriving G-B Law
	Deriving G-B Law
	An example
	An example
	Another example
	Comparison with Amdahl’s Law result
	Comparison with Amdahl’s Law result
	Non-scaled performance σ(1) = σ(p); ϕ(1) = ϕ(p)
	performance σ(1) = σ(p); p⋅ϕ(1) = ϕ(p)
	performance σ(1) = σ(p); p⋅ϕ(1) = ϕ(p)
	Scaled speedups, log scales σ(1) = σ(p); p⋅ϕ(1) = ϕ(1)
	The effect of un-modeled log2P communication
	The Karp-Flatt Metric
	e = (σ(n) + κ(n,p))/T(n,1)
	Slide 60
	Slide 61
	Slide 62
	Deriving the K-F Metric
	Karp-Flatt Metric
	What is it good for?
	Example
	Example 2
	Which has the efficiency problem?
	Very easy to see using e
	Isoefficiency Metric Overview
	Isoefficiency Derivation Steps
	Deriving Isoefficiency Relation
	Scalability Function
	Meaning of Scalability Function
	Interpreting Scalability Function
	Example 1: Reduction
	Reduction (continued)
	Example 2: Floyd’s Algorithm
	Floyd’s Algorithm (continued)
	Example 3: Finite Difference
	Finite Difference (continued)
	Summary (1/3)
	Summary (2/3)
	Summary (3/3)

