
Practice Problems 2 Solution

Find the isoefficiency of the following program under the assumptions given below:

r = 0;
for (i=0; i < n; i++) {
 r = r + a[i];
}

1. When the recurrence is written as:

double r[threadCount];
s = 0;
#pragma omp parallel for
for (i=0; i < n; i++) {
 r[omp_get_thread_num()] = r[omp_get_thread_num()] + a[i];
}
for (i=0; i < threadCount; i++) {
 s += [i];
}

Solution: serial time is n-1, which we will simplify to n. Let T=threadCount. The
parallel time is

n/T + T. The parallel overhead is T*(n/T+T) - n = n + T2 - n = T2. Thus W(n) = T2, which
is the isoefficiency function, and therefore work must increase as the square of the
number of threads to maintain the same efficiency with a larger number of threads.
Thus going from 4 to 16 threads goes from 16 to 256 units of work needed, or an
increase of 16X work.

2. When the recurrence is written as:

#pragma omp parallel for reduction(+:r)
for (i=0; i < n; i++) {
 r = r + a[i];
}

Solution: The parallel time is n/T + log2T. The parallel overhead is T*(n/T + log2T) - n =
n + T log2T - n = T log2T. Thus W(n) = T log2T, , which is the isoefficiency function, and
therefore work must increase as T log2T maintain the same efficiency with a larger
number of threads. Thus going from 4 to 16 threads goes from 8 to 64 units of work
needed, or 8X more work. Note: I am not counting communication cost here, only
adds. If we count communication costs, the expressions T*(n/T + log2T) - n in bold
above should become T*(n/T + 2 log2T) - n, where the one log2T term is the adds and
one log2T is the communication through shared memory.

3. When the recurrence is written as:

#pragma omp parallel for simd reduction(+:r)
for (i=0; i < n; i++) {
 r = r + a[i];
}

In this program, assume that it is like the program in 2 except that four adds are done
for the cost of one add when finding the partial sums on each thread, and when
combining the partial sums across threads four partial sums can be added each time.

Solution: The parallel time is n/)T*4) + log4T. The parallel overhead is

T*(n/(T*4) + log4T) - n
= -n/4 + T log4T - n =
-3/4n + T log4T.

Thus W(n) = -3/4n + T log4T. Solving for n we get
n = -3/4n + T log4T
7n/4 = T log4T
n = (4/7) T log4T, which is the isoefficiency function, and therefore work must increase
as (4/7) T log4T to maintain the same efficiency with a larger number of threads. Thus
going from 4 to 16 threads goes from (4/7) * 4 * 1 = 2.3 or 3 units of work to (4/7) 16 * 2
= 18.3 or 19 units of work needed, or ~6X more work. Note that since in the four thread
case the concurrency is limited we would really need 4 units of work to have at least
one unit of work per thread, and so we would do ~5X times more work at 16 threads. At
T > 4 this is not an issue. Note: I am not counting communication cost here, only adds.
If we count communication costs, the expressions (4/7) T log4T in bold above would
become (4/7) 2 T log4T (or (8/7) T log4T), where the one log4T term is the adds and one
log4T is the communication through shared memory.

4. Compare the work involved in the recurrence of 1, 2 and 3 at 4 threads, 16 threads,
64 threads and at 256 threads using the iso-efficiency relationships you came up
with as answers.

T / isoefficiency
function

T2 T log2T (4/7) T log4T

4 16 8 3 (or 4, as
explained above)

16 256 64 19

64 4096 64 * 5 = 320 (4*64/7) * 3 = ~110

256 65536 2048 (4*256/7) * 4 =
~585

