ECE 563 Spring 2012 First Exam

version 1

This is a take-home test. You must work, if found cheating you will be failed in the course and you will be turned
in to the Dean of Students. To make it easy not to cheat, this exam is open book, open notes, and you may use
passive online resources to solve it. By passive I mean you may look at existing online resources, you may not post
queries or requests to information to any online resource.

Please print and sign your name below. By doing so you signify that you have not received or given any prohibited
help on this exam.

Name:

For all problems, unless stated otherwise you can assume that:
1. There is a variable called pid that contains the process id or rank in the communicator MPI_COMM_WORLD.
2. All initialization of the MPI runtime has been done.
3. Data being communicated is of type MPI_INT.
4. Using two or more communication operations where one will suffice will cost you at least part of the credit.

5. Each send, receive or step of a collective communication operation takes 100 time steps. Thus a reduce over
16 processors takes 400 time steps for communication (100log,16).

6. Each arithmetic operation takes 1 time step.
7. Problems that require computation on your part should show your work.

8. Note that there are slightly more than 100 points on the test.

Q1: 6 pts
One or more MPI communication operations takes values of data owned by each process from:

PO Pl

bl 2493576

P2

015 (91503 'sl17ls]
P3
o O

bl

to

0 |

PO Pl

4l 012 4 913576 Q10 | 2493576
0 |

P2 P3
bl 2493576 Qo | 2493576

Show the MPI communication operation(s) and any conditional (if) statements needed to case the reordering of
data gives the resulting data.

Q2: 6 pts
One or more MPI communication operations takes values of data owned by each process from:

PO Pl

L0 12 493576 7 6 01249 35

P2 P3

3 57601 249 4935/ 7601 2

to
PO Pl
114 211216 18 14 16 1522 (3114 21 121618 14 1615 22
P2 P3
114 2112 16 18 14 16 15 22 (114 21 12 16 18 14 1615 22

Show the MPI communication operation(s) and any conditional (if) statements needed to case the reordering of
data gives the resulting data.

Q3: 6 pts
One or more MPI communication operations takes values of data owned by each process from:

PO Pl

P2 P3
(0 | 249357

to

PO Pl

P2 P3
M0 | 249357
T[]

CHERRR R

Show the MPI communication operation(s) and any conditional (if) statements needed to case the reordering of
data gives the resulting data.

Q4: 6 pts

One or more MPI communication operations takes values of data owned by each process from:

to

Show the MPI communication operation(s) and any conditional (if) statements needed to case the reordering of

data gives the resulting data.

PO

Pl
D[4

PO
N0

20 | 249357

Pl
2 4

Y40 | (2 4 9 357

P2
19 3

L0 | 249357

P3
57

byl O | (2 49 3 57

Q5: 6 pts
One or more MPI communication operations takes values of data owned by each process from:

PO Pl
b1 [N b1 [

c2[FID o

P2 P3
319 3 b1 N

to

PO Pl
b1 [b1 I

g5 7] o[

P2 P3
3193 b1 N

b2 (R b2 [ENEN

Show the MPI communication operation(s) and any conditional (if) statements needed to case the reordering of
data gives the resulting data.

Q6: 6 pts

Carp Computing has decided to take the lead in the large numerical server market, and has unleashed its Triad
computer. The Triad computer is unique in that it supports reduce and broadcast degree-three trees instead of the
traditional degree-two trees supported by its competitors. Triad also supports, in addition to a floating multiply-add
operation (which performs the operation ¢ + a * b is one unit of time) a floating add-add operation, which performs
the the operation ¢+ a + b in one unit of time. A reduction on this network is shown below.

PO Pl F2 F3 P4 Ps P& P7 PB] Fld Pl Pl2 PI3 Fl4 PIS Fle PI7 Pla P19 F20 P21 P22 F23 P24 P25 P&
O) O O ®) O O ®)

Compare the time it takes to perform a sum reduction operation over 729 processors on the Triad computer to
the time it takes to perform the same operation on a regular computer that performs a reduce like we have seen in
class. Assume the count argument to the MPI_Reduce operation is 1.

Q7:

To show the effectiveness of their machine, Carp Computing forms the following two tables:

num procs 27 81 243
speedup 26.7 77 203.9
e

num procs 27 81 243
speedup 26.8 78.5 216.3
e

QT7a: 4pts Fill in the e row with the Karp-Flatt metric value.
Q7b: /pts Each table represents experimentally measured values from a different machine for identical programs
and compilers. Which machine will give better scaling for the problem?

Q7c: 3pts Which machine is the Triad machine (discussed in question Q6) and which is a normal machine?

Q8: 6 pts

You have an intern position at Oak Ridge National Lab running on their 224, 162 processor Jaguar machine. You
write a program which is 99.999% parallel, i.e. the serial fraction f of the program is .00001. What is the speedup
of your program, computed using Amdahl’s Law? What is the efficiency?

Q9: 6 pts

You are not happy with your efficiency and decide to make life easier and let the problem size grow with the
number of processors, providing more work to be done in parallel and (you hope) increasing the speedup and efficiency.
You vaguely remember hearing your 563 professor talking about Gustafson and Barsis and Harry Potter during an
interesting dream. Curious about how they might be connected, you look at your old lecture notes, and find the
answer, shortly before falling asleep yet again. Waking up refreshed, you decide to let s, the sequential part of a
parallel computation, be 0.00001. What is the speedup on the Jaguar machine at 244, 162 processors?

Q10: 6 pts

Make the i loop parallel.

Q11: 6 pts

Make the j loop parallel.

for (i =0;i < 100x*n;i++) {
for (j =0;j <mj++){
ali](j] = plil[3] + c[1][5];

for (1 =0;i < 100*n;i++) {
for (j =0;j <mj++){
ali](j] = pli][3] + c[4][5];

Q12: 6 pts

Compilers can perform a loop transformation called loop interchange. Applying loop interchange to the i and j
loops in the following loop nest:

for (i =0;i < 100x*n;i++) {
for (j =0;j <m;j++) {
ali](j] = v[i][3] + <[i][5);

would yield a loop nest that looks like:

for (j =0;j <m;j++) {
for (1 =0;i < 100*n;i++) {
a[i][j] = b[i][j] + c[1][j];

Give reasons in terms of available parallelism and overhead as to why you might want to parallelize the outer i
loop in the first loop nest, and the outer j loop in the second loop nest. You answer should short.

Q13:

Q13a: 4 pts Make the following loop parallel using OpenMP pragmas/directives.
for (i =0;i <100 xmn;i++) {
s+= ali]

}

Q13b: 4 pts If the loop is changed to look like:

for (i =0;i <100 xmn;i++) {
s+ = a[i]
bli] = a;

}

Can the technique used in the first loop to perform the parallelization still be used?

Q14: 6 pts

Make the i loop parallel using OpenMP. You cannot make any assumptions as to whether foo is associative or
commutative.

for (i =0;i < 100x*n;i++) {
for (j =0;j <mj++){
} ali]+ = b[i][j];

c = foo(c);

}

Q15: 6 pts

int a[50]; int b[50]; int c[50];
for (j =0;j < 100;j ++) {

a[i] = 1;
}

#pragma omp parallel for
for (i = 0;i < 100;i ++) {

if (i < 50) {
b[i] = a[i];
cli] = ali];

telse a[i] = 0;

}

Given the loop above, circle the answer that is most right about the values of a, b and ¢ after the program
executes:

1. Element b[i] is equal to element c[i] for all 0 < i < 49.
2. Element b[i] is never equal to element c[i] for all 0 < i < 49.
3. Element b[i] may, or may not be equal to element c[i] for all 0 < i < 49.
Q16: 6 pts If the loop of Q15 is changed to:
int a[50]; int b[50]; int c[50];
for (j =0;j < 100;j ++) {
a[i] = 1;
}
#pragma omp parallel for
for (1 =0;i < 100;i ++) {

if (1 <50) {
#pragma omp critical

b[i] = a[i];
cli] = ali];
telse {

#pragma omp critical
a[i] = 0;
}

}
}

Given the loop above, circle the answer that is most right about the values of a, b and c after the program
executes:

1. Element b[i] is equal to element c[i] for all 0 < i < 49.
2. Element b[i] is never equal to element c[i] for all 0 < i < 49.

3. Element b[i] may, or may not be equal to element c[i] for all 0 < i < 49.

