Reactive-Associative Caches

Brannon Batson T. N. Vijaykumar
Alpha Design Group School of Electrical & Computer Engineering
Compag Computer Corporation Purdue University
bbatson@pa.dec.com vijay@ecn.purdue.edu
Abstract set-associative cache, similar to the IBM 3081 L1, and

MIPS R8000 L1 [15]. Unlike a set-associative cache, data
from the r-a cache’s data array proceeds without any way-
While set-associative caches typically incur fewer select multiplexors (which would have to wait for the tag
misses than direct-mapped caches, set-associative cachesomparators to identify the matching way) in the data out-
have slower hit times. We propose the reactive-associativeput path [9]. Because a set-associative tag array is almost
cache (r-a cache), which provides flexible associativity by as fast as a direct-mapped tag array for small associativities
placing most blocks in direct-mapped positions and reac- (although the set-associative data array is significantly
tively displacing only conflicting blocks to set-associative slower than direct-mapped data array) [13], this organiza-
positions. The r-a cache uses way-prediction (like the pre- tion achieves near direct-mapped speeds.
dictive associative cache, PSA) to access displaced blocks To locate a block in one of the many set-associative
on the initial probe. Unlike PSA, however, the r-a cache positions, the above-mentioned machines probe the tag
employs a novel feedback mechanism to prevent unpredictarray first andthen sequentially probe the matching data
able blocks from being displaced. Reactive displacementarray, lengthening the hit time. To avoid this serialization,
and feedback allow the r-a cache to use a novel PC-basedother schemes first probe the direct-mapped positions of
way-prediction and achieve high accuracy; without the tag and data arrays in parallel, and then probe the set-
impractical block swapping as in column associative and associative positions [1,2,18, 14, 16]. To increase the prob-
group associative, and without relying on timing-con- ability of finding blocks in the first probe, these schemes
strained XOR way prediction. A one-port, 4-way r-a cache swap a block found on the second probe with the block in
achieves up to 9% speedup over a direct-mapped cachehe direct-mapped position. Unfortunately, cache block
and performs within 2% of an idealized 2-way set-associa- swapping degrades both latency and bandwidth because
tive, 1-cycle cache. A 4-way r-a cache achieves up to 13%swapping involves two reads and two writes which is slow
speedup over a PSA cache, with both r-a and PSA usingif done sequentially, and expensive, if done in parallel.
the PC scheme. CACTI estimates that for sizes larger than To increase the first probe hit rate without block swap-
8KB, a 4-way r-a cache is within 1% of direct-mapped hit ping, the predictive sequential associative cache (PSA
times, and 24% faster than a 2-way set-associative cache.cache) proposed using way-prediction for D-caches [6].
The PSA cache predicts the way-number of a block’s loca-
1. Introduction tion, which avoids waiting for the tag array to identify the
matching way-number. Way-prediction accuracy crucially
The growing gap between processor speeds and memaffectsbothaccess latency and L1 bandwidth demand. Not
ory speeds is resulting in increasingly expensive cacheonly do mispredicted accesses incur higher latency, they
misses, underscoring the need for sophisticated cache hierdegrade valuable L1 bandwidth due to additional probes.
archy techniques. Increasing the associativity of the cacheThe PSA cache predictdl accesses without any selectiv-
is one way to reduce the miss rate of the cache. While set-ity or control, resulting in poor way-prediction accuracy
associative caches typically incur fewer misses than direct-and first probe miss rates which are significantly worse
mapped caches, set-associative cache implementations arthan direct-mapped miss rates. Consequently, the PSA
usually slower than direct-mapped caches [9]. Becausecache worsens the latency and bandwidth of accesses that
even for a direct-mapped cache the common case is a hitwould hit in a direct-mapped cache.
set associativity should be provided without a large While the r-a cache also uses way prediction, it is the
increase in hit latency over a direct-mapped cache. first proposal to combine asymmetric organization with
We propose the reactive-associative cache (r-a cache)way-prediction without compromising hit time. To avoid
which provides flexible associativity by placing most the bandwidth depletion inevitable with PSA's poor way-
blocks in direct-mapped positions and reactively displacing prediction, the r-a cache places most blocks in direct-
only conflicting blocks to set-associative positions. To mapped positions, and reactively displaoaesy conflicting
achieve direct-mapped hit times, the r-a cache uses arblocks to set-associative positions. While reactive displace-
asymmetric organization in which the data array is orga- ment may reduce overall miss rate, it takes pressure off the
nized like a direct-mapped cache and the tag array like away-prediction mechanism, enabling high first probe hit

Appears in the Conference on Parallel Architectures and Compiliation. 2001

rates. In addition to reactive displacement, the r-a cacheindex uses the conventional set-associative index concate-
provides a feedback mechanism which prevents repeat-nated with a way number to locate a block in the set. The
edly-mispredicted accesses from being displaced to setway number is log(n) bits wide. For the first probe, it may
associative positions. Thus, the r-a cache achieves perforcome from either the conventional set-associative tag
mance robustness by trading-off overall hit rate for first- field’s lower-order bits (for the direct-mapped blocks), or
probe hit rate and L1 bandwidth. the way-prediction mechanism (for the displaced blocks).
The predicted way numbemust be made available If there is a second probe (due to a misprediction), then the
before the actual data address to avoid any delay in the ini-matching way number is provided by the tag array.
tiation of every cache access. This stipulation rules out The r-a cache simultaneously accesses the tag and data
using the data address for prediction lookup. PSA recom-arrays for the first probe, at either the direct-mapped loca-
mends an XOR-based way-prediction, which XORs the tion or a set-associative position provided by the way-pre-
instruction offset with the source register value to approxi- diction mechanism. If the first probe, called probeO, hits,
mate the address [3] and looks up the prediction table.then the access is complete and the data is returned to the
XOR operation on a register value often obtained late from processor. If probe0 fails to locate the block due to a
a register-forwarding patfollowed by a table lookup, is misprediction (i.e., either the block is in a set-associative
likely to be slower than a full add to compute the address, position when probe0 assumed direct-mapped access or the
delaying access initiation. In contrast, the r-a cache usesblock is in a set-associative position different than the one
the instruction PC for prediction lookup, allowing at least supplied by way-prediction), probeO obtains the correct
six pipeline stages for the lookup, making the predicted way-number from the tag array if the block is in the cache,
way-number availablevell before the data address. The and a second probe, called probel, is done using the cor-
novelty of our PC scheme is in integrating way prediction rect way-number. Probel probes only the data array, and
with reactive displacement and feedback. not the tag array. If the block is not in the cache, probe0
The main contributions of this paper are: signals an overall miss, and probel is not necessary.
* We show that a 4-way r-a cache hit latency is within 1% Thus there are three possible paths through the cache
of a direct-mapped cache, and 25% faster than 2-way. for a given address: (1) probeO is predicted to be a direct-
* R-a cache’s reactive and feedback mechanisms con-mapped access, (2) probe0 is predicted to be a set-associa-
serve L1 bandwidth and achieve low first-probe miss tive access and the prediction mechanism provides the pre-

rates at 7.3%, compared to PSA at 16.6%. dicted way-number, and (3) probeO is mispredicted but
* Our novel PC-based scheme enables way-predictionobtains the correct way-number from the tag array, and the
early in the pipeline. data array is probed using the correct way-number in

* A one-port, 4-way r-a cache, using 1184 bytes of pre- probel. On an overall miss, the block is placed in the
diction storage, achieves up to 9% speedup over adirect-mapped position if it is non-conflicting, and a set-
direct-mapped cache and up to 13% speedup over aassociative position (LRU, random, etc.) otherwise.

PSA cache, with both the r-a and PSA caches using the
PC scheme. The r-a cache performs, on average, within2 1. Probe0 hit latency
2% of an idealized 2-way set-associative, 1-cycle

cache. We also show that reactive displacement and Tne fundamental reason that a conventional set-associa-

feedback are essential and without these mechanismsjye cache is slower than a direct-mapped cache is the mul-

the r-a cache’s first-probe miss rates suffer. tiplexor in the data array path; the select signals for this

In Section 2., we describe the r-a cache’s organization mytiplexor are derived from the tag array output, which is
and in Section 3., the way-prediction mechanism. In gjg [9]. We analyze the r-a cache to show that the r-a
Section 4., we qualitatively compare against previous cache is almost as fast as a direct-mapped cache, assuming
schemes. We present experimental results in Section 5. angh 5t way-prediction information (the predicted way-num-
conclude in Section 6. ber and whether probe0 is direct-mapped or way-pre-

] o o dicted) is available well before the data address. In
2. Reactive-Associative Cache Organization Section 3., we show how way-prediction can be done
before the data address is available.

The r-a cache is formed by using the tag array of a set- compared to a direct-mapped cache, the r-a cache intro-
associative cache with the data array of a direct-mappedqces the extra multiplexgarobe0 way# muin the data
cache, as shown in Figure 1. For an n-way r-a cache, theréyray index path (Figure 1). Note that this multiplexor
is a single data bank, and n tag banks. always chooses one out of three inputs, irrespective of the

The tag array is accessed using the conventional set-set-associativity of the r-a cache. The multiplexor select
associative index, probing all the n-ways of the set in paral- signal is available earlier than the data address because the
lel, just as in a normal set-associative cache. The data arraignal comes from the way-prediction mechanism. There-

Appears in the Conference on Parallel Architectures and Compiliation. 2001

predicted way humber , addreés. . access block
|:| tag T~ Jset-associative index] block offset | inhibit prediction ~ way-number
g N _ list table (APT) table (BWT)
, —— direct-mapped —
probe0 d-m/ way number
probe0 predicted/
probel? —I»(probe0 way# muy)
data array PC e
o way
way #0 tag array way #n-1 set [way #0 3L - {olk addr ctr #
blk addr
v tag e o « V[tag
way #i _
7—" victim list pré&t
concat way #
@ < @ : MISS CiHlwg— correct : -
Way B A incorrect : ++
] probel L1 replace?
. UL miss Eountér++
. — >l L1 fill
pr— ’I displace? victim/BWT counter = 0
NS _ cache block
probe-hit y probel-hit FIGURE 2: PC-based way-
FIGURE 1: The reactive-associative cache. prediction structures.

fore, the only delay added to the critical path is propagation pipelining, because of the variable access latency (probe0
through the multiplexor. One possible implementation of hit time vs. probel hit time). Scheduling subsequent pipe-
probe0 way# muxvould be a single level of pass gates lined accesses without knowing the latency of the previous
using a one-hot encoding of the select lines, in which caseaccess is difficult. On a misprediction, a new access has
the extra delay would be negligible. Probel may incur a entered the cache pipeline by the time we determine that
whole extra cycle to account for thwobel way# encoder we need to do a second probe for the prior access. It is
(Figure 1) and the pass gate. mainly for this reason that we charge two additional cycles
The tag array does not incur any extra delay because itfor probel. Unlike prior multi-probe caches, however, the
uses the conventional set-associative index directly fromr-a cache can signal a probel hit or an overall miss by the
the address and not througihobeO way# muxHigure 1). end of probe0, which may simplify the scheduling.
The multiplexorprobe0 hit muxgenerates the probeO hit
signal by selecting the tag match for the probe0 way-num- 3. Way prediction
ber from among the tag matches of all the tag array banks.
Note that the probe0 way-number (either direct-mapped The r-a cache employs hardware way-prediction to
way-number or predicted probe0 way-numbers) is the obtain the way-number for the blocks that are displaced to
select forprobe0 hit muxand is available no later than the set-associative positions before address computation is
address. While the tag array is being accessed with the concomplete. The strict timing constraint of performing the
ventional set-associative index, the probe0 way-number isprediction in parallel with effective address computation
sent, in parallel, tgprobe0 hit muxselect. Using a similar requires that the prediction mechanism use information
pass-gate mux as we suggested forghebe0 way# mux that is available in the pipeline earlier than the address-
the probe0-hit signal would incur extra delay of one pass compute stage. The equivalent of way-prediction for i-
gate, compared to a conventional direct-mapped cache hittaches is often combined with branch prediction [5, 9], but
signal. The probel-hit signal incurs extra delay of one OR because D-caches do not interact with branch prediction,

gate, over the equivalent direct-mapped hit signal. those techniques cannot be used directly. An alternative to
prediction is to obtain the correct way-number of the dis-
2.2. Complications due to dual probes placed block using the address, which delays initiating

cache access to the displaced block, as is the case for stati-
The r-a cache’s dual probing may complicate cache cally probed schemes such as column-associative and

Appears in the Conference on Parallel Architectures and Compiliation. 2001

XOR-based way prediction

compute reg XOR offset [}]
lookup way-prediction cache
XOR —» >
Scheme predicted way-number, access
probe0 way# mux select
N - N — — wijite
000 re back
PC| | fetch | |decodd [reg issue regd mem Y
g.Pul. > > > > > o> -
Ipeline renam executg
P AP] loads]]
:Inst:|b|t BWT Stores addr CaChe
PC-based Ly, - - L > >
way prediction accesd | access omp | [access
T_ N _¢ way-prediction information/’_»_ B

PC-based way prediction predicted way-number, probe0 way# mux select

FIGURE 3: Pipeline timing of way-prediction.

group-associative caches. within the time the pipeline computes the real address
We examine two handles that can be used to performusing a full add. Note that the prediction table must have
way prediction: instruction PC and approximate data more entries or be more associative than the cache itself to
address formed by XORing the register value with the avoid conflicts among the XORed approximate data
instruction offset (proposed in [3], and used in [6]), which addresses, and therefore will probably have a significant
may be faster than performing a full add. These two han- access time, exacerbating the timing problem.
dles represent the two extremes of the trade-off between
prediction accuracy and early availability in the pipeline, as 3.1. PC-based way-prediction
shown in Figure 3. PC is available much earlier than the
XOR approximation but the XOR approximation is more pc-pased way-prediction tracks memory access behav-
accurate because it is hard for PC to distinguish among dif-jor tg associate the cache blocks with the PCs of the
ferent data addresses touched by the same instructioninstryctions that access the blocks, by exploiting the local-
Other handles such as instruction fields (€.g., operand regity of reference within one cache block on a per-instruction
ister numbers) do not have significantly more information pasjs. The prediction mechanism tracks the instructions
content from a prediction standpoint, and the PSA paperhat access displaced blocks and associates the instruction
recommends the XOR scheme for its high accuracy. PCs with the way-number of the displaced blocks. If the
In an out-of-order processor pipeline (Figure 3), the instryction accesses the displaced block again (i.e., the
instruction PC of a memory operation is available much jnstryction exhibits locality of reference within the cache
earlier than the source register. Therefore, way-predictionpjgck), the prediction mechanism returns the associated
can be done in parallel with the pipeline front end process- yay-number, which results in a probe0 hit. This kind of
ing of memory instructions so that the predicted way-num- |ocality can be expected from (1) an instruction that
ber andprobe0 way# muzgelect input are ready well before ccesses the same data throughout program execution,
the data address is computed. The XOR scheme, on thech as an instruction accessing static globals using a glo-
other hand, needs to squeeze in an XOR operation on &yg| pointer register, (2) an instruction that accesses the
value often obtained late from a register-forwarding path same data for a period of time during program execution,
followed by prediction table lookup to produce the pre- gych as an instruction accessing stack frame variables
dicted way-number and therobe0 way# muwselectall within a function invocation using the stack pointer (the

Appears in the Conference on Parallel Architectures and Compiliation. 2001

stack pointer changes infrequently within a function invo- block being retrieved is found in the BWT, the way-num-

cation), and (3) an instruction that accesses the differentber is updated; this update keeps the way-prediction accu-

words in a cache block, such as an instruction accessingracy high for blocks in transit.

successive array elements within a cache block. If an Because the APT and BWT need to hold information on

instruction accesses a different block on every access (e.g.only the displaced blocks, small size may suffice. Also,

strided accesses using strides larger than the block size)because displaced blocks, by definition, conflict in the

the PC scheme will not work well. More sophisticated cor- cache and the BWT uses block addresses to index, conflicts

relational prediction schemes may solve this problem, butin the BWT may be common. Conflicts in the APT and

such schemes may require large prediction storage [10]. BWT lead to mispredictions because such accesses are pre-

dicted to be direct-mapped. Therefore, the APT and BWT

3.1.1. Access-prediction and block way-number tables may need to be moderately associative (or indexed through
When a block is displaced to a set-associative position,a skewing function). Fortunately, both the APT and the

it may cause more conflicts in which case it is replaced BWT access are well ahead of the cache access in the pipe-

from the cache. The r-a cache places a block replaced fromline (Figure 3), high associativity of the APT or BWT is

a set-associative position in the block’s direct-mapped not likely to delay probe0 initiation.

position, anticipating that it may not conflict anymore. If

the block continues to conflict in its direct-mapped position 3.2. XOR-based way-prediction

then the block is displaced to a, presumably different, set-

associative position. Thus a conflicting block may transit yoR-pased way prediction, used in the PSA paper [6},
through a few positions before settling into a non-conflict- (gjies on the idea that while a pipeline stage computes the
ing position. During this transition, the way-number of the 45ta address by adding the source register value to the
block is constantly changing and unless way-prediction is jnstruction offset, the register value can be XORed with the
updated with the correct way-number, many mispredic- instruction offset to compute an approximate of the address
tions will ensue. If multiple instructions access the same 3] and access a way-prediction table. This scheme exploits
block, block transit problems are exacerbated because eackhe fact that most memory instructions have small enough
of these instructions incurs a misprediction. Because way-ffsets so that the block address from the XOR approxima-
prediction maps PCs to way-numbers, and not the othertjon js usually same as or at least correlates well with the
way, updating way-number is hard because the mappingp|ock address from the actual data address.
PC is not known when the block transits to a new way- an APT is not need for the XOR scheme. Instead, the
number. XOR scheme simply uses the BWT indexed by the XOR
Adding one level of indirection solves the block transit y51ue. The other key difference between the XOR and PC
problem. Figure 2 depicts the structures used by the way-schemes is that the XOR scheme accesses the BWT during
prediction scheme. The instructions’ PCs are associatetne |ate address-compute pipeline stage, whereas the PC
with the block address, and not the way-number of the scheme accesses the BWT in the early instruction-decode
block, in the access-prediction table (APT). A second pipeline stage. While the XOR scheme is naturally more
table, called the block way-number table (BWT), is used t0 accyrate than the PC scheme, we claim that this late access
associate the block address with the way-number of thecg,ses the timing problems pointed out in Section 3., espe-
block. Multiple entries in the APT may hold the same cjg|ly because of BWT's large size requirements (the PSA

address. Using the block address, transiting blocks update:ache), as discussed in the previous section.

the BWT with the correct way-number, enabling all the

instructions that access the same block again to get the cor

rect way-number. Through the APT, the r-a cache exploits

locality within one cache block on a per-instruction basis. While displacing conflicting blocks reduces overall
The APT is accessed using the instruction PC, and then__. . . ;

. ; misses, first-probe miss rate typically worsens due to
the block address supplied by the APT entry is used to increased pressure on way-prediction. Because probeO
access the BWT. If the block address supplied by the APT _ .) . S
is found in the BWT. the wav-number from the BWT entry TSS€S due to mispredictions result in a second data array
. ' y-nu Y Tacce:ss (if the block is in the cache), overall hit latency and
is sent to the cache as the predicted probe0O way-number. Ibandwidth to the cache are significantly degraded. The
the block address obtained from the APT is not found in '

the BWT then the access is predicted to be direct—mapped.g]r?;n ;g?se?(?rgoé tcr;;ss ';eth:r: dprorgsiohlf:sal?gi(r:]upé/ut;]:e djct;t
Similarly, instructions that do not find a matching PC entry Y y Y b ' 9 9

in the APT are predicted to access direct-mapped positions.CaChe accesses (0 queue in the load/store queue. In the

. . . worst case, a substantial fraction of all L1 hits may be from
The BWT is also accessed on a L1 cache fill, so that if the probel, considerably degrading valuable L1 bandwidth,

3.3. Reactive displacement and feedback

Appears in the Conference on Parallel Architectures and Compiliation. 2001

Because way-prediction has to use inexact information the block is evicted from the cache; if, later, the block is
due to pipeline timing constraints, it is hard to make way- brought back into the cache, it is placed in the direct-
prediction perfect. Therefore, the r-a cache attempts tomapped position (because the victim list miss counter
reduce the number of accesses it predicts, such that eithewould have been reset when it was put in the set-associa-
data is in a direct-mapped position or is highly-predictable tive position). While such evictions increase overall cache
in a set-associative position, keeping the number of miss rate, continuing to hold such unpredictable blocks in
mispredictions in check. Regardless of the way-prediction set-associative positions may cause probe0 miss rate to
scheme used, the r-a cache (1) reactively displaces onlybecome worse than that of a conventional direct-mapped
those blocks that frequently conflict, avoiding prediction cache. Thus the r-a cache trades-off overall hit rate for
accuracy degradation due to a large number of displacedprobeO hit rate, which lowers average cache access time.
blocks, (2) tracks prediction accuracy so that unpredictable It should be noted that in the case of the PC-based
blocks are moved back to their direct-mapped positions, scheme, the BWT mispredict counter is shared among all
avoiding repeated mispredictions and (3) disallows unpre-instructions that access that displaced block. This does a
dictable blocks from being displaced again, using a simple good job of capturing group prediction behavior.
feedback mechanism.

Thus, the r-a cache achieves performance robustness bg.3.3. Feedback to prevent repeated mispredictions
trading-off overall hit rate for probeO hit rate, and lowering The r-a cache relies on its ability to turn off associative
bandwidth demand. In Section 5.4., we show that probeOdisplacement for accesses that have poor prediction accu-
miss rates worsen drastically without reactive displacementracy. This is done on a per address basis, as described in

and feedback. the previous section. In general, instructions that are unpre-
dictable for one address are also unpredictable for other
3.3.1. Victim list: reactive displacement addresses. To prevent the performance penalty of relearn-

Ideally, the r-a cache would displace only conflicting ing unpredictable behavior for each address that an unpre-
blocks to set-associative positions; in a real implementa- dictable instruction touches, the r-a cache also provides the
tion, it is difficult to isolate capacity and conflict misses. inhibit list as a way to turn off reactive displacement on a
Consequently, the r-a cache approximates isolation of con-per instruction basis.
flict misses by tracking the set of recently replaced blocks The inhibit list is a single bit per instruction which is set
in a table called the victim list, similar to [8]. Each victim when that instruction is inhibited from causing an associa-
list entry consists of a block address and a saturatingtive displacement. Because the inhibit list entry is a single
counter. The block address of a replaced block is insertedbit indexed by instruction, it would be natural to place the
in the victim list and the corresponding counter, which bit in the i-cache.
counts the number of times the block has been replaced in When the misprediction counter in the BWT saturates,
the past, is incremented. After the block gets replaced anot only is the block evicted from the cache, but the inhibit
few times, the victim list counter reaches saturation, signal- list entry is set for the instruction causing the mispredict.
ing a conflicting block; the next time the block is brought As long as the inhibit list entry is set, the instruction always
back into the cache, the block is displaced to a set-associaaccesses only direct-mapped locations without using way-
tive position, and the victim counter is reset. prediction (PC or XOR), and does not displace any blocks

The victim list needs to be a high-associative structure to set-associative positions. Furthermore, an inhibited
to avoid conflicts in the victim list itself. Because the vic- instruction will cause evictions of set-associative blocks
tim list is not on the cache access critical path but only in that it touches, and will also saturate the BWT mispredic-
the replacement path, the high associativity of the victim tion counter for that block. Therefore, the inhibit bit natu-

list does not impact hit latency. rally has a poison property, in that once an instruction is
inhibited, all the blocks it touches will be forced to direct-
3.3.2. Feedback to evict unpredictable blocks mapped locations, and all the instructions that touch those

Regardless of whether the PC-based or XOR-basedblocks will be inhibited, and so on.

scheme is used, the BWT maps a block address to its way- We learned that predictability of instructions changes
number in the cache. Apart from the way-number, each over the course of program execution (usually when the
BWT entry contains a saturating counter, which decre- data that they touch changes). Therefore, it is desirable to
ments on a correct prediction and increments on an incor-clear the inhibit list when instructions start to work on new
rect prediction to track the accuracy of way-prediction for data. We use a DTLB miss to indicate that we are entering
the corresponding block. The purpose of tracking mispre- a new data phase, and it is time to clear the inhibit list.
diction counts is to evict blocks whose addresses are not Addresses may also become more predictable when
predictable. If the way-number for a block that is displaced they are touched by different instructions. Therefore, we
to a set-associative position is repeatedly mispredicted thenwish to clear the BWT mispredict counters when we are

Appears in the Conference on Parallel Architectures and Compiliation. 2001

Component Description Program input instructions
CPU Out of order, 8-issue, 64-entry reorder buffer, 32-entry Id/st qligue/OrteX ref 1 b||||<_)r_1
Prediction bimodal 4096 entries + gshare 10-bit history g(.:c 1re.cog 347 n.1|.II|or
L1 I-cach 16 KB, 2-way, 32 byte blocks, L cycl ! train_| 365 million
~cache » £-Way, o< Dyle blocks, 1 cycle perl || jumble | 1 billion
L1 D-cache 8 Ksl?, 32I byte th)oclksl, 1kcycl$ probe0, 90 9stone21 1 billion
cycles probeZ, lock-up free troff paper.mg 70 million
L2 cache 256 KB, 8-way, 64 byte blocks, 12 cycle ma8ksimll train | 171 million
memory Infinite capacity, 60 cycle latency swim train | 430 million
Way- PC:128-entry APT & BWT, 2048-bit inhibit list, 256-entry victim | fpppp train | 235 million
prediction list; inhibit threshold: 3 victim threshold: 5; (total 1184 bytes).Taple 2: Benchmarks.
resources XOR: 1024-entry BWT, 2048-bit inhibit list, 256-entry victim
list; inhibit threshold: 3 victim threshold: 2; (total 2560 bytes).

Table 1: Hardware parameters.

entering a new instruction phase of the program. We use arhave to differ in at least one bit [11]. The group-associative
ITLB miss to indicate the arrival of a new instruction cache [14] pioneered the idea of using under-utilized cache
phase, and this causes a clearing of the BWT mispredictframes (or ‘holes’) to displace any block into any frame in
counters. the cachél achieving fully-associative miss rates in the
We tried several dynamic schemes, none of which per- limit. It also uses cache block swapping, and has a notion
formed as robustly as the TLB scheme. Simple periodic of selective displacement of recently accessed blocks.
clearing performed well, but the clearing interval is appli- Group associativity is achieved by maintaining the location
cation dependent and needs to be pre-determined. and tags of the displaced blocks in a fully-associative OUT
directory. In Section 5.3., we show that the fully-associa-
tive OUT directory severely lengthens the hit time.
To avoid cache block swapping, the predictive sequen-
The hash-rehash cache [1] introduced the idea of multi- tial associative cache [6] proposed way prediction to access
ple probes to the cache to achieve high hit rates while any way, as opposed to only the direct-mapped way, on
maintaining direct-mapped speeds. Accesses perform grobe0. The PSA paper uses direct-mapped tag and data
static probe@lwaysin the direct-mapped position and ona arrays, unlike the r-a cache’s set-associative tag array, and
probe0 miss, a second probe is done by hashing thesuggests sequentially probing the tag array to find the cor-
address. The column-associative cache [2] improved onrect way-number. The PSA paper recommends the XOR
hash-rehash by associating rehash information with eachscheme for its high accuracy, but incurs timing problems
block and improving the replacement algorithm, which (See Section 3.2.). But even with XOR prediction, PSAs
decreases the number of second probes required. The pamway prediction accuracy is low, mainly because all
allel multicolumn cache [18] generalizes column-associa- accesses are predicted, resulting in many probe0 misses,
tive to n-way associative through a set-associative tag arrayeven for accesses that would hit in the direct-mapped
with a direct-mapped data array to perform the tag searchcache. PSA does achieve low overall miss rates. Because of
in parallel, and uses MRU information to optimize the many second probes, average hit latency and L1 cache port
search, much like other implementations considered inpressure increase. In Section 5.3., we show that this
[17,12,7]. All the above schemes increase the probability increase usually nullifies the advantage of the low overall
of finding blocks in the static probe0 by swapping a block miss rate, under realistic bandwidth constraints.
found on the second probe with the block in the probe0
position. Unfortunately, swapping of entire cache blocks is 5. Experimental Results
hard to implement because swapping involves two reads
and two writes, which is slow if done sequentially, and pro- We modified the Simplescalar3.0 simulator [4] to model
hibitively expensive if done in parallel, and degrades valu- the L1 D-cache as an r-a cache. Table 1 shows the system
able L1 bandwidth. configuration parameters used throughout the experiments,
The Difference-bit cache is a two-way associative cache unless specified otherwise. The processor core including
which achieves almost direct-mapped speeds for the spethe out-of-order issue and branch prediction mechanisms
cial case of two-way associativity without employing any remain unchanged. We assume a modest on-chip cache
way-prediction by using the fact that the tags in the set hierarchy of 8 Kbytes L1 D-cache and 256 Kbytes L2 so

4. Related work: qualitative comparison

Appears in the Conference on Parallel Architectures and Compiliation. 2001

that the SPEC95 benchmarks exercise the memory hierar
chy to a reasonable extent. Using a larger L1 D-cache normal | normall normal normall ~ r-a
results in negligible miss rates for the SPEC95 bench-
marks, thwarting any effort to study data cache perfor- oK data (ns) 0.792 1.12p 1141 1.240 0.8p2
mance using SPEC95. We assume that the r-a cache probe08K tag (ns)|| 0.590| 0.554 0.524 0.537 0.584
hit is 1 cycle, and the probeO and probel hit signals are 8K total (ns)| 0.792| 1.129 1.141 1.240 0.802
available at the end of probe0O, as per the discussion in" 94 increase 0 43 44 57 1
Section 2.1.. Probel takes 2 additional cycles (i.e., data over 1-way
from probel takes a total of 3 cycles). L2 access is initiated Tgr qaia (N3] 0960 1.20p 1242 1.204 0970
after probe0 if the block is not in the cache (the tags for all 50 0505
the ways are checked in parallel). 16K tag (ns)] 0.612 0.58’ 0.585 0.5%)
For our experiments, we choose some benchmark/input 16K total(ns) 0.960] 1.202 1.222 1.294 0.910
combinations from the SPECint and SPECfp suite that do % increase(| 0 25 27 35 1
not require prohibitively long simulation runs. Table 2 pre- over 1-way
sents the benchmarks and inputs used in this study. In addiTable 3: Cache hit times.
tion to the SPEC programs, we also ugeff. The critical path (for both data and tag) is almost as fast as that
benchmarks were compiled for a Compaq Alpha AXP- of a direct-mapped cache. For an 8 KB cache, the 4-way r-
21164 using the Compaq C and Fortran compilers under -a is about 1% slower than direct-mapped, but still 41%
04 -ifo optimization flags. All of the simulations are runto faster than 2-way, and 43% faster than a 4-way set-associa-
completion except fowortexand go, which we halt at 1 tive cache. For cache sizes greater than 8 KB, however, 4-

1l-way | 2-way | 4-way| 8-way | 4-way

\>~J

billion instructions. way associative tag array is no longer any slower than
direct-mapped tag array, and a 4-way r-a cache is less than
5.1. Hit time of the reactive-associative cache 1% slower than a direct-mapped cache. For sizes of 32 KB

and greater, an 8-way r-a cache is less than 1% slower than

Because the r-a cache employs an unusual organizatiora direct-mapped cache. We examine an 8-KB cache only
combining a direct-mapped-like data array with a set-asso-because using a larger cache results in negligible miss rates
ciative-like tag array, we use the cache geometry optimiz- for the SPEC95 benchmarks, but many microprocessors
ing tool, CACTI2.0 [15], configured for 0.18 micron use L1 D-caches of size 16 KB or larger, so replacing a
technology, to estimate probe0 hit time. Readers shoulddirect-mapped cache with a r-a cache should not affect the
note that they should download CACTI2.0 from the official clock rate.
web site if they want to verify these numbers; other CACTI
versions may report vastly different numbers. 5.2. Performance of the reactive-associative cache

In Table 3, we present the tag array hit signal (not
including the OR gate in the hit signal path in set-associa- In this section, we present the performance of the r-a
tive caches) and data array data-out (not including the pre-cache using the PC and XOR schemes, compared against
charge phase) latencies for direct-mapped through 8-waydirect-mapped and 2-way set-associative caches. We show
conventional set-associative, 8-KB caches. The r-a cache’san idealized 2-way set-associative, 1-cycle cache as a refer-
probe0 timings can be derived from direct-mapped dataence point. We graph the speedups of the various cache
array and the 4-way set-associative tag array timings. Weconfigurations by normalizing against a direct-mapped
added an 10-ps delay, obtained by Hspice simulations, forcache in Figure 4. To underscore the r-a cache’s robustness
each of the pass gates in the probe0 hit signal path and theyith respect to L1 bandwidth, we vary the number of L1
data array index path, as discussed in Section 2.1.. The datgache ports from 1 (top graph) to 2 (bottom graph). We
out latency includes the output-way multiplexor, which model the extra bandwidth demand of probel accesses by
must wait for the result of the tag comparison (for a set- holding the L1 port for an additional cycle. As discussed
associative cache), and the output driver. The total hit time earlier, we consider the XOR scheme to be difficult to
is the longer of the data out latency, and the tag hit/miss implement, but we still present its performance to show
signal latency. how it compares to the PC scheme.

Because each 2-way tag bank is half the size of the |n Figure 4, we classify our benchmarks into two
direct-mapped tag array, the 2-way tag array is actually groups. The first group of benchmarks(tex, gcc, li, pel
faster than the direct-mapped tag array. As expected, the 4gre relatively insensitive to associativity, and achieve only
way data array is considerably slower than the direct- modest improvements (2%-4%) even with the ideal, 2-way
mapped data array but the 4-way tag array is almost as fastache. The second group of benchmarkg, (troff,
as the direct-mapped data array, which is the critical pathmggksim, swim, fppppachieve speedups from 6%-10%
through the direct-mapped cache. Thus, a 4-way r-a probeGyith the ideal, 2-way cach&wimhas a pathological map-

Appears in the Conference on Parallel Architectures and Compiliation. 2001

4-way R-A PC I 4-way R-A XOR [] 2-way 1 cycle (ideal reference)

°©

£ 1.14} Lower bandwidth (1 L1 port) 1.14 L Higher bandwidth (2 L1 ports)

g L12p grl]tZry 112

5 1.10 APT 1.10F

o 1.08 1.08

T 1.06 1.06

% 1.04 1.04

£ 1.02 1.02

2 1.00 1.00 —
2 0.98 0.98

D 0.96 0.96 -
2 R

2 K

) N | |

first group second group first group second group
FIGURE 4: Performance of the reactive-associative cache.
direct r-a 4-way, | r-a 4-way,| r-a 4-way, | r-a 4-way, | r-a 4-way,| r-a 4-way, | 2-way set
mapped pc pc pc xor xor xor assoc.
SPEC-95 overall probe0 overall | prediction| probe0 overall prediction overall
Bench ||miss rate miss rate | miss rate | accuracy | miss rate| miss rate| accuracy | miss rate
vortex 5.1 6.7 4.5 97.8 6.5 4.1 97.5 3.9
gcc 8.0 8.8 7.0 98.2 8.4 6.4 97.9 6.4
li 6.0 5.7 5.6 99.9 5.4 5.1 99.7 4.8
perl 5.4 5.6 4.2 98.5 5.9 3.3 97.4 3.9
go 8.9 9.5 8.3 98.7 6.9 5.8 98.9 6.3
troff 5.0 4.3 3.4 990.1 3.7 2.7 98.9 2.8
m88ksim 5.2 3.3 2.4 90.1 4.2 2.2 98.0 2.0
swim 49.7 48.7 46.9 96.6 49.8 44.6 90.6 50.8
fpppp 7.4 24.8 3.5 77.9 6.2 5.2 98.9 2.7
MEAN 7.9 8.7 5.9 96.0 7.3 5.3 97.5 5.1

Table 4: Reactive associative miss rates compared to set associative caches.

ping problem which causes the idealized 2-way cache toslowdown turns into a 2% speedup on increasing the APT
perform slightly worse than direct-mapped, but the prob- size to 512 entries.
lem subsides with increasing associativity, which is why 4- The difference in performance between the PC and
way r-a performs better than the ideal, 2-way cache. XOR schemes for one port is less than 2% in all bench-
Focusing on the one port case using the PC scheme irmarks excepfo and swim Because the XOR scheme is
the top graph of Figure 4, the r-a cache achieves 1%-3%potentially more difficult to implement than the PC
speedups for the first group, and 1%-9% speedups for thescheme, this comparison indicates that the PC scheme is a
second group. The r-a cache performs within 2% of the better alternative.
idealized 2-way cache in all benchmarks excgptand In the two-port case, the trends are similar to those of
fpppp Thus, the r-a cache dynamically adjusts to the asso-the one-port case. But the speedups of the r-a cache and the
ciativity requirements of the benchmark, providing the first idealized 2-way cache are higher because the higher band-
group with low degrees of associativity, and the second width exposes more of the direct-mapped cache’s miss
group with high degrees of associativityput at direct- latency, which is reduced by the r-a and 2-way caches.
mapped speedgo’s branch prediction accuracy is known fpppgs bandwidth pressure is absorbed by the extra port,
to be poor, indicating its instruction stream’s unpredictable resulting in a 4% speedup without increasing the APT size.
nature, which makes the PC scheme less effective. The r-a In Table 4, we compare the miss rates for the r-a cache
cache incurs a slowdown fdpppp due tofpppp’s large with those of direct-mapped and 2-way caches. Compared
instruction footprint, disrupting the PC-indexed APT, to the direct-mapped miss rates, probeO miss rates under
which causes high probe0 miss ratés indicated, this both PC and XOR schemes are less or almost equal for all

Appears in the Conference on Parallel Architectures and Compiliation. 2001

3 CA EEMPSAPC [JRAPC EEMPSAXOR EXZRAXOR
g 1.20 :
Q g
© .
£ 1.4} Lowerbandwidth (1 L1 port) 1.14} Higher bandwidth (2 L2 ports)
g 112 112}
= 110 %ég L

1.08} .08+ :
2 106} S 1.06 I p
T 104t g 1.04 5] =
S 1.02 A 1.8% - g 1

1.00 P 1. g 4
€ 098 5 0.98 5 {1 /
2 096 X 0.96 X) = /
2 094 X 0.94 X 4 f
S 0.92 X 0.92 X 4 1] f/
$ 0.90 X 0.90 X ‘ - il il »

T N Q) Q
n o O Q S &S & & 3
& S s Q
. TS T T & 5 &
first group second group first group second group

FIGURE 5: Comparison of reactive associativity to previous schemes.

direct- c-a |PSApc r-apc| PSA |[raxor] c-a |PSApcl r-apc| PSA | r-axor
mapped xor xor
Benchmark] overall pO pO pO pO pO | overall| overall| overall | overall | overall
vortex 5.1 6.0 36.1 6.7 15.7 6.5 4.0 3.4 4.5 3.4 4.1
gcc 8.0 8.9 32.8 8.8 17.2 8.4 6.0 5.8 7.0 5.8 6.4
li 6.0 6.6 34.5 5.7 15.5 5.4 4.7 4.4 5.6 4.4 5.1
perl 5.4 6.2 20.9 5.6 12.5 5.9 3.4 3.5 4.2 3.5 3.3
go 8.9 10.3 | 25.8 9.5 12.0 6.9 5.9 5.4 8.3 5.4 5.8
troff 5.0 5.6 19.2 4.3 12.3 3.7 23 2.4 3.4 2.3 2.7
m88ksim 5.2 5.7 17.5 3.3 10.3 4.2 2.2 1.8 2.4 1.8 2.2
swim 49.7 536 | 66.4 | 48.7 | 65.1 | 498 | 26.2 | 50.7 | 46.9 | 50.3 | 44.6
fpppp 7.4 9.6 353 | 248 | 19.1 6.2 5.8 2.3 35 2.3 5.2
MEAN 7.9 9.0 29.6 8.7 16.6 7.3 49 45 5.9 45 53

Table 5: Initial probe (p0) and overall (ov) miss rates for several multi-probe cache schemes.

benchmarks except fovortex and fpppp indicating the list size from 128 to 256 entries. However, if we scale up
success of our way-prediction scheme. If the inhibit list the tables to sizes larger than the cache itself, the probe0
were cleared less frequently than our TLB-based approachmiss rate converges to lower than 2-way set-associative
(Section 3.3.3.),Vortex’s probe0 miss rate decreases to miss rates.
5.3%.Fpppp’slarge instruction footprint causes thrashing
in the APT, resulting in high probeO miss rate using the PC 5.3, Reactive-associative cache vs. prior schemes
scheme, even though the overall miss rate approaches that
of 2-way. The prediction accuracy columns for PC and |n this section, we compare the r-a cache with the col-
XOR schemes show the performance of the way predictor.ymn-associative cache (c-a cache), which is representative
When comparing the r-a cache miss rates with those of thegf caches that rely on swapping because they are all simi-
2-way cache, it is clear that feedback achieves high accu-arly limited in performance due to the bandwidth demands
racy at the cost of higher overall miss rate. Because XOR isimposed by swapping. We also compare the r-a cache
a more accurate prediction handle in general, we relax theggainst the PSA cache, which uses way-prediction instead
victim list threshold from 5 to 2, which encourages more of swapping. For the PSA-cache, we assume the same
displacement. In most cases, this relaxation results in lower|gtency assignments as the r-a cache, as they have similar
probe0 and overall miss rates for XOR, but worse way-pre- timing constraints for both probe0 and probel; the PSA-
diction accuracies, as compared to PC. cache has a 1-cycle probe0 hit with an additional 2 cycles
Aside fromfpppp the other benchmarks are essentially for 5 probet hit. As with r-a, the cache port is only held for

not sensitive to varying the APT size from 64 to 512 1 aqditional cycle for a probel hit. The PSA cache uses a

Appears in the Conference on Parallel Architectures and Compiliation. 2001

direct- | r-a pc, with no| r-a pc, with no| r-a pc, with| r-a pc, with| r-a pc, r-a pc,

mapped reactive reactive no feedbacl no feedbacl original original

displacement| displacement config config

Benchmark overall probe0 overall probe0 overall probe0 overall
vortex 51 31.9 4.4 11.7 4.4 6.7 4.6
gcc 8.2 23.3 7.4 16.3 6.7 9.0 7.2
li 6.3 7.9 6.2 9.2 5.4 6.0 5.9
perl 5.6 17.6 4.5 10.3 35 5.6 4.2
go 9.2 19.7 8.1 17.2 6.6 9.8 8.5
troff 5.2 13.4 3.1 9.0 2.8 4.3 3.3
m88ksim 5.3 12.0 3.1 11.0 2.1 3.4 2.4
swim 54.3 50.7 45.5 50.3 48.4 50.3 48.5
fpppp 7.4 69.0 2.3 22.4 2.8 25.9 35
MEAN 8.1 219 5.8 14.8 5.2 9.0 5.9

Table 6: Effect of reactive displacement and feedback mechanisms.

rehash bit per cache blockfor a total of 160 bytes of extra except forfpppp fpppps large instruction footprint wreaks
state. We show PSA using the XOR scheme as well as thehavoc with the PC scheme for an r-a cache, as mentioned in
PC scheme so that we can compare PSA and r-a. The PS/Section 5.2.. The c-a cache achieves large speedups for
paper recommends the XOR scheme, but we include theswimbecause it uses a skewing hash function, which alle-
PC scheme also due to the XOR scheme’s timing problemsviates the pathological set-associative mapping problem.
mentioned in Section 3.2.. In Figure 5, we compare speed-Similarly, if the APT and BWT sizes are increased to about
ups over direct-mapped cache of the 4-way r-a cachel6K entries, the 4-way r-a cache does achieve comparable
against those of the column-associative and PSA caches. speedups over direct mapped $arim

We do not compare against the group-associative cache For the two-port (higher bandwidth) case in Figure 6
(g-a cache) because it incurs the same bandwidth problemgthe lower graph), column associative and the predictive
of swapping as the c-a cache. In addition, the g-a cache hasequential caches achieve speedups because the extra port
fundamental circuit problems, which prohibit it from absorbs the increased bandwidth pressure, although there
achieving direct-mapped hit latency. Group associativity is are still a few cases of slow-down. The r-a cache using PC
achieved by maintaining the location and tags of the dis- or XOR mostly outperforms the corresponding PSA as
placed blocks in a fully-associative OUT directory. well as c-a caches, although by smaller margins than the 1-
Because the OUT directorgnust be checked on every port case because the bandwidth advantage of the r-a cache
access, the previous lookup must complete before the nexis less important for the two-port case.
cache access. However, our analysis using CACTI2.0 indi- Table 5 shows the first-probe (indicated by p0) and
cates that this fully-associative directory is 48% slower overall (indicated by overall) miss rates for 4-way r-a
(21% slower if the OUT directory is only 2-way set asso- (using PC and XOR), column associative, and PSA (using
ciative) than a direct-mapped data cache (the OUT direc-PC and XOR) caches. The r-a caches using PC or XOR
tory has 1/4 as many entries as cache blocks, and 5 bytesisually have the lowest probe0 miss rates of all the caches.
per entrylas recommended in [14]), which would Although column-associative has low probe0 miss rates,
severely lengthen hit time. overall performance is poor due to high latency and band-

For the 1-port (lower bandwidth) case in Figure 6 (the width demand of cache block swapping. Probe0 miss rates
upper graph), PSA using PC and XOR schemes and col-of PSA using XOR are much worse than direct-mapped
umn-associative (c-a) incur slow-downs on many bench- miss rates, resulting in high bandwidth demand. Although
marks due to their higher bandwidth demand than direct- the overall miss rates for the r-a caches are usually higher
mapped, caused by poor probe0 miss rates and swappinghan those for PSA and c-a because of reactive displace-
respectively. The slow-downs are more pronounced in thement and feedback, the r-a cache performs better than PSA
first group of benchmarks because the higher bandwidthor c-a, affirming the notion of trading-off overall hit rate
demand is not compensated by lower overall miss rate. for probe0 hit rate.

Overall, the r-a cache using PC or XOR performs better
than the corresponding PSA and c-a caches, because of 15,4, Effect of reactive displacement and feedback
a’'s lower bandwidth demand. Using the PC scheme, the

one-port r-a cache is 3%-13% better than the PSA cache, 1 isolate the effects of reactive displacement and feed-

Appears in the Conference on Parallel Architectures and Compiliation. 2001

back on the r-a cache, in Table 6 we present probe0 andReferences

overall miss rates using the PC scheme but without reactive
displacement (i.e., no victim list), and without feedback [1]
(i.e., no mispredict counters in the BWT, and no inhibit
list). The last row of Table 6 shows the geometric means of
the miss rates for that column. In the case of no reactive[?]
displacement, probe0 miss rate increases dramatically
because the cache attempts to displace all accesses, even
those that do not cause any contention in a direct-mappe 3]
cache. In the case of no feedback, the probe0 miss rat
increases, albeit not as dramatically as before, but the over-
all miss rate approaches those achieved by PSA or c—214]
because the cache now displaces all cache blocks regard-
less of predictability. Such increased probe0 miss rates
would, in general, cause an increased average cache hif5]
time and higher cache port contention. Therefore, reactive
displacement and feedback are essential for the r-a cache.

6. Conclusions o]

We proposed the reactive-associative cache (r-a cache
based on the key observation that associativity is neede
only for conflicting block&] and should not be provided at
the expense of higher hit latencies for all accesses. The r-a[8]
cache provides flexible associativity by placing most
blocks in direct-mapped positions and reactively displacing
only conflicting blocks to set-associative positions. To 9

g) o]
achieve direct-mapped hit times, the r-a cache uses the[
well-known asymmetric organization in which the data [10]
array is organized like a direct-mapped cache, and the tag
array like a set-associative cache. The r-a cache uses way
prediction coupled with feedback for high prediction accu- [11]
racy, regardless of the prediction handle. Our reactive
mechanisms (selective displacement and feedback) allow
the use of PC as a viable way prediction handle. Since the[12]
instruction PC is available early in the pipeline, allowing at
least six pipeline stages for the lookup, we claim that the
PC scheme easier to implement than the XOR prediction[13]
proposed in the PSA paper.

A one-port, 4-way r-a cache achieves up to 9% speedup
over a direct-mapped cache and performs within 2% of an
idealized 2-way set-associative, 1-cycle cache. A 4-way r-al14]
cache achieves up to 13% speedup over a PSA cache, with
both r-a and PSA using the PC scheme. Finally, CACTI2.0
estimates indicate that for sizes larger than 8KB, a 4-way r-
a cache is within 1% of direct-mapped hit times, while still
25% faster than a 2-way set-associative cache.

7]

[15]

Acknowledgements [1e]
This work was in part supported by the NSF CAREER [17]
award no. 9875960-CCR, and was done when Brannon

Batson was at Purdue university. [18]

A. Agarwal, J. Hennessy, and M. Horowitz. Cache perfor-
mance of operating systems and multiprogrammix@M
Transactions on Computer Systerf§4):393—431, Nov.
1988.

A. Agarwal and S. Pudar. Column associative caches: A
technique for reducing miss rate of direct-mapped caches.
In Proceedings of the 20th Annual International Sympo-
sium on Computer Architecturgpages 179-190, May
1993.

T. M. Austin, D. N. Pnevmatikatos, and G. Sohi. Stream-
lining data cache access with fast address calculation. In
Proceedings of the 22nd Annual International Symposium
on Computer Architectur@pages 369-380, June 1995.

D. Burger, T. M. Austin, and S. Bennett. Evaluating fu-
ture microprocessors: the simplescalar tool set. Technical
Report CS TR-1308, University of Wisconsin, Madison,
July 1996.

B. Calder and D. Grunwald. Next cache line and set pre-
diction. In Proceedings of the 25th Annual International
Symposium on Computer Architectugages 287-296,
June 1995.

B. Calder, D. Grunwald, and J. Emer. Predictive sequen-
tial associative cache. Rroceedings of the Second IEEE
Symposium on High-Performance Computer Architec-
ture, pages 244-253, Feb. 1996.

J. H. Change, H. Chao, and K. So. Cache design of a sub-
micron CMOS System/370. IRroceedings of the 14th
Annual International Symposium on Computer Architec-
ture, pages 208-213, June 1987.

J. Collins and D. Tullsen. Hardware identification of
cache conflict misses. IRroceedings of the 32nd Annual
International Symposium on Microarchitecturpages
126-135, Nov. 1999.

M. Hill. A case for direct-mapped cachkEEEE Computer
21(12):25-40, Dec. 1988.

D. Joseph and D. Grunwald. Prefetching using markov
predictors. IrProceedings of the 24th Annual Internation-
al Symposium on Computer Architectupages 252-263,
June 1997.

T.Juan, T.Lang, and J.J. Navarro. The difference-bit
cache. InProceedings of the 23rd Annual International
Symposium on Computer Architectugages 114-120,
May 1996.

R. E. Kessler, R. Jooss, A. Lebeck, and M. Hill. Inexpen-
sive implementations of set-associativity.RFnoceedings

of the 16th Annual International Symposium on Computer
Architecture pages 131-139, May 1989.

J.-K. Peir, W. Hsu, H. Young, and S. Ong. Improving
cache performance with balanced tag and data paths. In
Proceedings of the Seventh International Symposium on
Architectural Support for Programming Languages and
Operating Systempages 268-278, Oct. 1996.

J.-K. Peir, Y. Lee, and W. W. Hsu. Capturing dynamic
memory reference behavior with adaptive cache topology.
In Proceedings of the Eighth International Symposium on
Architectural Support for Programming Languages and
Operating Systempages 240-250, Oct. 1998.

G. Reinman and N. P. Jouppin Integrated Cache Tim-
ing and Power ModelCOMPAQ Western Research Lab
http://research.compag.com/wrl/people/jouppi/CAC-
TI.html, 1999.

A. Seznec. DASC cache. Proceedings of the First IEEE
Symposium on High-Performance Computer Architec-
ture, pages 134-143, Jan. 1995.

K.So and R.N. Rechtschaffen. Cache operations by
MRU change. IEEE Transactions on Computers
37(6):700-709, June 1988.

C. Zhang, X. Zhang, and Y. Yan. Two fast and high-asso-
ciativity cache scheme#zEE Micro, pages 40—49, Sept.
1997.

	Abstract
	1. Introduction
	2. Reactive-Associative Cache Organization
	2.1. Probe0 hit latency
	2.2. Complications due to dual probes

	3. Way prediction
	3.1. PC-based way-prediction
	3.1.1. Access-prediction and block way-number tables

	3.2. XOR-based way-prediction
	3.3. Reactive displacement and feedback
	3.3.1. Victim list: reactive displacement
	3.3.2. Feedback to evict unpredictable blocks
	3.3.3. Feedback to prevent repeated mispredictions

	4. Related work: qualitative comparison
	5. Experimental Results
	5.1. Hit time of the reactive-associative cache

	1-way
	normal
	2-way
	normal
	4-way
	normal
	8-way
	normal
	4-way
	r-a
	8K data (ns)
	0.792
	1.129
	1.141
	1.240
	0.802
	8K tag (ns)
	0.590
	0.554
	0.524
	0.537
	0.534
	8K total (ns)
	0.792
	1.129
	1.141
	1.240
	0.802
	% increase over 1-way
	0
	43
	44
	57
	1
	16K data (ns)
	0.960
	1.202
	1.222
	1.294
	0.970
	16K tag (ns)
	0.612
	0.588
	0.585
	0.550
	0.595
	16K total(ns)
	0.960
	1.202
	1.222
	1.294
	0.970
	% increase over 1-way
	0
	25
	27
	35
	1
	Table 3: Cache hit times.
	5.2. Performance of the reactive-associative cache
	5.3. Reactive-associative cache vs. prior schemes
	5.4. Effect of reactive displacement and feedback
	6. Conclusions
	Acknowledgements
	References
	FIGURE 3: Pipeline timing of way-prediction.
	FIGURE 1: The reactive-associative cache.
	FIGURE 2: PC-based way- prediction structures.

	Program
	input
	instructions
	vortex
	ref
	1 billion
	gcc
	1recog
	347 million
	li
	train
	365 million
	perl
	jumble
	1 billion
	go
	9stone21
	1 billion
	troff
	paper.me
	70 million
	m88ksim
	train
	171 million
	swim
	train
	430 million
	fpppp
	train
	235 million
	Table 2: Benchmarks.

	Component
	Description
	CPU
	Out of order, 8-issue, 64-entry reorder buffer, 32-entry ld/st queue
	Prediction
	bimodal 4096 entries + gshare 10-bit history
	L1 I-cache
	16 KB, 2-way, 32 byte blocks, 1 cycle
	L1 D-cache
	8 KB, 32 byte blocks, 1 cycle probe0,
	3 cycles probe1, lock-up free
	L2 cache
	256 KB, 8-way, 64 byte blocks, 12 cycle
	memory
	Infinite capacity, 60 cycle latency
	Way-
	prediction resources
	PC:128-entry APT & BWT, 2048-bit inhibit list, 256-entry victim list; inhibit threshold: 3 victim...
	XOR: 1024-entry BWT, 2048-bit inhibit list, 256-entry victim list; inhibit threshold: 3 victim th...
	Table 1: Hardware parameters.
	FIGURE 4: Performance of the reactive-associative cache.

	r-a 4-way, pc
	r-a 4-way, pc
	r-a 4-way, pc
	r-a 4-way, xor
	r-a 4-way, xor
	r-a 4-way, xor
	2-way set assoc.
	SPEC-95
	Bench
	probe0
	miss rate
	overall
	miss rate
	prediction accuracy
	probe0
	miss rate
	overall
	miss rate
	prediction accuracy
	overall
	miss rate
	vortex
	6.7
	4.5
	97.8
	6.5
	4.1
	3.9
	gcc
	8.8
	7.0
	98.2
	8.4
	6.4
	6.4
	li
	5.7
	5.6
	99.9
	5.4
	5.1
	4.8
	perl
	5.6
	4.2
	98.5
	5.9
	3.3
	3.9
	go
	9.5
	8.3
	98.7
	6.9
	5.8
	6.3
	troff
	4.3
	3.4
	99.1
	3.7
	2.7
	2.8
	m88ksim
	3.3
	2.4
	99.1
	4.2
	2.2
	2.0
	swim
	48.7
	46.9
	96.6
	49.8
	44.6
	50.8
	fpppp
	24.8
	3.5
	77.9
	6.2
	5.2
	2.7
	MEAN
	8.7
	5.9
	96.0
	7.3
	5.3
	5.1
	Table 4: Reactive associative miss rates compared to set associative caches.
	FIGURE 5: Comparison of reactive associativity to previous schemes.

	c-a
	PSA pc
	r-a pc
	PSA xor
	r-a xor
	c-a
	PSA pc
	r-a pc
	PSA xor
	r-a xor
	Benchmark
	p0
	p0
	p0
	p0
	p0
	overall
	overall
	overall
	overall
	overall
	vortex
	6.0
	36.1
	6.7
	15.7
	6.5
	4.0
	3.4
	4.5
	3.4
	4.1
	gcc
	8.9
	32.8
	8.8
	17.2
	8.4
	6.0
	5.8
	7.0
	5.8
	6.4
	li
	6.6
	34.5
	5.7
	15.5
	5.4
	4.7
	4.4
	5.6
	4.4
	5.1
	perl
	6.2
	20.9
	5.6
	12.5
	5.9
	3.4
	3.5
	4.2
	3.5
	3.3
	go
	10.3
	25.8
	9.5
	12.0
	6.9
	5.9
	5.4
	8.3
	5.4
	5.8
	troff
	5.6
	19.2
	4.3
	12.3
	3.7
	2.3
	2.4
	3.4
	2.3
	2.7
	m88ksim
	5.7
	17.5
	3.3
	10.3
	4.2
	2.2
	1.8
	2.4
	1.8
	2.2
	swim
	53.6
	66.4
	48.7
	65.1
	49.8
	26.2
	50.7
	46.9
	50.3
	44.6
	fpppp
	9.6
	35.3
	24.8
	19.1
	6.2
	5.8
	2.3
	3.5
	2.3
	5.2
	MEAN
	9.0
	29.6
	8.7
	16.6
	7.3
	4.9
	4.5
	5.9
	4.5
	5.3
	Table 5: Initial probe (p0) and overall (ov) miss rates for several multi-probe cache schemes.

	r-a pc, with no reactive
	displacement
	r-a pc, with no reactive
	displacement
	r-a pc, with no feedback
	r-a pc, with no feedback
	r-a pc,
	original config
	r-a pc,
	original config
	Benchmark
	probe0
	overall
	probe0
	overall
	probe0
	overall
	vortex
	31.9
	4.4
	11.7
	4.4
	6.7
	4.6
	gcc
	23.3
	7.4
	16.3
	6.7
	9.0
	7.2
	li
	7.9
	6.2
	9.2
	5.4
	6.0
	5.9
	perl
	17.6
	4.5
	10.3
	3.5
	5.6
	4.2
	go
	19.7
	8.1
	17.2
	6.6
	9.8
	8.5
	troff
	13.4
	3.1
	9.0
	2.8
	4.3
	3.3
	m88ksim
	12.0
	3.1
	11.0
	2.1
	3.4
	2.4
	swim
	50.7
	45.5
	50.3
	48.4
	50.3
	48.5
	fpppp
	69.0
	2.3
	22.4
	2.8
	25.9
	3.5
	MEAN
	21.9
	5.8
	14.8
	5.2
	9.0
	5.9
	Table 6: Effect of reactive displacement and feedback mechanisms.

