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Abstract

While set-associative caches typically incur fewer
misses than direct-mapped caches, set-associative caches
have slower hit times. We propose the reactive-associative
cache (r-a cache), which provides flexible associativity by
placing most blocks in direct-mapped positions and reac-
tively displacing only conflicting blocks to set-associative
positions. The r-a cache uses way-prediction (like the pre-
dictive associative cache, PSA) to access displaced blocks
on the initial probe. Unlike PSA, however, the r-a cache
employs a novel feedback mechanism to prevent unpredict-
able blocks from being displaced. Reactive displacement
and feedback allow the r-a cache to use a novel PC-based
way-prediction and achieve high accuracy; without
impractical block swapping as in column associative and
group associative, and without relying on timing-con-
strained XOR way prediction. A one-port, 4-way r-a cache
achieves up to 9% speedup over a direct-mapped cache
and performs within 2% of an idealized 2-way set-associa-
tive, 1-cycle cache. A 4-way r-a cache achieves up to 13%
speedup over a PSA cache, with both r-a and PSA using
the PC scheme. CACTI estimates that for sizes larger than
8KB, a 4-way r-a cache is within 1% of direct-mapped hit
times, and 24% faster than a 2-way set-associative cache.

1.  Introduction

The growing gap between processor speeds and mem-
ory speeds is resulting in increasingly expensive cache
misses, underscoring the need for sophisticated cache hier-
archy techniques. Increasing the associativity of the cache
is one way to reduce the miss rate of the cache. While set-
associative caches typically incur fewer misses than direct-
mapped caches, set-associative cache implementations are
usually slower than direct-mapped caches [9]. Because
even for a direct-mapped cache the common case is a hit,
set associativity should be provided without a large
increase in hit latency over a direct-mapped cache.

We propose the reactive-associative cache (r-a cache),
which provides flexible associativity by placing most
blocks in direct-mapped positions and reactively displacing
only conflicting blocks to set-associative positions. To
achieve direct-mapped hit times, the r-a cache uses an
asymmetric organization in which the data array is orga-
nized like a direct-mapped cache and the tag array like a

set-associative cache, similar to the IBM 3081 L1, an
MIPS R8000 L1 [15]. Unlike a set-associative cache, da
from the r-a cache’s data array proceeds without any wa
select multiplexors (which would have to wait for the ta
comparators to identify the matching way) in the data ou
put path [9]. Because a set-associative tag array is alm
as fast as a direct-mapped tag array for small associativi
(although the set-associative data array is significan
slower than direct-mapped data array) [13], this organiz
tion achieves near direct-mapped speeds.

To locate a block in one of the many set-associati
positions, the above-mentioned machines probe the
array first andthen sequentially probe the matching dat
array, lengthening the hit time. To avoid this serializatio
other schemes first probe the direct-mapped positions
the tag and data arrays in parallel, and then probe the s
associative positions [1,2,18, 14, 16]. To increase the pro
ability of finding blocks in the first probe, these scheme
swap a block found on the second probe with the block
the direct-mapped position. Unfortunately, cache blo
swapping degrades both latency and bandwidth beca
swapping involves two reads and two writes which is slo
if done sequentially, and expensive, if done in parallel.

To increase the first probe hit rate without block swa
ping, the predictive sequential associative cache (PS
cache) proposed using way-prediction for D-caches [6
The PSA cache predicts the way-number of a block’s loc
tion, which avoids waiting for the tag array to identify the
matching way-number. Way-prediction accuracy crucial
affectsbothaccess latency and L1 bandwidth demand. N
only do mispredicted accesses incur higher latency, th
degrade valuable L1 bandwidth due to additional probe
The PSA cache predictsall accesses without any selectiv
ity or control, resulting in poor way-prediction accurac
and first probe miss rates which are significantly wor
than direct-mapped miss rates. Consequently, the P
cache worsens the latency and bandwidth of accesses
would hit in a direct-mapped cache.

While the r-a cache also uses way prediction, it is th
first proposal to combine asymmetric organization wi
way-prediction without compromising hit time. To avoid
the bandwidth depletion inevitable with PSA’s poor way
prediction, the r-a cache places most blocks in direc
mapped positions, and reactively displacesonly conflicting
blocks to set-associative positions. While reactive displac
ment may reduce overall miss rate, it takes pressure off
way-prediction mechanism, enabling high first probe h
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rates. In addition to reactive displacement, the r-a cache
provides a feedback mechanism which prevents repeat-
edly-mispredicted accesses from being displaced to set-
associative positions. Thus, the r-a cache achieves perfor-
mance robustness by trading-off overall hit rate for first-
probe hit rate and L1 bandwidth.

The predicted way numbermust be made available
before the actual data address to avoid any delay in the ini-
tiation of every cache access. This stipulation rules out
using the data address for prediction lookup. PSA recom-
mends an XOR-based way-prediction, which XORs the
instruction offset with the source register value to approxi-
mate the address [3] and looks up the prediction table.
XOR operation on a register value often obtained late from
a register-forwarding pathfollowed by a table lookup, is
likely to be slower than a full add to compute the address,
delaying access initiation. In contrast, the r-a cache uses
the instruction PC for prediction lookup, allowing at least
six pipeline stages for the lookup, making the predicted
way-number availablewell before the data address. The
novelty of our PC scheme is in integrating way prediction
with reactive displacement and feedback.

The main contributions of this paper are:
• We show that a 4-way r-a cache hit latency is within 1%

of a direct-mapped cache, and 25% faster than 2-way.
• R-a cache’s reactive and feedback mechanisms con-

serve L1 bandwidth and achieve low first-probe miss
rates at 7.3%, compared to PSA at 16.6%.

• Our novel PC-based scheme enables way-prediction
early in the pipeline.

• A one-port, 4-way r-a cache, using 1184 bytes of pre-
diction storage, achieves up to 9% speedup over a
direct-mapped cache and up to 13% speedup over a
PSA cache, with both the r-a and PSA caches using the
PC scheme. The r-a cache performs, on average, within
2% of an idealized 2-way set-associative, 1-cycle
cache. We also show that reactive displacement and
feedback are essential and without these mechanisms
the r-a cache’s first-probe miss rates suffer.
In Section 2., we describe the r-a cache’s organization

and in Section 3., the way-prediction mechanism. In
Section 4., we qualitatively compare against previous
schemes. We present experimental results in Section 5. and
conclude in Section 6.

2.  Reactive-Associative Cache Organization

The r-a cache is formed by using the tag array of a set-
associative cache with the data array of a direct-mapped
cache, as shown in Figure 1. For an n-way r-a cache, there
is a single data bank, and n tag banks.

The tag array is accessed using the conventional set-
associative index, probing all the n-ways of the set in paral-
lel, just as in a normal set-associative cache. The data array

index uses the conventional set-associative index conca
nated with a way number to locate a block in the set. T
way number is log2(n) bits wide. For the first probe, it may
come from either the conventional set-associative t
field’s lower-order bits (for the direct-mapped blocks), o
the way-prediction mechanism (for the displaced blocks
If there is a second probe (due to a misprediction), then t
matching way number is provided by the tag array.

The r-a cache simultaneously accesses the tag and
arrays for the first probe, at either the direct-mapped loc
tion or a set-associative position provided by the way-pr
diction mechanism. If the first probe, called probe0, hit
then the access is complete and the data is returned to
processor. If probe0 fails to locate the block due to
misprediction (i.e., either the block is in a set-associati
position when probe0 assumed direct-mapped access or
block is in a set-associative position different than the o
supplied by way-prediction), probe0 obtains the corre
way-number from the tag array if the block is in the cach
and a second probe, called probe1, is done using the c
rect way-number. Probe1 probes only the data array, a
not the tag array. If the block is not in the cache, probe
signals an overall miss, and probe1 is not necessary.

Thus there are three possible paths through the ca
for a given address: (1) probe0 is predicted to be a dire
mapped access, (2) probe0 is predicted to be a set-asso
tive access and the prediction mechanism provides the p
dicted way-number, and (3) probe0 is mispredicted b
obtains the correct way-number from the tag array, and t
data array is probed using the correct way-number
probe1. On an overall miss, the block is placed in th
direct-mapped position if it is non-conflicting, and a se
associative position (LRU, random, etc.) otherwise.

2.1.  Probe0 hit latency

The fundamental reason that a conventional set-asso
tive cache is slower than a direct-mapped cache is the m
tiplexor in the data array path; the select signals for th
multiplexor are derived from the tag array output, which
slow [9]. We analyze the r-a cache to show that the r
cache is almost as fast as a direct-mapped cache, assum
that way-prediction information (the predicted way-num
ber and whether probe0 is direct-mapped or way-pr
dicted) is available well before the data address.
Section 3., we show how way-prediction can be don
before the data address is available.

Compared to a direct-mapped cache, the r-a cache in
duces the extra multiplexorprobe0 way# muxin the data
array index path (Figure 1). Note that this multiplexo
always chooses one out of three inputs, irrespective of
set-associativity of the r-a cache. The multiplexor sele
signal is available earlier than the data address because
signal comes from the way-prediction mechanism. Ther
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FIGURE 1: The reactive-associative cache.
FIGURE 2: PC-based way-
prediction structures.
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list
fore, the only delay added to the critical path is propagation
through the multiplexor. One possible implementation of
probe0 way# muxwould be a single level of pass gates
using a one-hot encoding of the select lines, in which case
the extra delay would be negligible. Probe1 may incur a
whole extra cycle to account for theprobe1 way# encoder
(Figure 1) and the pass gate.

The tag array does not incur any extra delay because it
uses the conventional set-associative index directly from
the address and not throughprobe0 way# mux (Figure 1).
The multiplexorprobe0 hit muxgenerates the probe0 hit
signal by selecting the tag match for the probe0 way-num-
ber from among the tag matches of all the tag array banks.
Note that the probe0 way-number (either direct-mapped
way-number or predicted probe0 way-numbers) is the
select forprobe0 hit mux,and is available no later than the
address. While the tag array is being accessed with the con-
ventional set-associative index, the probe0 way-number is
sent, in parallel, toprobe0 hit muxselect. Using a similar
pass-gate mux as we suggested for theprobe0 way# mux,
the probe0-hit signal would incur extra delay of one pass
gate, compared to a conventional direct-mapped cache hit
signal. The probe1-hit signal incurs extra delay of one OR
gate, over the equivalent direct-mapped hit signal.

2.2.  Complications due to dual probes

The r-a cache’s dual probing may complicate cache

pipelining, because of the variable access latency (prob
hit time vs. probe1 hit time). Scheduling subsequent pip
lined accesses without knowing the latency of the previo
access is difficult. On a misprediction, a new access h
entered the cache pipeline by the time we determine t
we need to do a second probe for the prior access. It
mainly for this reason that we charge two additional cycl
for probe1. Unlike prior multi-probe caches, however, th
r-a cache can signal a probe1 hit or an overall miss by t
end of probe0, which may simplify the scheduling.

3.  Way prediction

The r-a cache employs hardware way-prediction
obtain the way-number for the blocks that are displaced
set-associative positions before address computation
complete. The strict timing constraint of performing th
prediction in parallel with effective address computatio
requires that the prediction mechanism use informati
that is available in the pipeline earlier than the addres
compute stage. The equivalent of way-prediction for
caches is often combined with branch prediction [5, 9], b
because D-caches do not interact with branch predictio
those techniques cannot be used directly. An alternative
prediction is to obtain the correct way-number of the di
placed block using the address, which delays initiatin
cache access to the displaced block, as is the case for s
cally probed schemes such as column-associative a
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FIGURE 3: Pipeline timing of way-prediction.
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mem
group-associative caches.
We examine two handles that can be used to perform

way prediction: instruction PC and approximate data
address formed by XORing the register value with the
instruction offset (proposed in [3], and used in [6]), which
may be faster than performing a full add. These two han-
dles represent the two extremes of the trade-off between
prediction accuracy and early availability in the pipeline, as
shown in Figure 3. PC is available much earlier than the
XOR approximation but the XOR approximation is more
accurate because it is hard for PC to distinguish among dif-
ferent data addresses touched by the same instruction.
Other handles such as instruction fields (e.g., operand reg-
ister numbers) do not have significantly more information
content from a prediction standpoint, and the PSA paper
recommends the XOR scheme for its high accuracy.

In an out-of-order processor pipeline (Figure 3), the
instruction PC of a memory operation is available much
earlier than the source register. Therefore, way-prediction
can be done in parallel with the pipeline front end process-
ing of memory instructions so that the predicted way-num-
ber andprobe0 way# muxselect input are ready well before
the data address is computed. The XOR scheme, on the
other hand, needs to squeeze in an XOR operation on a
value often obtained late from a register-forwarding path
followed by prediction table lookup to produce the pre-
dicted way-number and theprobe0 way# muxselect,all

within the time the pipeline computes the real addre
using a full add. Note that the prediction table must ha
more entries or be more associative than the cache itsel
avoid conflicts among the XORed approximate da
addresses, and therefore will probably have a significa
access time, exacerbating the timing problem.

3.1.  PC-based way-prediction

PC-based way-prediction tracks memory access beh
ior to associate the cache blocks with the PCs of t
instructions that access the blocks, by exploiting the loc
ity of reference within one cache block on a per-instructio
basis. The prediction mechanism tracks the instructio
that access displaced blocks and associates the instruc
PCs with the way-number of the displaced blocks. If th
instruction accesses the displaced block again (i.e.,
instruction exhibits locality of reference within the cach
block), the prediction mechanism returns the associa
way-number, which results in a probe0 hit. This kind o
locality can be expected from (1) an instruction tha
accesses the same data throughout program execut
such as an instruction accessing static globals using a g
bal pointer register, (2) an instruction that accesses
same data for a period of time during program executio
such as an instruction accessing stack frame variab
within a function invocation using the stack pointer (th
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stack pointer changes infrequently within a function invo-
cation), and (3) an instruction that accesses the different
words in a cache block, such as an instruction accessing
successive array elements within a cache block. If an
instruction accesses a different block on every access (e.g.,
strided accesses using strides larger than the block size),
the PC scheme will not work well. More sophisticated cor-
relational prediction schemes may solve this problem, but
such schemes may require large prediction storage [10].

3.1.1.  Access-prediction and block way-number tables
When a block is displaced to a set-associative position,

it may cause more conflicts in which case it is replaced
from the cache. The r-a cache places a block replaced from
a set-associative position in the block’s direct-mapped
position, anticipating that it may not conflict anymore. If
the block continues to conflict in its direct-mapped position
then the block is displaced to a, presumably different, set-
associative position. Thus a conflicting block may transit
through a few positions before settling into a non-conflict-
ing position. During this transition, the way-number of the
block is constantly changing and unless way-prediction is
updated with the correct way-number, many mispredic-
tions will ensue. If multiple instructions access the same
block, block transit problems are exacerbated because each
of these instructions incurs a misprediction. Because way-
prediction maps PCs to way-numbers, and not the other
way, updating way-number is hard because the mapping
PC is not known when the block transits to a new way-
number.

Adding one level of indirection solves the block transit
problem. Figure 2 depicts the structures used by the way-
prediction scheme. The instructions’ PCs are associated
with the block address, and not the way-number of the
block, in the access-prediction table (APT). A second
table, called the block way-number table (BWT), is used to
associate the block address with the way-number of the
block. Multiple entries in the APT may hold the same
block address, but there is only one BWT entry per block
address. Using the block address, transiting blocks update
the BWT with the correct way-number, enabling all the
instructions that access the same block again to get the cor-
rect way-number. Through the APT, the r-a cache exploits
locality within one cache block on a per-instruction basis.

The APT is accessed using the instruction PC, and then
the block address supplied by the APT entry is used to
access the BWT. If the block address supplied by the APT
is found in the BWT, the way-number from the BWT entry
is sent to the cache as the predicted probe0 way-number. If
the block address obtained from the APT is not found in
the BWT then the access is predicted to be direct-mapped.
Similarly, instructions that do not find a matching PC entry
in the APT are predicted to access direct-mapped positions.
The BWT is also accessed on a L1 cache fill, so that if the

block being retrieved is found in the BWT, the way-num
ber is updated; this update keeps the way-prediction ac
racy high for blocks in transit.

Because the APT and BWT need to hold information o
only the displaced blocks, small size may suffice. Als
because displaced blocks, by definition, conflict in th
cache and the BWT uses block addresses to index, confl
in the BWT may be common. Conflicts in the APT an
BWT lead to mispredictions because such accesses are
dicted to be direct-mapped. Therefore, the APT and BW
may need to be moderately associative (or indexed throu
a skewing function). Fortunately, both the APT and th
BWT access are well ahead of the cache access in the p
line (Figure 3), high associativity of the APT or BWT is
not likely to delay probe0 initiation.

3.2.  XOR-based way-prediction

XOR-based way prediction, used in the PSA paper [6
relies on the idea that while a pipeline stage computes
data address by adding the source register value to
instruction offset, the register value can be XORed with th
instruction offset to compute an approximate of the addre
[3] and access a way-prediction table. This scheme explo
the fact that most memory instructions have small enou
offsets so that the block address from the XOR approxim
tion is usually same as or at least correlates well with t
block address from the actual data address.

An APT is not need for the XOR scheme. Instead, th
XOR scheme simply uses the BWT indexed by the XO
value. The other key difference between the XOR and P
schemes is that the XOR scheme accesses the BWT du
the late address-compute pipeline stage, whereas the
scheme accesses the BWT in the early instruction-deco
pipeline stage. While the XOR scheme is naturally mo
accurate than the PC scheme, we claim that this late acc
causes the timing problems pointed out in Section 3., es
cially because of BWT’s large size requirements (the PS
paper suggests 1024 entries for 256 blocks in the
cache), as discussed in the previous section.

3.3.  Reactive displacement and feedback

While displacing conflicting blocks reduces overa
misses, first-probe miss rate typically worsens due
increased pressure on way-prediction. Because prob
misses due to mispredictions result in a second data ar
access (if the block is in the cache), overall hit latency a
bandwidth to the cache are significantly degraded. T
main reason for this is that probe1 hits occupy the da
array for extra cycles beyond probe0, causing subsequ
cache accesses to queue in the load/store queue. In
worst case, a substantial fraction of all L1 hits may be fro
probe1, considerably degrading valuable L1 bandwidth.
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Because way-prediction has to use inexact information
due to pipeline timing constraints, it is hard to make way-
prediction perfect. Therefore, the r-a cache attempts to
reduce the number of accesses it predicts, such that either
data is in a direct-mapped position or is highly-predictable
in a set-associative position, keeping the number of
mispredictions in check. Regardless of the way-prediction
scheme used, the r-a cache (1) reactively displaces only
those blocks that frequently conflict, avoiding prediction
accuracy degradation due to a large number of displaced
blocks, (2) tracks prediction accuracy so that unpredictable
blocks are moved back to their direct-mapped positions,
avoiding repeated mispredictions and (3) disallows unpre-
dictable blocks from being displaced again, using a simple
feedback mechanism.

Thus, the r-a cache achieves performance robustness by
trading-off overall hit rate for probe0 hit rate, and lowering
bandwidth demand. In Section 5.4., we show that probe0
miss rates worsen drastically without reactive displacement
and feedback.

3.3.1.  Victim list: reactive displacement
Ideally, the r-a cache would displace only conflicting

blocks to set-associative positions; in a real implementa-
tion, it is difficult to isolate capacity and conflict misses.
Consequently, the r-a cache approximates isolation of con-
flict misses by tracking the set of recently replaced blocks
in a table called the victim list, similar to [8]. Each victim
list entry consists of a block address and a saturating
counter. The block address of a replaced block is inserted
in the victim list and the corresponding counter, which
counts the number of times the block has been replaced in
the past, is incremented. After the block gets replaced a
few times, the victim list counter reaches saturation, signal-
ing a conflicting block; the next time the block is brought
back into the cache, the block is displaced to a set-associa-
tive position, and the victim counter is reset.

The victim list needs to be a high-associative structure
to avoid conflicts in the victim list itself. Because the vic-
tim list is not on the cache access critical path but only in
the replacement path, the high associativity of the victim
list does not impact hit latency.

3.3.2.  Feedback to evict unpredictable blocks
Regardless of whether the PC-based or XOR-based

scheme is used, the BWT maps a block address to its way-
number in the cache. Apart from the way-number, each
BWT entry contains a saturating counter, which decre-
ments on a correct prediction and increments on an incor-
rect prediction to track the accuracy of way-prediction for
the corresponding block. The purpose of tracking mispre-
diction counts is to evict blocks whose addresses are not
predictable. If the way-number for a block that is displaced
to a set-associative position is repeatedly mispredicted then

the block is evicted from the cache; if, later, the block
brought back into the cache, it is placed in the direc
mapped position (because the victim list miss count
would have been reset when it was put in the set-assoc
tive position). While such evictions increase overall cach
miss rate, continuing to hold such unpredictable blocks
set-associative positions may cause probe0 miss rate
become worse than that of a conventional direct-mapp
cache. Thus the r-a cache trades-off overall hit rate f
probe0 hit rate, which lowers average cache access tim

It should be noted that in the case of the PC-bas
scheme, the BWT mispredict counter is shared among
instructions that access that displaced block. This doe
good job of capturing group prediction behavior.

3.3.3.  Feedback to prevent repeated mispredictions
The r-a cache relies on its ability to turn off associativ

displacement for accesses that have poor prediction ac
racy. This is done on a per address basis, as describe
the previous section. In general, instructions that are unp
dictable for one address are also unpredictable for oth
addresses. To prevent the performance penalty of relea
ing unpredictable behavior for each address that an unp
dictable instruction touches, the r-a cache also provides
inhibit list as a way to turn off reactive displacement on
per instruction basis.

The inhibit list is a single bit per instruction which is se
when that instruction is inhibited from causing an assoc
tive displacement. Because the inhibit list entry is a sing
bit indexed by instruction, it would be natural to place th
bit in the i-cache.

When the misprediction counter in the BWT saturate
not only is the block evicted from the cache, but the inhib
list entry is set for the instruction causing the mispredic
As long as the inhibit list entry is set, the instruction alway
accesses only direct-mapped locations without using wa
prediction (PC or XOR), and does not displace any bloc
to set-associative positions. Furthermore, an inhibit
instruction will cause evictions of set-associative block
that it touches, and will also saturate the BWT mispredi
tion counter for that block. Therefore, the inhibit bit natu
rally has a poison property, in that once an instruction
inhibited, all the blocks it touches will be forced to direct
mapped locations, and all the instructions that touch tho
blocks will be inhibited, and so on.

We learned that predictability of instructions change
over the course of program execution (usually when t
data that they touch changes). Therefore, it is desirable
clear the inhibit list when instructions start to work on ne
data. We use a DTLB miss to indicate that we are enteri
a new data phase, and it is time to clear the inhibit list.

Addresses may also become more predictable wh
they are touched by different instructions. Therefore, w
wish to clear the BWT mispredict counters when we a
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Program input instructions
vortex ref 1 billion

gcc 1recog 347 million

li train 365 million

perl jumble 1 billion

go 9stone21 1 billion

troff paper.me 70 million

m88ksim train 171 million

swim train 430 million

fpppp train 235 million

Table 2: Benchmarks.

Component Description

 CPU Out of order, 8-issue, 64-entry reorder buffer, 32-entry ld/st queue

Prediction bimodal 4096 entries + gshare 10-bit history

L1 I-cache 16 KB, 2-way, 32 byte blocks, 1 cycle

L1 D-cache 8 KB, 32 byte blocks, 1 cycle probe0,
3 cycles probe1, lock-up free

L2 cache 256 KB, 8-way, 64 byte blocks, 12 cycle

memory Infinite capacity, 60 cycle latency

Way-
prediction
resources

PC:128-entry APT & BWT, 2048-bit inhibit list, 256-entry victim
list; inhibit threshold: 3 victim threshold: 5; (total 1184 bytes).
XOR: 1024-entry BWT, 2048-bit inhibit list, 256-entry victim
list; inhibit threshold: 3 victim threshold: 2; (total 2560 bytes).

Table 1: Hardware parameters.
entering a new instruction phase of the program. We use an
ITLB miss to indicate the arrival of a new instruction
phase, and this causes a clearing of the BWT mispredict
counters.

We tried several dynamic schemes, none of which per-
formed as robustly as the TLB scheme. Simple periodic
clearing performed well, but the clearing interval is appli-
cation dependent and needs to be pre-determined.

4.  Related work: qualitative comparison

The hash-rehash cache [1] introduced the idea of multi-
ple probes to the cache to achieve high hit rates while
maintaining direct-mapped speeds. Accesses perform a
static probe0alwaysin the direct-mapped position and on a
probe0 miss, a second probe is done by hashing the
address. The column-associative cache [2] improved on
hash-rehash by associating rehash information with each
block and improving the replacement algorithm, which
decreases the number of second probes required. The par-
allel multicolumn cache [18] generalizes column-associa-
tive to n-way associative through a set-associative tag array
with a direct-mapped data array to perform the tag search
in parallel, and uses MRU information to optimize the
search, much like other implementations considered in
[17,12,7]. All the above schemes increase the probability
of finding blocks in the static probe0 by swapping a block
found on the second probe with the block in the probe0
position. Unfortunately, swapping of entire cache blocks is
hard to implement because swapping involves two reads
and two writes, which is slow if done sequentially, and pro-
hibitively expensive if done in parallel, and degrades valu-
able L1 bandwidth.

The Difference-bit cache is a two-way associative cache
which achieves almost direct-mapped speeds for the spe-
cial case of two-way associativity without employing any
way-prediction by using the fact that the tags in the set

have to differ in at least one bit [11]. The group-associativ
cache [14] pioneered the idea of using under-utilized cac
frames (or ‘holes’) to displace any block into any frame i
the cacheachieving fully-associative miss rates in th
limit. It also uses cache block swapping, and has a noti
of selective displacement of recently accessed bloc
Group associativity is achieved by maintaining the locatio
and tags of the displaced blocks in a fully-associative OU
directory. In Section 5.3., we show that the fully-associ
tive OUT directory severely lengthens the hit time.

To avoid cache block swapping, the predictive seque
tial associative cache [6] proposed way prediction to acce
any way, as opposed to only the direct-mapped way,
probe0. The PSA paper uses direct-mapped tag and d
arrays, unlike the r-a cache’s set-associative tag array,
suggests sequentially probing the tag array to find the c
rect way-number. The PSA paper recommends the XO
scheme for its high accuracy, but incurs timing problem
(See Section 3.2.). But even with XOR prediction, PSA
way prediction accuracy is low, mainly because a
accesses are predicted, resulting in many probe0 mis
even for accesses that would hit in the direct-mapp
cache. PSA does achieve low overall miss rates. Becaus
many second probes, average hit latency and L1 cache p
pressure increase. In Section 5.3., we show that t
increase usually nullifies the advantage of the low over
miss rate, under realistic bandwidth constraints.

5.  Experimental Results

We modified the Simplescalar3.0 simulator [4] to mod
the L1 D-cache as an r-a cache. Table 1 shows the sys
configuration parameters used throughout the experime
unless specified otherwise. The processor core includ
the out-of-order issue and branch prediction mechanis
remain unchanged. We assume a modest on-chip ca
hierarchy of 8 Kbytes L1 D-cache and 256 Kbytes L2 s
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that the SPEC95 benchmarks exercise the memory hierar-
chy to a reasonable extent. Using a larger L1 D-cache
results in negligible miss rates for the SPEC95 bench-
marks, thwarting any effort to study data cache perfor-
mance using SPEC95. We assume that the r-a cache probe0
hit is 1 cycle, and the probe0 and probe1 hit signals are
available at the end of probe0, as per the discussion in
Section 2.1.. Probe1 takes 2 additional cycles (i.e., data
from probe1 takes a total of 3 cycles). L2 access is initiated
after probe0 if the block is not in the cache (the tags for all
the ways are checked in parallel).

For our experiments, we choose some benchmark/input
combinations from the SPECint and SPECfp suite that do
not require prohibitively long simulation runs. Table 2 pre-
sents the benchmarks and inputs used in this study. In addi-
tion to the SPEC programs, we also usetroff. The
benchmarks were compiled for a Compaq Alpha AXP-
21164 using the Compaq C and Fortran compilers under -
O4 -ifo optimization flags. All of the simulations are run to
completion except forvortex and go, which we halt at 1
billion instructions.

5.1.  Hit time of the reactive-associative cache

Because the r-a cache employs an unusual organization
combining a direct-mapped-like data array with a set-asso-
ciative-like tag array, we use the cache geometry optimiz-
ing tool, CACTI2.0 [15], configured for 0.18 micron
technology, to estimate probe0 hit time. Readers should
note that they should download CACTI2.0 from the official
web site if they want to verify these numbers; other CACTI
versions may report vastly different numbers.

In Table 3, we present the tag array hit signal (not
including the OR gate in the hit signal path in set-associa-
tive caches) and data array data-out (not including the pre-
charge phase) latencies for direct-mapped through 8-way
conventional set-associative, 8-KB caches. The r-a cache’s
probe0 timings can be derived from direct-mapped data
array and the 4-way set-associative tag array timings. We
added an 10-ps delay, obtained by Hspice simulations, for
each of the pass gates in the probe0 hit signal path and the
data array index path, as discussed in Section 2.1.. The data
out latency includes the output-way multiplexor, which
must wait for the result of the tag comparison (for a set-
associative cache), and the output driver. The total hit time
is the longer of the data out latency, and the tag hit/miss
signal latency.

Because each 2-way tag bank is half the size of the
direct-mapped tag array, the 2-way tag array is actually
faster than the direct-mapped tag array. As expected, the 4-
way data array is considerably slower than the direct-
mapped data array but the 4-way tag array is almost as fast
as the direct-mapped data array, which is the critical path
through the direct-mapped cache. Thus, a 4-way r-a probe0

critical path (for both data and tag) is almost as fast as th
of a direct-mapped cache. For an 8 KB cache, the 4-way
a is about 1% slower than direct-mapped, but still 41
faster than 2-way, and 43% faster than a 4-way set-asso
tive cache. For cache sizes greater than 8 KB, however
way associative tag array is no longer any slower th
direct-mapped tag array, and a 4-way r-a cache is less t
1% slower than a direct-mapped cache. For sizes of 32 K
and greater, an 8-way r-a cache is less than 1% slower t
a direct-mapped cache. We examine an 8-KB cache o
because using a larger cache results in negligible miss ra
for the SPEC95 benchmarks, but many microprocess
use L1 D-caches of size 16 KB or larger, so replacing
direct-mapped cache with a r-a cache should not affect
clock rate.

5.2. Performance of the reactive-associative cache

In this section, we present the performance of the r
cache using the PC and XOR schemes, compared aga
direct-mapped and 2-way set-associative caches. We sh
an idealized 2-way set-associative, 1-cycle cache as a re
ence point. We graph the speedups of the various ca
configurations by normalizing against a direct-mappe
cache in Figure 4. To underscore the r-a cache’s robustn
with respect to L1 bandwidth, we vary the number of L
cache ports from 1 (top graph) to 2 (bottom graph). W
model the extra bandwidth demand of probe1 accesses
holding the L1 port for an additional cycle. As discusse
earlier, we consider the XOR scheme to be difficult t
implement, but we still present its performance to sho
how it compares to the PC scheme.

In Figure 4, we classify our benchmarks into tw
groups. The first group of benchmarks (vortex, gcc, li, perl)
are relatively insensitive to associativity, and achieve on
modest improvements (2%-4%) even with the ideal, 2-w
cache. The second group of benchmarks (go, troff,
m88ksim, swim, fpppp) achieve speedups from 6%-10%
with the ideal, 2-way cache.Swimhas a pathological map-

;
1-way
normal

2-way
normal

4-way
normal

8-way
normal

4-way
r-a

8K data (ns) 0.792 1.129 1.141 1.240 0.802

8K tag (ns) 0.590 0.554 0.524 0.537 0.534

8K total (ns) 0.792 1.129 1.141 1.240 0.802

% increase
over 1-way

0 43 44 57 1

16K data (ns) 0.960 1.202 1.222 1.294 0.970

16K tag (ns) 0.612 0.588 0.585 0.550 0.595

16K total(ns) 0.960 1.202 1.222 1.294 0.970

% increase
over 1-way

0 25 27 35 1

Table 3: Cache hit times.
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FIGURE 4: Performance of the reactive-associative cache.
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first group second group

512-
entry
APT

direct
mapped

r-a 4-way,
pc

r-a 4-way,
pc

r-a 4-way,
pc

r-a 4-way,
xor

r-a 4-way,
xor

r-a 4-way,
xor

2-way set
assoc.

SPEC-95
Bench

overall
miss rate

probe0
miss rate

overall
miss rate

prediction
accuracy

probe0
miss rate

overall
miss rate

prediction
accuracy

overall
miss rate

vortex 5.1 6.7 4.5 97.8 6.5 4.1 97.5 3.9

gcc 8.0 8.8 7.0 98.2 8.4 6.4 97.9 6.4

li 6.0 5.7 5.6 99.9 5.4 5.1 99.7 4.8

perl 5.4 5.6 4.2 98.5 5.9 3.3 97.4 3.9

go 8.9 9.5 8.3 98.7 6.9 5.8 98.9 6.3

troff 5.0 4.3 3.4 99.1 3.7 2.7 98.9 2.8

m88ksim 5.2 3.3 2.4 99.1 4.2 2.2 98.0 2.0

swim 49.7 48.7 46.9 96.6 49.8 44.6 90.6 50.8

fpppp 7.4 24.8 3.5 77.9 6.2 5.2 98.9 2.7

MEAN 7.9 8.7 5.9 96.0 7.3 5.3 97.5 5.1

Table 4: Reactive associative miss rates compared to set associative caches.
ping problem which causes the idealized 2-way cache to
perform slightly worse than direct-mapped, but the prob-
lem subsides with increasing associativity, which is why 4-
way r-a performs better than the ideal, 2-way cache.

Focusing on the one port case using the PC scheme in
the top graph of Figure 4, the r-a cache achieves 1%-3%
speedups for the first group, and 1%-9% speedups for the
second group. The r-a cache performs within 2% of the
idealized 2-way cache in all benchmarks exceptgo and
fpppp. Thus, the r-a cache dynamically adjusts to the asso-
ciativity requirements of the benchmark, providing the first
group with low degrees of associativity, and the second
group with high degrees of associativitybut at direct-
mapped speeds.go’s branch prediction accuracy is known
to be poor, indicating its instruction stream’s unpredictable
nature, which makes the PC scheme less effective. The r-a
cache incurs a slowdown forfpppp due to fpppp’s large
instruction footprint, disrupting the PC-indexed APT,
which causes high probe0 miss rates. As indicated, this

slowdown turns into a 2% speedup on increasing the AP
size to 512 entries.

The difference in performance between the PC a
XOR schemes for one port is less than 2% in all benc
marks exceptgo and swim. Because the XOR scheme is
potentially more difficult to implement than the PC
scheme, this comparison indicates that the PC scheme
better alternative.

In the two-port case, the trends are similar to those
the one-port case. But the speedups of the r-a cache and
idealized 2-way cache are higher because the higher ba
width exposes more of the direct-mapped cache’s m
latency, which is reduced by the r-a and 2-way cache
fpppp’s bandwidth pressure is absorbed by the extra po
resulting in a 4% speedup without increasing the APT siz

In Table 4, we compare the miss rates for the r-a cac
with those of direct-mapped and 2-way caches. Compa
to the direct-mapped miss rates, probe0 miss rates un
both PC and XOR schemes are less or almost equal for
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FIGURE 5: Comparison of reactive associativity to previous schemes.
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first group second group

direct-
mapped

c-a PSA pc r-a pc PSA
xor

r-a xor c-a PSA pc r-a pc PSA
xor

r-a xor

Benchmark overall p0 p0 p0 p0 p0 overall overall overall overall overall

vortex 5.1 6.0 36.1 6.7 15.7 6.5 4.0 3.4 4.5 3.4 4.1

gcc 8.0 8.9 32.8 8.8 17.2 8.4 6.0 5.8 7.0 5.8 6.4

li 6.0 6.6 34.5 5.7 15.5 5.4 4.7 4.4 5.6 4.4 5.1

perl 5.4 6.2 20.9 5.6 12.5 5.9 3.4 3.5 4.2 3.5 3.3

go 8.9 10.3 25.8 9.5 12.0 6.9 5.9 5.4 8.3 5.4 5.8

troff 5.0 5.6 19.2 4.3 12.3 3.7 2.3 2.4 3.4 2.3 2.7

m88ksim 5.2 5.7 17.5 3.3 10.3 4.2 2.2 1.8 2.4 1.8 2.2

swim 49.7 53.6 66.4 48.7 65.1 49.8 26.2 50.7 46.9 50.3 44.6

fpppp 7.4 9.6 35.3 24.8 19.1 6.2 5.8 2.3 3.5 2.3 5.2

MEAN 7.9 9.0 29.6 8.7 16.6 7.3 4.9 4.5 5.9 4.5 5.3

Table 5: Initial probe (p0) and overall (ov) miss rates for several multi-probe cache schemes.
benchmarks except forvortex and fpppp, indicating the
success of our way-prediction scheme. If the inhibit list
were cleared less frequently than our TLB-based approach
(Section 3.3.3.),Vortex’s probe0 miss rate decreases to
5.3%.Fpppp’s large instruction footprint causes thrashing
in the APT, resulting in high probe0 miss rate using the PC
scheme, even though the overall miss rate approaches that
of 2-way. The prediction accuracy columns for PC and
XOR schemes show the performance of the way predictor.
When comparing the r-a cache miss rates with those of the
2-way cache, it is clear that feedback achieves high accu-
racy at the cost of higher overall miss rate. Because XOR is
a more accurate prediction handle in general, we relax the
victim list threshold from 5 to 2, which encourages more
displacement. In most cases, this relaxation results in lower
probe0 and overall miss rates for XOR, but worse way-pre-
diction accuracies, as compared to PC.

Aside fromfpppp, the other benchmarks are essentially
not sensitive to varying the APT size from 64 to 512
entries, the BWT size from 64 to 256 entries, or the victim

list size from 128 to 256 entries. However, if we scale u
the tables to sizes larger than the cache itself, the prob
miss rate converges to lower than 2-way set-associat
miss rates.

5.3.  Reactive-associative cache vs. prior schemes

In this section, we compare the r-a cache with the co
umn-associative cache (c-a cache), which is representa
of caches that rely on swapping because they are all si
larly limited in performance due to the bandwidth deman
imposed by swapping. We also compare the r-a cac
against the PSA cache, which uses way-prediction inste
of swapping. For the PSA-cache, we assume the sa
latency assignments as the r-a cache, as they have sim
timing constraints for both probe0 and probe1; the PS
cache has a 1-cycle probe0 hit with an additional 2 cycl
for a probe1 hit. As with r-a, the cache port is only held fo
1 additional cycle for a probe1 hit. The PSA cache uses
1024-entry way-prediction table (as in [6]), with 1 hash
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reactive
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r-a pc, with
no feedback

r-a pc, with
no feedback

r-a pc,
original
config

r-a pc,
original
config

Benchmark overall probe0 overall probe0 overall probe0 overall

vortex 5.1 31.9 4.4 11.7 4.4 6.7 4.6

gcc 8.2 23.3 7.4 16.3 6.7 9.0 7.2

li 6.3 7.9 6.2 9.2 5.4 6.0 5.9

perl 5.6 17.6 4.5 10.3 3.5 5.6 4.2

go 9.2 19.7 8.1 17.2 6.6 9.8 8.5

troff 5.2 13.4 3.1 9.0 2.8 4.3 3.3

m88ksim 5.3 12.0 3.1 11.0 2.1 3.4 2.4

swim 54.3 50.7 45.5 50.3 48.4 50.3 48.5

fpppp 7.4 69.0 2.3 22.4 2.8 25.9 3.5

MEAN 8.1 21.9 5.8 14.8 5.2 9.0 5.9

Table 6: Effect of reactive displacement and feedback mechanisms.
rehash bit per cache blockfor a total of 160 bytes of extra
state. We show PSA using the XOR scheme as well as the
PC scheme so that we can compare PSA and r-a. The PSA
paper recommends the XOR scheme, but we include the
PC scheme also due to the XOR scheme’s timing problems
mentioned in Section 3.2.. In Figure 5, we compare speed-
ups over direct-mapped cache of the 4-way r-a cache
against those of the column-associative and PSA caches.

We do not compare against the group-associative cache
(g-a cache) because it incurs the same bandwidth problems
of swapping as the c-a cache. In addition, the g-a cache has
fundamental circuit problems, which prohibit it from
achieving direct-mapped hit latency. Group associativity is
achieved by maintaining the location and tags of the dis-
placed blocks in a fully-associative OUT directory.
Because the OUT directorymust be checked on every
access, the previous lookup must complete before the next
cache access. However, our analysis using CACTI2.0 indi-
cates that this fully-associative directory is 48% slower
(21% slower if the OUT directory is only 2-way set asso-
ciative) than a direct-mapped data cache (the OUT direc-
tory has 1/4 as many entries as cache blocks, and 5 bytes
per entryas recommended in [14]), which would
severely lengthen hit time.

For the 1-port (lower bandwidth) case in Figure 6 (the
upper graph), PSA using PC and XOR schemes and col-
umn-associative (c-a) incur slow-downs on many bench-
marks due to their higher bandwidth demand than direct-
mapped, caused by poor probe0 miss rates and swapping,
respectively. The slow-downs are more pronounced in the
first group of benchmarks because the higher bandwidth
demand is not compensated by lower overall miss rate.

Overall, the r-a cache using PC or XOR performs better
than the corresponding PSA and c-a caches, because of r-
a’s lower bandwidth demand. Using the PC scheme, the
one-port r-a cache is 3%-13% better than the PSA cache,

except forfpppp. fpppp’s large instruction footprint wreaks
havoc with the PC scheme for an r-a cache, as mentione
Section 5.2.. The c-a cache achieves large speedups
swimbecause it uses a skewing hash function, which al
viates the pathological set-associative mapping proble
Similarly, if the APT and BWT sizes are increased to abo
16K entries, the 4-way r-a cache does achieve compara
speedups over direct mapped forswim.

For the two-port (higher bandwidth) case in Figure
(the lower graph), column associative and the predicti
sequential caches achieve speedups because the extra
absorbs the increased bandwidth pressure, although th
are still a few cases of slow-down. The r-a cache using P
or XOR mostly outperforms the corresponding PSA a
well as c-a caches, although by smaller margins than the
port case because the bandwidth advantage of the r-a ca
is less important for the two-port case.

Table 5 shows the first-probe (indicated by p0) an
overall (indicated by overall) miss rates for 4-way r-
(using PC and XOR), column associative, and PSA (usi
PC and XOR) caches. The r-a caches using PC or XO
usually have the lowest probe0 miss rates of all the cach
Although column-associative has low probe0 miss rate
overall performance is poor due to high latency and ban
width demand of cache block swapping. Probe0 miss ra
of PSA using XOR are much worse than direct-mapp
miss rates, resulting in high bandwidth demand. Althoug
the overall miss rates for the r-a caches are usually hig
than those for PSA and c-a because of reactive displa
ment and feedback, the r-a cache performs better than P
or c-a, affirming the notion of trading-off overall hit rate
for probe0 hit rate.

5.4.  Effect of reactive displacement and feedback

To isolate the effects of reactive displacement and fee
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back on the r-a cache, in Table 6 we present probe0 and
overall miss rates using the PC scheme but without reactive
displacement (i.e., no victim list), and without feedback
(i.e., no mispredict counters in the BWT, and no inhibit
list). The last row of Table 6 shows the geometric means of
the miss rates for that column. In the case of no reactive
displacement, probe0 miss rate increases dramatically
because the cache attempts to displace all accesses, even
those that do not cause any contention in a direct-mapped
cache. In the case of no feedback, the probe0 miss rate
increases, albeit not as dramatically as before, but the over-
all miss rate approaches those achieved by PSA or c-a
because the cache now displaces all cache blocks regard-
less of predictability. Such increased probe0 miss rates
would, in general, cause an increased average cache hit
time and higher cache port contention. Therefore, reactive
displacement and feedback are essential for the r-a cache.

6.  Conclusions

We proposed the reactive-associative cache (r-a cache)
based on the key observation that associativity is needed
only for conflicting blocksand should not be provided at
the expense of higher hit latencies for all accesses. The r-a
cache provides flexible associativity by placing most
blocks in direct-mapped positions and reactively displacing
only conflicting blocks to set-associative positions. To
achieve direct-mapped hit times, the r-a cache uses the
well-known asymmetric organization in which the data
array is organized like a direct-mapped cache, and the tag
array like a set-associative cache. The r-a cache uses way
prediction coupled with feedback for high prediction accu-
racy, regardless of the prediction handle. Our reactive
mechanisms (selective displacement and feedback) allow
the use of PC as a viable way prediction handle. Since the
instruction PC is available early in the pipeline, allowing at
least six pipeline stages for the lookup, we claim that the
PC scheme easier to implement than the XOR prediction
proposed in the PSA paper.

A one-port, 4-way r-a cache achieves up to 9% speedup
over a direct-mapped cache and performs within 2% of an
idealized 2-way set-associative, 1-cycle cache. A 4-way r-a
cache achieves up to 13% speedup over a PSA cache, with
both r-a and PSA using the PC scheme. Finally, CACTI2.0
estimates indicate that for sizes larger than 8KB, a 4-way r-
a cache is within 1% of direct-mapped hit times, while still
25% faster than a 2-way set-associative cache.

Acknowledgements

This work was in part supported by the NSF CAREER
award no. 9875960-CCR, and was done when Brannon
Batson was at Purdue university.

References
[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache perfo

mance of operating systems and multiprogramming.ACM
Transactions on Computer Systems, 6(4):393–431, Nov.
1988.

[2] A. Agarwal and S. Pudar. Column associative caches:
technique for reducing miss rate of direct-mapped cach
In Proceedings of the 20th Annual International Sympo
sium on Computer Architecture, pages 179–190, May
1993.

[3] T. M. Austin, D. N. Pnevmatikatos, and G. Sohi. Stream
lining data cache access with fast address calculation.
Proceedings of the 22nd Annual International Symposiu
on Computer Architecture, pages 369–380, June 1995.

[4] D. Burger, T. M. Austin, and S. Bennett. Evaluating fu
ture microprocessors: the simplescalar tool set. Techni
Report CS TR-1308, University of Wisconsin, Madison
July 1996.

[5] B. Calder and D. Grunwald. Next cache line and set pr
diction. In Proceedings of the 25th Annual Internationa
Symposium on Computer Architecture, pages 287–296,
June 1995.

[6] B. Calder, D. Grunwald, and J. Emer. Predictive seque
tial associative cache. InProceedings of the Second IEEE
Symposium on High-Performance Computer Archite
ture, pages 244–253, Feb. 1996.

[7] J. H. Change, H. Chao, and K. So. Cache design of a su
micron CMOS System/370. InProceedings of the 14th
Annual International Symposium on Computer Archite
ture, pages 208–213, June 1987.

[8] J. Collins and D. Tullsen. Hardware identification o
cache conflict misses. InProceedings of the 32nd Annua
International Symposium on Microarchitecture, pages
126–135, Nov. 1999.

[9] M. Hill. A case for direct-mapped cache.IEEE Computer,
21(12):25–40, Dec. 1988.

[10] D. Joseph and D. Grunwald. Prefetching using marko
predictors. InProceedings of the 24th Annual Internation
al Symposium on Computer Architecture, pages 252–263,
June 1997.

[11] T. Juan, T. Lang, and J. J. Navarro. The difference-b
cache. InProceedings of the 23rd Annual Internationa
Symposium on Computer Architecture, pages 114–120,
May 1996.

[12] R. E. Kessler, R. Jooss, A. Lebeck, and M. Hill. Inexpen
sive implementations of set-associativity. InProceedings
of the 16th Annual International Symposium on Comput
Architecture, pages 131–139, May 1989.

[13] J.-K. Peir, W. Hsu, H. Young, and S. Ong. Improving
cache performance with balanced tag and data paths
Proceedings of the Seventh International Symposium
Architectural Support for Programming Languages an
Operating Systems, pages 268–278, Oct. 1996.

[14] J.-K. Peir, Y. Lee, and W. W. Hsu. Capturing dynami
memory reference behavior with adaptive cache topolog
In Proceedings of the Eighth International Symposium o
Architectural Support for Programming Languages an
Operating Systems, pages 240–250, Oct. 1998.

[15] G. Reinman and N. P. Jouppi.An Integrated Cache Tim-
ing and Power Model. COMPAQ Western Research Lab
http://research.compaq.com/wrl/people/jouppi/CAC-
TI.html, 1999.

[16] A. Seznec. DASC cache. InProceedings of the First IEEE
Symposium on High-Performance Computer Archite
ture, pages 134–143, Jan. 1995.

[17] K. So and R. N. Rechtschaffen. Cache operations
MRU change. IEEE Transactions on Computers,
37(6):700–709, June 1988.

[18] C. Zhang, X. Zhang, and Y. Yan. Two fast and high-ass
ciativity cache schemes.IEEE Micro, pages 40–49, Sept.
1997.


	Abstract
	1. Introduction
	2. Reactive-Associative Cache Organization
	2.1. Probe0 hit latency
	2.2. Complications due to dual probes

	3. Way prediction
	3.1. PC-based way-prediction
	3.1.1. Access-prediction and block way-number tables

	3.2. XOR-based way-prediction
	3.3. Reactive displacement and feedback
	3.3.1. Victim list: reactive displacement
	3.3.2. Feedback to evict unpredictable blocks
	3.3.3. Feedback to prevent repeated mispredictions


	4. Related work: qualitative comparison
	5. Experimental Results
	5.1. Hit time of the reactive-associative cache

	1-way
	normal
	2-way
	normal
	4-way
	normal
	8-way
	normal
	4-way
	r-a
	8K data (ns)
	0.792
	1.129
	1.141
	1.240
	0.802
	8K tag (ns)
	0.590
	0.554
	0.524
	0.537
	0.534
	8K total (ns)
	0.792
	1.129
	1.141
	1.240
	0.802
	% increase over 1-way
	0
	43
	44
	57
	1
	16K data (ns)
	0.960
	1.202
	1.222
	1.294
	0.970
	16K tag (ns)
	0.612
	0.588
	0.585
	0.550
	0.595
	16K total(ns)
	0.960
	1.202
	1.222
	1.294
	0.970
	% increase over 1-way
	0
	25
	27
	35
	1
	Table 3: Cache hit times.
	5.2. Performance of the reactive-associative cache
	5.3. Reactive-associative cache vs. prior schemes
	5.4. Effect of reactive displacement and feedback
	6. Conclusions
	Acknowledgements
	References
	FIGURE 3: Pipeline timing of way-prediction.
	FIGURE 1: The reactive-associative cache.
	FIGURE 2: PC-based way- prediction structures.


	Program
	input
	instructions
	vortex
	ref
	1 billion
	gcc
	1recog
	347 million
	li
	train
	365 million
	perl
	jumble
	1 billion
	go
	9stone21
	1 billion
	troff
	paper.me
	70 million
	m88ksim
	train
	171 million
	swim
	train
	430 million
	fpppp
	train
	235 million
	Table 2: Benchmarks.

	Component
	Description
	CPU
	Out of order, 8-issue, 64-entry reorder buffer, 32-entry ld/st queue
	Prediction
	bimodal 4096 entries + gshare 10-bit history
	L1 I-cache
	16 KB, 2-way, 32 byte blocks, 1 cycle
	L1 D-cache
	8 KB, 32 byte blocks, 1 cycle probe0,
	3 cycles probe1, lock-up free
	L2 cache
	256 KB, 8-way, 64 byte blocks, 12 cycle
	memory
	Infinite capacity, 60 cycle latency
	Way-
	prediction resources
	PC:128-entry APT & BWT, 2048-bit inhibit list, 256-entry victim list; inhibit threshold: 3 victim...
	XOR: 1024-entry BWT, 2048-bit inhibit list, 256-entry victim list; inhibit threshold: 3 victim th...
	Table 1: Hardware parameters.
	FIGURE 4: Performance of the reactive-associative cache.


	r-a 4-way, pc
	r-a 4-way, pc
	r-a 4-way, pc
	r-a 4-way, xor
	r-a 4-way, xor
	r-a 4-way, xor
	2-way set assoc.
	SPEC-95
	Bench
	probe0
	miss rate
	overall
	miss rate
	prediction accuracy
	probe0
	miss rate
	overall
	miss rate
	prediction accuracy
	overall
	miss rate
	vortex
	6.7
	4.5
	97.8
	6.5
	4.1
	3.9
	gcc
	8.8
	7.0
	98.2
	8.4
	6.4
	6.4
	li
	5.7
	5.6
	99.9
	5.4
	5.1
	4.8
	perl
	5.6
	4.2
	98.5
	5.9
	3.3
	3.9
	go
	9.5
	8.3
	98.7
	6.9
	5.8
	6.3
	troff
	4.3
	3.4
	99.1
	3.7
	2.7
	2.8
	m88ksim
	3.3
	2.4
	99.1
	4.2
	2.2
	2.0
	swim
	48.7
	46.9
	96.6
	49.8
	44.6
	50.8
	fpppp
	24.8
	3.5
	77.9
	6.2
	5.2
	2.7
	MEAN
	8.7
	5.9
	96.0
	7.3
	5.3
	5.1
	Table 4: Reactive associative miss rates compared to set associative caches.
	FIGURE 5: Comparison of reactive associativity to previous schemes.


	c-a
	PSA pc
	r-a pc
	PSA xor
	r-a xor
	c-a
	PSA pc
	r-a pc
	PSA xor
	r-a xor
	Benchmark
	p0
	p0
	p0
	p0
	p0
	overall
	overall
	overall
	overall
	overall
	vortex
	6.0
	36.1
	6.7
	15.7
	6.5
	4.0
	3.4
	4.5
	3.4
	4.1
	gcc
	8.9
	32.8
	8.8
	17.2
	8.4
	6.0
	5.8
	7.0
	5.8
	6.4
	li
	6.6
	34.5
	5.7
	15.5
	5.4
	4.7
	4.4
	5.6
	4.4
	5.1
	perl
	6.2
	20.9
	5.6
	12.5
	5.9
	3.4
	3.5
	4.2
	3.5
	3.3
	go
	10.3
	25.8
	9.5
	12.0
	6.9
	5.9
	5.4
	8.3
	5.4
	5.8
	troff
	5.6
	19.2
	4.3
	12.3
	3.7
	2.3
	2.4
	3.4
	2.3
	2.7
	m88ksim
	5.7
	17.5
	3.3
	10.3
	4.2
	2.2
	1.8
	2.4
	1.8
	2.2
	swim
	53.6
	66.4
	48.7
	65.1
	49.8
	26.2
	50.7
	46.9
	50.3
	44.6
	fpppp
	9.6
	35.3
	24.8
	19.1
	6.2
	5.8
	2.3
	3.5
	2.3
	5.2
	MEAN
	9.0
	29.6
	8.7
	16.6
	7.3
	4.9
	4.5
	5.9
	4.5
	5.3
	Table 5: Initial probe (p0) and overall (ov) miss rates for several multi-probe cache schemes.

	r-a pc, with no reactive
	displacement
	r-a pc, with no reactive
	displacement
	r-a pc, with no feedback
	r-a pc, with no feedback
	r-a pc,
	original config
	r-a pc,
	original config
	Benchmark
	probe0
	overall
	probe0
	overall
	probe0
	overall
	vortex
	31.9
	4.4
	11.7
	4.4
	6.7
	4.6
	gcc
	23.3
	7.4
	16.3
	6.7
	9.0
	7.2
	li
	7.9
	6.2
	9.2
	5.4
	6.0
	5.9
	perl
	17.6
	4.5
	10.3
	3.5
	5.6
	4.2
	go
	19.7
	8.1
	17.2
	6.6
	9.8
	8.5
	troff
	13.4
	3.1
	9.0
	2.8
	4.3
	3.3
	m88ksim
	12.0
	3.1
	11.0
	2.1
	3.4
	2.4
	swim
	50.7
	45.5
	50.3
	48.4
	50.3
	48.5
	fpppp
	69.0
	2.3
	22.4
	2.8
	25.9
	3.5
	MEAN
	21.9
	5.8
	14.8
	5.2
	9.0
	5.9
	Table 6: Effect of reactive displacement and feedback mechanisms.


