Appears in the 34th Annual International Symposium on Microarchitecture (MICRO), pages 4-15, December 2001.

Skipper: A Microarchitecture For Exploiting Control-flow Independence

Chen-Yong Cher and T. N. Vijaykumar
School of Electrical and Computer Engineering, Purdue University, {chenyong,vijay}@ecn.purdue.edu

Abstract control-flow independenc§l7]. The computations in a

Although modern superscalar processors achieve highranCh’S taken and not-taken paths are conditioned by the
branch prediction accuracy, certain branches either arBranch and arecontrol-flow dependenbn the branch
inherently difficult to predict or incur destructive interfer- because whether each of the computations gets executed or
ence in prediction tables, causing significant performancé&ot depends on whether the branch is taken. In contrast, the
loss due to mispredictions. We propose a novel microarchicomputation immediately following the point where the
tecture, called Skipper, to handle such difficult branches bjpranch’s taken and not-taken paths reconvergeoigrol-
exploiting control-flow independence. Previous approache§ow independentf the branch because tipest-reconver-
to handling difficult branches, one way or another, amoung€nt computation gets executed irrespective whether the
to executing incorrect instructions, squandering cycles anfranch is taken or not. A previous study shows potential
resources such as the i-cache bandwidth. Skipper altogethepeedups of about 30% in a wide-issue superscalar by
avoids incorrect instructions by skipping over, without evenexploiting control-flow independence [17].
fetching, the control-flow dependent computation condi- Previous approaches to handling difficult branches are:
tioned by a difficult branch. Instead, Skipper fetches andl) to execute both the taken and not-taken paths condi-
executes the control-flow independent instructions, whicHioned by a difficult branch [12,24,11] or (2) upon a mispre-
are past the point where the branch’s taken and not-take®iction, selectively recover control-flow independent
paths reconverge, and which need to be executed irrespeistructions by not squashing the data independent instruc-
tive of the branch outcome. Because Skipper executes tHé€ns, and re-executing only the data dependent instructions
correct control-flow dependent instructions after the diffi-[17]. Because the first approach executes both paths one of
cult branch is resolved, it conserves the valuable resource¥hich is incorrect and the second approach executes incor-

Skipper is the first proposal to exploit control-flow inde- rect instructions from the mispredicted path, both
pendence by skipping over control-flow dependent compuapproaches squander cycles and valuable resources such as
tation in a superscalar pipeline. Skipper fetches the skippethe i-cache bandwidth. Incorrect instructions are numerous
control-flow dependent instructions after the post-reconverbecause they include not only incorrect control-flow depen-
gent instructions, out of program order. We describe keydent instructions but also control-flow independent instruc-
mechanisms to implement Skipper without unduly compli-tions which are data dependent on the incorrect control-
cating the pipeline despite out-of-order fetch. SPECint9glow dependent instructions. In [17], the proponents of the
simulations show that Skipper performs 10% and 8% bettepecond approach conclude that “the biggest performance
than superscalar and the previously-proposed Polypattimiter is wasted resources consumed by incorrect control

respectively, when all three microarchitectures have equal idependent instructions”.
cache bandwidth and hardware resources. To conserve the valuable resources, Skipper altogether

1. Introduction avoids incorrect instructions by skipping ovesithout even

Modern processors employ branch prediction to aVoi%etchlng the control-flow dependent instructions (both

L . . aken and not-taken paths) conditioned by a difficult
pipeline stalls caused by branches. The microarchitectur .
; . o : ._branch. Skipper fetches and executes the post-reconvergent
community has made impressive improvements in predic- ! : i .
. S instructions, which need to be executed irrespective of the
tion accuracy [15,25]. Nevertheless, achieving perfect pre;

diction may be difficult because certain branches either arbranch outcome, and executasly the correct control-flow

inherently hard to predict or incur destructive interferenc:e%(apendent instructioresfter the difficult branch is resolved.

in finite-sized prediction tables. Mispredictions of such Skipper is the first proposal to exploit control-flow indepen-

. tee . dence by skipping over control-flow dependent computa-
difficult” branches cause considerable performance loss; ~ L

. . . tion in the context of a superscalar pipeline. Superscalars
and will continue to do so in the future.

We propose a novel microarchitecture, called Skipper, toemploy sophisticated out-of-order instruction-issue tech-

handle difficult branches. Skipper avoids predicting difficul "I4€s which routinely skip over datg depeqdent Instruc
. ; e tions but not control-flow dependent instructions. Other
branches by skipping over the computation conditioned by . .
. pproaches, employing hardware and software assists
such a branch, and exploits the fundamental property o

vastly different than a superscalar, skip over instructionsto 10% and 8% better than superscalar and Polypath,
pursue multiple flows of control: Multiscalar [20] uses the respectively, when the three architectures have equal i-
compiler to identify reconvergence points, Dynamic Multi- cache bandwidth and hardware resources.
threading [1] uses hardware to skip over loops and calls, but In Section 2, we discuss how Skipper is mapped to a
not branches. superscalar microarchitecture at a high level. In Section 3,
Unlike superscalars which always fetch instructions inwe describe the pipeline details of the key mechanisms. In
(predicted) program order, Skipper fetches the skipped consection 4, we report our experimental results. In Section 5,
trol-flow dependent instructiorefter the post-reconvergent we describe related work and we conclude in Section 6.

instructions, out of program order. Thereby, Skippero Skipper Microarchitecture
exploits control-flow independence of the post-reconver- g re 1 jllustrates the differences between correct pre-

gent computation, and overlaps execution of computationjiction, misprediction, and skipping. Figure 1(a) identifies
before the branch (and resolution of the difficult branch)ina control-flow dependent (segmertsand B) and con-

with the execution of the post-reconvergent computationtrd_ﬂOW independent, post-reconvergent (segn@ncom-

Execution overlap comes from post-reconvergent InStruchtaﬁOI’]S in a program segment, as defined in Section 1.

tior_ls that are data independent of the _skippeq instructionsizigure 1(b) shows the timelines of correct and incorrect
Skipper forces the post-reconvergent instructions, that argregictions. Correct prediction leads to execution overlap
data dependent on the yet-to-be-fetched skipped computas,qng the instructions before the branch, and the instruc-

tion, to wait till the difficult branch is resolved and the cor- s from the predicted pathA(and C segments). A
rect path within the skipped computation is fetched andyigprediction usually leads to squashingatifinstructions
executed. Note that conventional superscalars dely aier the branch, irrespective of whether they are control-
instructions following a mispredicted branch till the instruc- ¢, dependent or independent (b&andC segments).
tions are re-executed. In contrast, Skipper defyly the Figure 1(b) shows Skipper's timeline. Skipper overlaps
skipped instructions and the post-reconvergent data depeflie computation before the difficult branch (and resolution
dent instructions, but doemt delay the post-reconvergent f the pranch), with the post-reconvergent instructions that
data-independent instructions. _ _ _are data independent of the skipped instructions (data inde-
We describe four mechanisms to implement Skipper inyenqent instructions from segmeg). On resolving the dif-
an_out-of—order p|peI|n_e: First, to identify difficult branches, 1t branch, Skipper suspends execution of the post-
Skipper uses the previously-proposed JRS scheme [9]. Segsconyergent instructions. Skipper then executes the correct

ond, to determine difficult branches’ reconvergent points,path in the skipped computation (segmat allowing the

Skipper employs a heuristic based on idiomatic controly,qst reconvergent instructions that are data dependent on
flow code patterns generated by modern compilers for co

o . . . i "the skipped instructions to proceed (rest of segn@nt
ditional constructs, without requiring scanning of inStruc- agier fetching all the skipped instructions till the reconver-

tions as in [17]. Third, despite out-of-order fetching of the gence point, Skipper continues with the suspended post-
skipped instructions, Skipper maintains program order inreconvergent computation.

the instruction window and the load/store queue. On fetch- Despite its advantages, skipping is not always beneficial.

ing a difficult branch, Skipper creates an appropriately-gyinning branches that would be correctly predicted may
sized, contiguous gap in the instruction window and the g ,se performance loss, while not skipping branches that

load/store queue, to be filled later by the skipped instrucy, 4 pe incorrectly predicted results in lost opportunity.

tions from the correct path. Fourth, to force data—dependerg:omparing correct prediction and skipped timelines in
post-reconvergent instructions to wait till the yet'to'beFigure 1(b) reveals this point. The performance loss is
fetched skipped instructions execute, Skipper estimates regs. ,rred because conventional superscalars do not delay
ister dependencies, learning from prior dynamic instances,ny of the instructions following a correctly predicted
At the time of skipping, Skipper updates the registeryanch put Skipper unnecessarily delays the skipped
rename tables using this dependence information, mak'”%structions and the post-reconvergent data-dependent

post-recon_vergent_dat_a-dependent INSITUCKONS Walt. instructions (fronC), until the difficult branch is resolved.
The main contributions of this paper are:

- we propose Skipper, the first proposal to skip control-2.1. Overview of the Skipper microarchitecture
flow dependent instructions, without wasting resources We describe Skipper based on an out-of-order pipeline
on incorrect control-flow dependent instructions. using rename tables for register renaming and an instruction
» we describe key mechanisms to implement Skippemwindow for out of order issue. Skipper employs the JRS
without unduly complicating the pipeline despite out-of- scheme [9] to identify the branches that are repeatedly
order fetch. mispredicted by the branch predictor. Basically JRS moni-
» SPECIint95 simulations show that Skipper performstors the prediction accuracy of prior instances of branches

)) (b) Correct Incorrect Skippin
Program snippet: @) | Prediction Prediction pping
branch PC2? . . .
PC1: branch PC2 Not Takf;‘p/ \T‘aken Predict not taken | Predict taken Skip
A execute some execute some execute some of
jump PC3{ Control-flow A B of A andC of B andC data independer@
PC2: B dependent o
\ / £ || Resolve not taken || Resolve not taken || Resolve not taken
=
PC3: C }Control-flow C execute rest Squash & refill executeA and
independen of A andC overhead rest ofC
l Restart execution
re-execute all
Figure 1: Exploiting control-flow independence. of A andC

and isolates branches with low accuracy. Along with thethe skipped instructions’ source registers are not clobbered
prediction of every branch, JRS determines if the branctby the post-reconvergent instructions. Second, Skipper has
should be skipped. If so, Skipper uses a heuristic to deterto ensure that the post-reconvergent consumer instructions
mine the branch’s reconvergence PC, and maintains the P@btain the correct rename maps corresponding to the
in the Skipped Computation Information Table (SCIT). skipped producer instructions. To handle these issues, Skip-
Subsequent instances of the branch obtain the reconveper learns the set of architectural source registersnihne
gence PC from the SCIT. treg set and destination registers, tbatputreg setfor the

In the following cycles, Skipper fetches the post-recon-skipped instructions (both taken and not-taken paths) in
vergent instructions and places them in the instruction winprior dynamic instances. The SCIT holds the inputreg and
dow. Skipper creates a contiguous gap, large enough to holautputreg sets. The outputreg set is similar to Multiscalar’s
all the skipped instructions (both taken and not-takencreate mask, except Multiscalar uses the compiler to deter-
paths), in the instruction window, and places the postmine this information [23], and Skipper uses hardware.
reconvergent instructions after the gap, similar to [21]. For the first issue, Skipper copies the rename maps cor-
Skipper learns théikely maximum gap length, also main- responding to the inputreg set from the master rename table
tained in the SCIT, by counting the number of instructionsto a backup rename table, at the time of skipping a branch.
in the skipped computation (in both the taken and not-takert this point, the master table reflects the register state of
paths) in prior instances of the branch. After the skippedhe program at the difficult branch. Post-reconvergent
branch resolves, Skipper fills the gap with the skippednstructions modify the master rename table, and not the
instructions from the correct (taken or not-taken) path.backup table. Later, when the skipped instructions are
Instructions in the instruction window remain in program fetched, they use the maps in the backup table.
order, and Skipper maintains precise interrupts despite out- For the second issue, Skipper forces the data-dependent,
of-order fetch. post-reconvergent instructions to wait till the yet-to-be

Using the fact that conventional superscalars fetcHetched skipped instructions execute. The outputreg set
instructions in program order, the register rename tablejives Skipper a priori, albeit approximate, knowledge of the
links register value producers to consumers, and the loadfestination registers for which the yet-to-be fetched skipped
store queue deduces producer-consumer relationships finstruction. At the time of skipping a branch, Skippeeal-
memory values. Because Skipper fetches the post-reconvebcatesand preassignghysical registers for the outputreg
gent instructions out of order before the skipped instrucregisters (e.g., map architectural outputreg register R3 to
tions, as such the pipeline cannot establish datgreallocated physical register P103), and marks the physical
dependencies among the skipped instructions and the postgisters busy. Much like a data-dependent instruction in
reconvergent instructions. Previous schemes that fetchuperscalars, any post-reconvergent instruction that is data
instructions out of order face similar problems: The Multi- dependent on a skipped instruction waits till the corre-
scalar architecture uses the compiler to specify registesponding preassigned physical register is ready or
dependencies [3]. The Dynamic Multithreading architec-bypassed. When the skipped instruction eventually com-
ture employs value speculation and intricate recovery [1]. pletes execution, its preassigned physical register gets the

In conventional out-of-order pipelines’ rename stage,value, allowing all waiting post-reconvergent instructions to
instructions map their architectural destination register to roceed. Data-independent, post-reconvergent instructions
new physical register, and place the new, architectural tproceed without waiting, much as in superscalars.
physical rename map in the master rename table. Out-of- Because several skipped computations could be in flight,
order fetch presents two issues for Skipper’s register renangkipper uses multiple backup and preassign tables, much as
ing. First, Skipper has to ensure that the rename maps f&uperscalars use a backup rename table for each unresolved

branch in flight. 7‘2 o fetch decodereg . 000 reg execytem/ write-
For memory dependencies, Skipper faces the same proty = renamelssue read branch back

lem of imposing program order in the load/store queue, aﬁg
in the instruction window. Skipper creates an appropriatelyv:) = get reconvergence PC from SCIT a fetch skippe

sized gap in the load/store queue in parallel with the_ _ mcreate SIST entry instructions
; ; ; A > O m COpY inputreg-+outputreg rename maps
mstruct_lon wmd_ow, and _mamtams the Iqad/store qgeue ga;ﬁE § a preassign outputreg regglsters
length information also in the SCIT. Skipper exploits con-5 m m mark outputreg registers busy

ventional load/store queues’ ability to allow loads to pro- = create instruction window gap
ceed without knowing all previous store addresses, letting m use SIST entry infa place in instruction window gap
post-reconvergent loads to proceed even though the Skippe_g 2 w if difficult branch, switch to fetching post-reconvergent

stores have not even been fetched. Conventional load/storg % m if last skipped instruction, insert pmoves
queues check if later loads complete prematurely before afg 2 using preassigned registers as destinations
earlier store to the same address, and enforce store-lodfl £ m use rename table pointer from SIST,

program order via squash and rollback. Skipper can avoid squagiiiliiicorrecEiNEiputreq SE5

such squashes using well-known memory dependence syn- Figure 2: Skipper pipeline.
chronization techniques [16]. Thus, Skipper's loads anccycie after the difficult branch fetch cycle, without inserting
stores remain in program order in the load/store queugany bubbles in the pipeline.
despite out-of-order fetch. Skipper allocates an entry in the Skipped Instruction Sta-
3. Supporting control-flow independence tus Table (SIST) for every skipped branch to hold informa-
Before we describe the details of how the required infor-tion required by various pipeline stages for the skipped
mation is gathered in the SCIT (Section 3.2), we explaincomputation and the post-reconvergent computation. There
how we use the SCIT information. could be multiple difficult branches in flight in the pipeline,
3.1. Using the SCIT information and the SIST holds an entry for every difficult branch in
tﬂight. However, Skipper does not perform nested skipping
.e., skipping within a skipped computation), and so the
IST entries are in program order. Every instruction carries
its SIST entry number so that the instruction can be associ-
ated with its SIST entry in later pipeline stages.

The Skipper pipeline treats instructions that are not,.
skipped as well as branches that are not difficult much like é;
conventional superscalar pipeline. The cases where Skip-
per's actions are different from those of a conventional
pipeline are (1) when Skipper identifies a branch to be diffi- . S .
cult, (2) when Skipper resolves a difficult branch, (3) when Conventional pipelines allocate a history rename table

Skipper fetches and executes a skipped computation, anv&hen a branch entgrs the rename stage. S_ubseq_uem instruc-
(4) when Skipper fetches the last instruction from a skippe(}'onS copy the previous rename map of their destination reg-

computation. The post-reconvergent instructions fIOV\)Ster.S from. the master table Fo the history table, t_)efore
through the pipelinavithout any special actions. Figure 2 placing their new rename map in the master table. This pro-

shows an out-of-order pipeline extended with Skipper. Wecedure essentially checkpoints the rename maps, allowing

do not show post-reconvergent instructions fast recovery of the maps on mispredictions. The copying is
311 Fetchi difficult b h ' done at a rate matching the issue width. For instance, in a
B etching a _' icult branc] four-issue machine, the rename table allows, in one cycle,
_ Using the predicted PC, the front-end of the Skippergignt reads for the sources, and four reads and eight writes
pipeline probes the JRS §trt_1cture and the SCIT, in additiog, checkpoint the old maps and update the new maps for the
to the usual branch prediction tables. If the JRS structurgegtinations. Rename table bandwidth is a critical resource,
identifies a branch to be difficult, the fetch stage fetches,ng a5 such the entire table (e.g., for 64 architectural regis-
from the reconvergence PC provided .by the SCIT. _If theiers and 512 physical registers, the table has 576 dis)
SCIT does not have an entry for this branch or if the e phacked-up en masse, in one cycle. In [24], this point
instruction window gap length as provided by the SCIT 55 noted in the Mapping Synchronization Bus description.
entry is larger than thgap-length-thresholdthen Skipper When the difficult branch reaches the rename stage,
default; to branch prediction, overruling the JRS_s recom-syinper modifies the rename tables as per the inputreg and
mendation. Gap-length-threshold ensures that Skipper do‘?ﬁjtputreg sets. To that end, Skipper first allocatéaekup

not creat_e_ i.nordinaFer Iarge gaps in the iqstruction "_Vi”dOWrrename tableand copies the rename maps for the skipped
under utilizing the instruction window. Skipper obtains the ;ctructions’ inputreg and outputreg sets into the backup

reconvergence PC in parallel with the fetching of the diffi-1;pje In Section 2.1, we explained why the backup table

cult branch, much like a branch target address from thg,g|qs the inputreg maps, but the reason for copying the out-
BTB in conventional pipelines, Thus, Skipper fetches theputreg maps will become clear in Section 3.1.3. This copy-

post-reconvergent instructions in the immediately foIIowinging proceeds at the bandwidth provided by the backup table

and may stall the rename stage for as many cycles asack to fetch, freeing up the front-end stages so that the
needed for the copying. skipped instructions can get into the instruction window.

Skipper then preallocates and preassigns new physica&.1.3. Fetching and executing skipped instructions
registers to the skipped instructions’ outputreg set. Skipper The skipped instructions, carrying the SIST entry num-
updates the master table with the preassigned physical regars provided by the difficult branch, pass through the pipe-
ister rename maps, and marks the preassigned physical reghe Skipper places the skipped instructions in the
isters as busy. Additionally, Skipper allocates anothefnstryction window, and loads and stores in the load/store
preassign rename tablend updates the table with the out- gueue using the SIST entry’s instruction window entry
putreg set's preassigned physical register rename maps. Th@inter and load/store queue entry pointer, respectively. The
updating of the master and preassign tables too proceed gkjpped instructions use the rename tables identified by the
the bandwidth provided. Skipper places pointers to thgackup and preassign table pointers, stored in the SIST
backup and preassign tables in the difficult branch’s SISTemry_ The backup table contains both inputreg and outpu-
entry so that when the skipped instructions are fetched, thﬁeg registers’ rename maps corresponding to the register
pipeline knows which rename table to use. state of the program at the difficult branch.

In the out-of-order issue (00O issue) stage, Skipper uses The skipped instructions use the backup (and not master)
the difficult branch’s instruction window and load/store {5ple both to get their source rename maps and to put their
queue gap length information from the SCIT to create a gagjestination rename maps. If a skipped instruction’s source
in the instruction window and load/store queue. Skippefis an inputreg register, the backup table provides the rename
puts pointers to the instruction window and load/storemgap for the register. There are two issues with guaranteeing
queue gaps in the difficult branch’s SIST entry so that ongorrectness with regard to the outputreg registers. First,
fetching the skipped instructions, the pipeline knows whergnytiple skipped instructions writing to the same architec-
to place them. tural destination register pose a problem because Skipper
3.1.2. Resolving a difficult branch preassigns only one physical register per outputreg register.

Till Skipper resolves the difficult branch, execution pro- Second, Skipper needs to identify when it is safe for the
ceeds with the post-reconvergent instructions much likedlependent post-reconvergent instructions waiting on the
conventional pipelines, and the pipeline front-end predictgpreassigned registers to use the values in the registers.
branches. The post-reconvergent instructions modify th&ecause multiple skipped instructions may write to the
master table, as usual. If JRS identifies a subsequent branslme architectural register, it may not be correct to allow a
to be difficult, Skipper continues at the branch’s reconver-dependent instruction to read the register as soon as a write
gence points, allowing multiple skipped branches in flight. occurs.

Upon resolving a difficult branch, the fetch stage is Skipper handles both issues using a simple approach. In
diverted to fetch from the correct path of the skipped com-the rename stage, the skipped instructions do not use the
putation, temporarily suspending fetching from the post-preassigned physical registers as their destinations. Instead,
reconvergent computation. Skipper provides the correcthese instructions obtain newly allocated physical registers.
branch target to the fetch stage along with the branch’#s skipped instructions pass through the rename stage, they
SIST entry number so that the skipped instructions are assapdate the backup table with the new physical register
ciated with the correct SIST entry. Skipper holds the PC upmaps. Subsequent skipped instructions obtain the correct
to which the post-reconvergent instructions have beemename maps for their source registers from the backup
fetched in the difficult branch’s SIST entry, so that after thetable. At the end of the skipped computation, Skipper intro-
skipped instructions are all fetched, the fetch stage caduces extra physical register move instructions called
revert back to fetching the post-reconvergent instructionpmove, similar to [10,20]. Pmoves (described in
starting from that PC. The skipped instructions from theSection 3.1.4) copy the latest outputreg value from the
correct path enter the pipeline starting from the cycle fol-physical registers given by the backup table maps to the
lowing the branch resolution. This change of fetch streanpreassigned registers given by the preassign table maps.
does not entail any pipeline bubbles because the post-recon- Because the outputreg set is an estimate based on previ-
vergent instructions flow through the pipeline, as before. ous instances, an outputreg register may not be written by

If the post-reconvergent instructions fill up the instruc- the skipped instructions. In that case, the latest value for an
tion window (except for the gap) and the front-end pipelineoutputreg register comes from an instruction before the dif-
stages from Oo0O issue all the way back to fetch, Skippeficult branch. It is for this reason Skipper copies the outpu-
may deadlock. Basically the skipped instructions cannot getreg rename maps into the backup table when the difficult
into the pipeline even though there are instruction windowbranch is in the rename stage, as mentioned in
slots set aside for them. Skipper avoids such deadlocks bgection 3.1.1. Consequently, the backup table holds the lat-
squashing the instructions in the stages from Oo0O issuest rename map for the outputreg registers irrespective of

whether the skipped instructions actually write to the outpuPC to allow the fetch stage to determine when a skipped
treg registers or not, and therefore, the pmoves copy thastruction stream merges with its post-reconvergent com-
correct values. putation and stop fetching more instructions from the

Conventional pipelines free the previous physical regisskipped stream. Every cycle, the fetch stage compares the
ter mapped to the same architectural register as the commitext fetch PC with the reconvergence PCs held in the SIST
ting instruction’s destination. Because Skipper commitsentries, and on a match stops fetching from the correspond-
instructions in program order, this approach works for Skip-ing skipped computation further. Skipper then inserts the
per too. Clearly this approach works for all instructions upextra pmoves into the instruction window, so that they exe-
to the first gap. At the gap, previous physical registers falicute as and when the value for the outputreg registers
into two categories: either they are mapped to outputredpecome available. On execution, the pmoves write to the
registers or not. Those mapped to outputreg registers aggreassigned physical registers and mark them ready, allow-
freed by writes in the gap, and the writes’ registers are freethg dependent, post-reconvergent instructions to proceed.
by pmoves; if there are no writes, pmoves directly free theThe fetch stage then reverts to the post-reconvergent com-
previous registers. Those not mapped to outputreg registemutation by continuing from the PC at which the post-
are freed by post-gap instructions, as usual. reconvergent stream was left off.

It is possible that an architecture register not in the out- Because the instruction window and load/store queue
putreg set is written to in the skipped computation. Agap lengths are estimates based on previous instances, it is
dependent post-reconvergent instruction may incorrectlyossible that the gaps in the instruction window and load/
use a stale value assuming that the register would not bstore queue fill up before all the skipped instructions are
written by the skipped instructions. A similar situation is fetched. In that case, Skipper simply squashes all the post-
possible for the inputreg set, where a skipped instructiomeconvergent instructions to make room for the rest of the
needs to read a register not in the inputreg set. These condikipped instructions to be placed in the instruction window.
tions are easily detected in the register rename stage Wy the reconvergence PC obtained by the pattern-matching
comparing each skipped instruction’s destination (sourceheuristic is incorrect, the effect of this incorrect information
register against the outputreg (inputreg) set of the instrucis that the instruction window gap fills up before the
tion’s SIST entry. On detection, Skipper simply squashes alkipped instruction stream merges with the post-reconver-
post-reconvergent instructions and triggers recovery of thgent computation, causing Skipper to squash all the post-
missing register’'s rename map, irrespective of whether oreconvergent instructions starting from the incorrect recon-
not an incorrect value or rename map was used. vergence PC.

_ While executing t_he_ skippeq instructions, Skipper pre-?_z_ Learning the SCIT information
dicts the branches within the skipped computation, as usual.

Incorrect branch prediction within the skipped computation SKiPPer leams all the required information about the
results in squashing all post-reconvergent instructions, nuiSkiPPed computation from previous instances and deposits
lifying Skippers ability to exploit control-flow indepen- them in the SCIT for subsequent instances. The information

dence. If JRS identifies a branch within skipped collected in the SCIT are: identifying which branches are

computation to be difficult, Skipper suspends fetching fromd_lfncul_t, what the reconvergence PCs are, what the instruc-
the branch till the branch is resolved and reverts to fetchind!o" Window and load/store queue gap lengths should be,
from the post-reconvergent stream, using the post reconvefd the skipped instructions’ outputreg set.
gent fetch PC in the SIST entry. While this simple solution3.2.1. JRS for identifying the branches to skip
further delays the dependent post-reconvergent instructions, Skipper uses JRS to identify difficult branches by
it avoids squashing post-reconvergent computationaccessing the JRS structures in parallel with every branch
Another solution is to skip the difficult branches within the prediction. Basically, JRS tracks the number of times a
skipped computation but such nested skipping may complibranch is mispredicted using saturated counters, much like
cate implementation. branch prediction schemes. The counters count up on incor-
Out-of-order fetching may interact with branch predic- rect predictions and count down on correct predictions.
tion unfavorably because speculative update of branch hid2epending upon the desired accuracy and coverage rates,
tory [8] may be disrupted by the out-of-order fetch stream.JRS chooses appropriate values for both the up/down rates
Because this is the first paper on this approach, we avoidnd the count threshold above which a branch is deemed
this issue by assuming that branch prediction updates occuiifficult. Even if a branch is deemed difficult, JRS and
at commit point, although previous results have showrbranch prediction continue to make predictions and update
speculative updates to perform better than commit updateghe tables. If a branch is repeatedly predicted correctly, JRS

3.1.4. Last instruction in the skipped computation stops marking the branch as difficult [12]. . .
Each SIST entry holds the corresponding reconvergence 1h€ key aspects of JRS relevant to Skipper is that skip-

ping branches that would be correctly predicted may causebtains the reconvergence PC most of the time from the
performance loss, while not skipping branches that wouldSCIT and not the heuristic, computing the difficult branch’s
be incorrectly predicted results in lost opportunity. The per-target for the heuristic can be slow. Consequently, this com-
formance loss is incurred because conventional superscalgpsitation is done over many pipeline stages instead of just
do not delay any of the instructions following a correctly decode, without affecting the cycle time.
predicted branch, but Skipper unnecessarily delays the There are compiler optimizations that may confuse the
skipped instructions and the post-reconvergent data-depeheuristic. For instance, in code layout optimization to
dent instructions following the branch, until the branch isimprove i-cache performance, the compiler moves infre-
resolved. Thus, it is a trade-off between JRS’s coverage anguent control-flow paths away from the sequential stream.
accuracy, and while lower coverage means lost opportunitySuch code motion changes the code pattern and renders the
lower accuracy may mean performance loss. heuristic ineffective. However, this optimization may be
3.2.2. Heuristic for identifying the reconvergence point ~ applied to only those branches that are biased towards one

For if-then-else constructs in high-level languages, the?f the two paths, otherwise one path would not be more fre-
compiler typically generates a branch to determine whethefiuént than the other. So, such branches may not difficult to
the if clause or the else clause is to be executed. The confedict and may not need to be skipped. Other optimiza-
piler also generates a jump to the reconvergence PC at tHions may cause exceeding of the gap-length-threshold. An
end of the if clause, to elide the else clause. Therefore, théxample is tail duplication of the post-reconvergent code
reconvergence PC can be determined if the jump is located(to the if and else paths, increasing the gap length.
The target of the branch is the start of the else clause and.2.3. Estimating the gap length
the jump instruction is located immediately before the Once JRS identifies a difficult branch and the reconver-
branch target. For example, in Figure 1(a), the branch targence heuristic determines the reconvergence PC, Skipper
get, PC2 is at the start of segmem&, which is the else collects the instruction window and load/store queue gap
clause. Thgump PC3immediately before PC2 jumps to length information from subsequent instances of the
PC3 which is the reconvergence PC. Accordingly, Skipperbranch. Upon committing the difficult branch, Skipper cre-
computes the target of the difficult branch and uses the P@tes a valid entry in the Gap Information Learning Buffer
immediately before the branch target to probe the i-cach€¢GILB), and places the reconvergence PC in the GILB
and inspects the instruction there. If the instruction is aentry. From the difficult branch onwards, every committing
jump instruction, then the target of the jump instruction isinstruction increments the instruction window gap length
the reconvergence PC. count ofall valid GILB entries, because each valid GILB

If the instruction at the PC immediately before the diffi- entry represents a distinct difficult branch whose reconver-
cult branch target is not a jump, then Skipper assumes thafence PC has not been committed. Also, Skipper matches
the difficult branch is from an if-then construct, instead ofthe PC of the committing instruction against the reconver-
an if-then-else construct. For if-then constructs, the comgence PCs of all the valid GILB entries. A match indicates
piler generates a branch to elide the if-clause instructions ithat the corresponding difficult branch’s reconvergence PC
the condition is false, and the branch target is the reconvelhas been reached. Skipper transfers the information in the
gence PC. If a difficult branch is a backwards branch (indi-GILB entries to the SCIT, and relinquishes the GILB entry.
cated by a negative offset), neither of the above heuristics To keep the SCIT information as accurate as possible,
work. Conceptually, the difficult branch being a loop branchSkipper continues to collect the information in subsequent
indicates that number of loop iterations is hard to predictinstances of the difficult branch, irrespective of whether the
and accordingly, Skipper designates the reconvergent poiriiranch is predicted or skipped. If the instruction window (or
to be the exit out of the loop (i.e., the PC immediately afterload/store queue) gap length count in any later instance is
the loop branch). Unlike previous work [18], we do not larger than the length recorded in the SCIT, Skipper updates
include the return PC of a function as the reconvergence P@e SCIT entry with the larger count. If the count is smaller,
of all branches within the function body because of gap4t is discarded. This repeated updating of the maximum
length-threshold constraints. length helps Skipper account for different control-flow path

Using only one probe into the i-cache, Skipper’s heurisdengths within the skipped computation.
tic determines the reconvergence PC. Because the probe is If Skipper does not track the maximum length, Skipper
done only for difficult branches and not all branches, andvould essentially have to predict the skipped computation’s
that too only if the SCIT does not have the reconvergenceath length to estimate the gap length. Predicting the path
PC, this probe does not degrade i-cache bandwidth. Ondength may indirectly lead to predicting the difficult branch,
the reconvergence PC of a branch is recorded in the SClTefeating Skipper’s purpose. Because the maximum length
the heuristic is not used until the SCIT replaces the branch’ss longer than all but the longest path within the skipped
entry due to capacity or conflict issues. Because Skippectomputation, Skipper is conservative in setting aside the

instruction window gap. Some of the instruction window Table 1: Hardware parameters for base systems.
slots remain empty if the actual path within the skipped

computation is not the longest. This conservative choice is
better than predicting the difficult branch because the num-
ber of wasted slots is still much smaller than the slots spent
on numerous incorrect instructions (including not only
incorrect control-flow dependent instructions, but also con-
trol-flow independent instructions which are data dependen

Processor 8-way issue,128-entry window, 43-entry logd/

store queue, (9 cycle branch penalty)
8k/8k/8k hybrid, 4k 4bit JRS, gap length thresh-
old 48, 128-entry RAS, 4-way 4K BTB

64KB 2-way 2-cycle I/D L1, 2MB 8-way 12-
cycle L2, both lockup free and pipelined

Branch
prediction

Caches

on the incorrect control-flow dependent instructions) in out- | Main Infli_rtlitte Capatc,ity' ggobcﬁc'e ,'gtegcy?
of-order superscalars and other approaches (Section 1). |M€mory |spit transaction, 52-byte wide bus
SCIT 3KB: 128 entries each 199-bit wide, 4-way

3.2.4. Determining outputreg and inputreg set

Along with the gap lengths, the GILB also tracks the
outputreg and inputreg set of the skipped computation using
a bit-vector field in the GILB entries. From the difficult
branch onwards, every committing instruction’s destination
(source) register is added to the outputreg (inputreg) bit-
vector ofall valid GILB entries. Because Skipper collects
outputreg and inputreg information at commit point, incor-
rect predictions within the skipped computation do not
adversely affect the accuracy of the information. When the

(24-bit tag, 32-bit reconvergence PC, 67-bit
putreg and inputreg, 6-bit instruction window
gap length, 6-bit load/store queue gap length)
864 bytes: 36 entries each 192-bit wide (fetgh
PC 32 bits, 7-bit pointers for instruction windoy,
load/store queue and RAS, 5-bit rename tab
pointer, 67-bit outputreg and inputreg sets

896 bytes: 36 entries each similar to SCIT entry

SIST

e

GILB

Table 2: Benchmarks and inputs.

gap length information is transferred to the SCIT from the Input # insts Input | # insts
GILB, the GILB entry’s bit-vec'gors are bit-wise ORed Wi_th ool CoopT (65D L 371P [compress| train 610

the SCIT entry’'s corresponding bit-vectors. The ORing : _ _

accounts for different outputreg and inputreg sets along dif{9° | 2Ston€9 |548+1¢P |ipeg vigo 154107
ferent control-flow paths within the skipped computation. li test.Isp 957+1(P [M88ksim | ctl.in(test)490*1cP
The outputreg and inputreg set are conservative union oveberl | jumble 2 4%10° |vortex train 2 5+10°

all control-flow paths within the skipped computation. Not

considering all the paths would cause Skipper to predicting?®/, compared to an out-of-order superscalar with branch
the difficult branch indirectly, as argued above. prediction. In the two left bars, we vary the instruction win-

4. Experimental Results QOW size from 128 to 256 entries. The speedups are normal-
W dified the Simol lar2.0 simulator [41 t q I|zed against an out-of-order superscalar with the same
we modihed the simplescaiarz.t simu ator [4] 0 MOGCinstryction window size. The numbers above the bars are

Skipper. Table 1 shows the base system configuratio

; 4th hout th 4 ; | the speedups for a 128-entry superscalar with perfect
parameters used throughout the experiments, uniess Spef, ., prediction, to serve as an idealized reference.

fied otherwise.We assume a hybrid predictor and g'cydeBecause Skipper uses extra storage for SCIT and JRS

misprediction penalty. _We assume generous branch p_mdi?ébout 6KB) compared to a superscalar, we also show Skip-
tion tables each of which has 8K entries to allow as high g . speedups normalized with respect to a “large super-

p[)edicg?(réa\c/\?uracy a;_ posdsi?‘I]eF,zgut_z;TEdzs;_SCIT_sizfe calar” using an extra 6KB in larger prediction tables (16K
about - e use a bimoaa wit », 4-bitentries fory yieg each table, total size 12KB) in the two right bars.

a tgtal of ZKBf' WS Ar\nsodel dthBeTgetur_n ad‘;fesfs StaCE_(F;AS)’For both Skipper and superscalar, we use one port for the
and account for an mispredictions whic ar8128-entry instruction window and two ports (and double

not addressed by Skipper. front-end width for decode and rename stages) for the 256-

We accurately model the extra rename bandwidth toentry instruction window. Each cycle only one block can be

handle inputreg and outputreg_sets, and the exFra PMOVES gl ched through one port and the entire block may not be
the end chi Sk'p%ed computz?;uon._ W_e do nOtth!Ude ark])yuseful due to branches and jumps within the block. For the
memory dependence synchronization mechanisms, 6-entry Skipper and superscalar, we assume aggressive

account for memory_dgpendence_ sq_uashes. BecaL_jse Skfpént-ends that can obtain two fetch PCs from the branch
per’s key advantage is in conserving i-cache bandwidth, wi redictor and use both the ports for fetching

carefully model i-cache bandwidth. Table 2 presents th . -
From the first two bars in Figure 3, we can see that for a
SPECIint95 benchmarks and their inputs used in this StUd3i28-entry instruction windowg Skipper achieves a wide
We run the benchmarks to completion. range of speedups up to 15% figgeg, 14% forli, 9% for
4.1. Performance of Skipper go, and 8% form88ksim all the way down to small slow-
In this section, we present the base performance of Skipdowns forperl andcompressThese speedups indicate that

1.24 . reconvergence PC to the total number of branches with

120 | ggﬁiﬁﬂg?ﬁ?fggn 15en B 128 1 reconvergence PC within the gap-length-threshaictual

116 [156 |5 128Vs.large 4 coverageis the ratio of the number of actually skipped
Q-0 r 2.83 256 vs. large | _ _
5 I] branches to the total number of mispredicted branches.
81'12 [Actual coverage measures the opportunity exploited by
0108 Skipper. JRS coverage attenuates to actual coverage due to
nN104 | 1.64] both mispredicted branches having reconvergence PCs

l L10] beyond the gap-length-threshold and the heuristic determin-

ing reconvergence PCs incorrectly.
\ ‘ Overshoois the ratio of the number of skipped branches
& s © 0 N e et et _ _ _
c,()“\g‘e ¥ e ¥ o which would have been correctly predicted in a superscalar
Figure 3: Base performance of Skipper. to the total number of branches. Overshoot measures unnec-

. . e ssary stallingReconvergence accuracy the ratio of the
Skipper successfully sk_|ps ar_ound difficult b_ranches amf;1umber of successfully skipped branches to the number of
overlaps branch resolution with control-flow independent

instructions. With a 256-entry instruction window, Skipper actually skipped branches. A successfully skipped branch is

achieves higher speedups, resulting in up to 22% speedugr?e for which the reconvergence PC is reached within the
for iipeg andli, 16% for m88ksim, and small speedups for! struction window gap, and there are no squashes due to

: . . . R in-gap branch mispredictions (Section 3.1.3), incorrect out-
compresslincreasing the instruction window size improves

. . utreg set, or skipped stores (Section 3.1.1). Reconvergence
speedups because Skipper uses the extra entries better tkg%%uracy measures the accuracy of SCIT information learnt

a c_onventpnal _superscalar. Wh|le_ Sk_lpper _brmgs more gseBy Skipper. Skipper's misprediction rate is the ratio of the
ful instructions into the extra entries in the instruction win-

) o number of incorrectly predicted and unsuccessfully skipped
dow, conventional superscalar is limited by misprediction y P y SKipp

. . . . Sbranches to the total number of branches.
and squanders the extra entries on incorrect instructions.

The two riaht bars show Skiper’ eed normalize We see that overshoot is mostly less than about 11% and
. '9 S Show 'QP S speedups 12 C|leconvergence accuracy is usually higher than 95%, but
against the “large superscalar’. Comparing the left bars

- . . ! :) actual coverage is low. While JRS coverage is about 78%-
with the right bars for the same instruction window size, we 9 g °

ee that the chanae in Skipper eed is less than 3% 9r§%, actual coverage falls within a mere 17-58%. We
S gel IPPETS Speedups I ess . .Oéxperimented with JRS’s parameters but could not obtain
all cases. These results indicate that the extra prediction

torage does not aive erscalar much performance ad asignificantly better JRS coverage focl, ijpeg, m88ksim
storage does gIve SUpersc uch p vVl dvortex Actual coverage can fall far below JRS coverage
tage and is better used by Skipper.

. . . due to either poor heuristic accuracy or reconvergence PCs
4.1.1. Effectiveness of Skipper's mechanisms being farther than the gap-length-threshold. Heuristic accu-
Skipper's speedups widely vary across benchmarks anghey is 75%-100%, which is too high to degrade actual cov-
are still far lower than those for perfect branch prediction;erage by a large margin, implying that gap-length-threshold
the measurements in Table 3 explain the reasdiRS. cov- prevents a large fraction of difficult branches from being
erage(related to the metrics in [6]) is the ratio of the num- skipped. We vary gap-length-threshold in Section 4.4, but
ber of branches JRS identifies as difficult to the totalfound that many difficult branches have far away reconver-
number of mispredicted branchéseuristic accuracys the gence points (more than 200 instructions), requiring inordi-
ratio of the number of branches with correctly-determinednate gap-length-threshold values. Missed opportunity due

1.00 [
096 L

Table 3: Measurements of Skipper's mechanism. Table 4: Gap characteristics.
JRS [Heuristic| Actual Reconver-| Skipper's Superscal:ﬂ
Bench- ||coverage accuracy coverage Oveor/shoot gence | mispredict| mispredict| #gaps| #in| #out| #instr #siqt
marks % % % 0 accuracy %9 rate % rate %
ccl 92 75 19 7 92 8 10 1.4 6 4 7 14
compress 98 100 25 9 100 8 12 1.5 4 3 4 10
go 98 87 20 11 89 16 24 1.4 8 5 10 21
ijpeg 90 96 58 8 98 3 9 2.0 6 4 5 13
li 96 77 17 6 100 4 8 1.2 5 3 9 16
m88ksim 78 90 32 11 99 2 4 2.1 4 2 5 9
perl 94 98 16 2 100 3 4 1.3 5 3 4 8
vortex 88 79 17 2 98 1 1 1.0 5 3 8 13

i icti : ath 1281
far behind perfect prediction. [Superscalar 256/one port Sklpger L
1.14 Polypath 256]

to low actual coverage is the key reason for Skipper lagging 120 F Polypath 256/me portvs, 1.09 0.98 Eskllpper 128 |
1.15

ccl andgo incur many mispredictions both within and 116 \
outside skipped computations (gaps). These mispredictiong 112}

are not caught by Skipper due to its low coverage and cause: 108 L
squashing of post-reconvergent computation, nullifying 8_1 04 [
Skipper’s advantageompressuns out of instruction win- D100 [
dow slots for a 128-entry instruction window, alleviated 0.96 [
only slightly by a 256-entry instruction window. In addition 92 [
to mispredictionsgo also incurs many memory dependence
squashesdp is the only benchmark with this problem).

ijpeg and m88ksimhave higher coverages than the rest, Figure 4: Comparison of Skipper and Polypath.

translating to_h|gher performance._llm_Sklppe_r sklp_senur_e i-cache port (two left bars) to 256 entries with two i-cache
short unpredictable loops (dynamic instructions in all itera-

. | han 10). B | back b h thi orts (two right bars). The speedups are all normalized to a
tltlz_ns 3SIS ¢ af‘n.): ecauzg Ogg ac radnc 4 e_ﬁ withi uperscalar with equal instruction window size and equal
skipped loops irli are not predicted but suspended till reso- | oo osi cache ports.

lution, li avoids many mispredictions, achieving high For Polypath, we use the fetch policy and JRS parame-
speedupdi’s coverage is small because the coverage UM, < recommended in [12,11]. Our model of Polypath is dif-

bers do not include such suspended branches which are ent than those in [12,11] in two ways, which affect its

mispredicted but not skipped eithd?erl has many non- speedups. First, the Polypath papers compare a Polypath

r(_a(;urn,k_lndwgct Jump mlspred|rc]t_|ohni botth|th|n andﬁout- system using two i-cache ports and double pipeline width
side skipped computations, which have the same effect §3. yocode and rename stages, with a superscalar using one

ccls mispredictionsVortexs prediction accuracy is high, i-cache port. However, such a comparison fails to isolate the

leaving little opportunity for Skipper. impact of the architecture from the impact of the fetch
4.1.2. Characteristics of skipped computations bandwidth. Therefore, we assume exactly equal fetch band-
Table 4 shows the average number of actually skippedyidth for Skipper, Polypath, and superscalar. Second, the
branches in flight (“#gap” column), inputreg and outputregpolypath papers do not charge any extra cycles to copy the
registers per difficult branch (*#in” and “#out” columns), entire rename table (the equivalent of inputreg set) needed
dynamic instructions per skipped computation (“#instr” to execute both paths of difficult branches. Because of the
column), and the average instruction window gap lengtharguments given in [24] and in Section 3.1.1, we charge
not including pmoves (“#slot” column). The benchmarks cycles for this copying as per the bandwidth of the rename
have less than two difficult branches in flight, implying that tables. This charging is done for both Skipper and Polypath.
only two skipped computations need to be tracked in the As before, for the 256-entry case, we assume an aggres-
GILB and SIST. The number of skipped instructions rangessive superscalar that can obtain two fetch PCs from the pre-
between four and ten, even though the gap-length-thresholgictor and use both the i-cache ports. If there are no difficult
is 48, implying that the threshold is not hit often. The differ- pranches in flight, both Skipper and Polypath use the ports
ence between the gap lengths and the number of skippeaskactly the way superscalar does. Polypath fetches both
instructions is about seven, implying that Skipper wastegaths of difficult branches. Skipper fetches the post-recon-
only a few instruction window slots. The number of outpu- vergent stream and the control-flow dependent instructions
treg registers being about four means that Skipper insert there are any resolved skipped branches, and defaults to
around four extra pmoves, which could execute together iguperscalar mode, if none of the skipped branches are
one cycle on a 4-way issue machine. The number of inpuresolved. We also compare a two-port Polypath without
treg and outputreg registers together is about ten implyingharging cycles for rename table copying, against a one-
that Skipper needs to handle only ten rename maps pgjort superscalar and show the numbers above the bars.
skipped branch. In comparison, rename tables in a 4-way From the left two bars in Figure 4, we see that for the
issue machine handle 12 registers (8 sources and 4 destinggg-entry case, Skipper outperforms Polypath significantly
tions) every cycle, suggesting that Skipper incurs lowfor ijpeg, m88ksimli, and go, and modestly or not at all for
rename bandwidth overhead. the other benchmarks. Polypath achieves no speedups
4.2. Comparison between Skipper and Polypath mainly because with only one i-cache port, there is not
.enough bandwidth to fetch down both taken and not-taken
aths on difficult branches. This experiment clearly shows
hat Skipper achieves speedups because of much more effi-
cient use of i-cache bandwidth than Polypath. From the two

103 110

1.00 1‘00:

00 Q‘QSS Q‘O \\QQ,Q \‘\“%%\(5\‘“ QQX\ \10(\6‘1\

In this section, we compare Skipper against the previ-
ously-proposed Polypath architecture [12, 11]. We vary th
configuration from 128 instruction window entries with one

right bars, we see that for the 256-entry, two i-cache port 1.20
case, Skipper outperforms Polypath significantly for go, 116 [
ijpeg, m88ksimandli, similar to the 128-entry case. In the %1_12 [
case ofcompressPolypath performs better than Skipper by © 108 [
3%. Further investigation reveals the@mpresshas dense 8 !
data dependencies, disallowing any overlap of post-reconf%L 104 [
vergent instructions. Because Polypath executes the” 100
skipped instructions without any delay unlike Skipper, 096 |
compress benefits from Polypath. 092 L :
Compared to the 128-entry, one-port case, Skipper o PRSI \ Qe & oret
achieves even higher speedups using 256 entries and two « «©
ports, with the exception ofortex indicating that Skipper
can better use higher i-cache bandwidths than a superscaland found that increasing the SCIT size beyond 128 entries
Also, a two-port Polypath with no rename table copy over-does not improve speedups. Because the base prediction
head achieves speedups compared to a one-port superscaifcuracy is high, only a few (static) branches are identified
as shown in previous papers [12,11]. as difficult and they fit within 128 entries.

4.3. Misprediction Penalty 5. Related work

To see the effect of deepening pipelines, we varied There have been §everal results on the potent?al of
misprediction penalty as 6, 9, and 12 cycles in Figure 5. Orfxploiting control-flow independence [17]. Many previous
one hand, a longer misprediction penalty gives Skipper thédeas to handle difficult branches, amount to executing both
opportunity to achieve higher speedups by eliminating théhe_ taken a}nd not-taken paths conditioned by s'uch. a branch,
more-expensive mispredictions. On the other hand, a longdfSing varying degrees of ISA support for predication. Pro-
misprediction penalty forces Skipper to find more dataP0Sals such as Multipath [24], Polypath [12,11], dual pipe-
independent, post-reconvergent instructions to execut#nes [13] and instruction windows [5], and Dynamic
before the difficult branch can fill the pipeline with the cor- Hammock Predication [10] explicitly follow this approach.
rect control-flow dependent instructions. Thus, it is a con-SA support for predicated exeguthn removes difficult
flict between opportunity and data independence. We seldranches, but at the cost of executing instructions from both
two trends in speedups on increasing penalty: One in whicfe taken and not-taken paths [14,2]. _

Skipper's speedups fdipeg, li, and compressindicating Researchers [17] have proposed selective recovery of
that opportunity overcomes dependencies in these benclgontrol-flow mdepgndent instructions after a mlsprgdlctlon,

marks. And the other in which Skipper's speedups for thePut they point out in a later paper that the scheme is hard to
rest of the benchmarks reduce due to dependencies offsdfiplement [18]. Selective squashing may require expand-

nity to avoid mispredictions. points because the incorrect and correct path instructions

are intertwined in the instruction window. Out-of-order

4.4. Effect of gap-length-threshold pipelines usually track data dependencies through register

Because the analysis in Section 4.1.1 indicates that gapename map tables at the granularity of a block of instruc-
length-threshold impacts coverage, we varied the gaptions (typically between successive branches), and not indi-
length-threshold as 24, 48, and 72. While a larger thresholgidual instructions. This coarse granularity reduces the
allows better actual coverage, larger threshold also allowaumber of map tables and makes misprediction handling
branches with larger gap lengths to be skipped, incurringast and efficient, but disallows fast extraction of selective
wasted instruction window and load/store queue slotsinformation about individual instructions. For a realistic
Thus, it is a trade-off between coverage and instructiorselective recovery scheme [18], they propose using Trace
window utilization. Increasing the threshold from 24 to 48 processors’ hierarchical organization, a solution not appli-
improves coverage for all the benchmarks by about 1%-6%able to superscalars. (Although Pentium IV has a trace
reaching the values shown in Table 3. We found that exceptache, it is not a trace processor.) Instruction reuse [19] is a
for go, the rest of the benchmarks are not affected bygeneral technique which can quickly recover control-flow
increasing the gap-length-threshold beyond 48. Increasingidependent instructions after a misprediction. But instruc-
the threshold from 48 to 72, go’s speedup improves fromtion reuse also squashes all instructions following a mispre-
8% to about 11%. This experiment shows that Skipper'siction. Multiscalar [20] and Dynamic Mutithreading [1]
actual coverage is limited not by the threshold setting but byuse hardware or compiler to demarcate threads, which may
long gaps inherent in programs. choose control-flow independent threads to shield intra-

We also varied the SCIT size as 32, 128, and 512 entrieghread mispredictions from squashing other threads.

Figure 5: Effect of misprediction penalty.

6. Conclusions

Skipper exploits control-flow independence by skipping
over control-flow dependent computation of frequently
mispredicted branches, in the context of a superscalar pipe-
line. Skipper fetches the skipped control-flow dependent
instructions after the post-reconvergent instructions, out of11]
program order. We describe key mechanisms to implement
Skipper without unduly complicating the pipeline despite
out-of-order fetch, including (1) identifying difficult
branches using the previously-proposed JRS scheme, (t])Z]
determining the difficult branch’s reconvergence point with-
out scanning, (3) handling out-of-order fetching of the
skipped instructions but maintaining program order in the[13]
instruction window, and (4) handling data dependencies
among the skipped instructions and the yet-to-be fetched
post-reconvergent instructions using the existing register
rename tables and load/store queue. SPECint95 simulatiof&!]
show that Skipper performs 10% and 8% better than super-
scalar and the previously-proposed Polypath, respectively,
when all three microarchitectures use a 256-entry instruc:,
.) . [15]
tion window and two i-cache ports.

(10]

Acknowledgements (16]

This research was partly funded by the NSF CAREER
award number 9875960-CCR.

(17]
References
[1] H. Akkary and M. A. Driscoll. A dynamic multithreading pro-
cessor. IrProceedings of the 31st annual international sym- (18]

posium on Microarchitecturgpages 226—236, Nov. 1998.

D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M.
Crozier, B.-C. Cheng, P. R. Eaton, Q. B. Olaniran, and W. mei
Hwu. Integrated predicated and speculative execution in the (19
impact epic architecture. Proceedings of the 25th Annual
International Symposium on Computer Architectpages

(2]

227-237, June 1998. [20]
[3] S.Breach, T. Vijaykumar, and G. Sohi. The anatomy of the
register file in a multiscalar processorAroceedings of the [21]

25th Annual International Symposium on Microarchitecture
pages 181-190, Nov. 1994.

D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: the simplescalar tool set. Technical Report
CS TR-1308, University of Wisconsin, Madison, July 1996.
Y. Chou, J. Fung, and J. Shen. Reducing branch misprediction[23]
penalties via dynamic control independence detection. In
International Conference on SuperComputidigne 1999.

D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Confi-
dence estimation for speculation controlPoceedings of [24]
the 25th Annual International Symposium on Computer Archi-
tecture pages 122—131, June 1998.

E. Hao, P.-Y. Chang, and Y. Patt. The effect of speculatively
updating branch history on branch prediction accuracy, revis-
ited. InProceedings of the 27th annual international sympo-
sium on Microarchitecturgpages 228-232, Nov. 1994.

E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning confi-
dence to conditional branch predictionsAroceedings of the

[4]

[5]

[6]

(8]

9]

29th annual international symposium on Microarchitecture
pages 142-152, 1996.

A. Klauser, T. Austin, D. Grunwald, and B. Calder. Dynamic
hammock predication for non-predicated instruction set archi-
tectures. IrProceedings of the International Conference on
Parallel Architectures and Compilation Techniqu#898.

A. Klauser and D. Grunwald. Instruction fetch mechanisms
for multipath execution processors.Pnoceedings of the 32th
annual international symposium on Microarchitectysages
38-47, 1999.

A. Klauser, A. Paithankar, and D. Grunwald. Selective eager
execution on the polypath architecturePoceedings of the
25th Annual International Symposium on Computer Architec-
ture, pages 250-259, June 1998.

M. J. Knieser and C. A. Papachristou. Y-pipe: A conditional
branching scheme without pipeline delaysPinceedings of
the 25th annual international symposium on Microarchitec-
ture, pages 125-128, 1992.

S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann.
Effective compiler support for predicated execution using the
hyperblock. InProceedings of the 25th Annual International
Symposium on Microarchitectyrpages 45-54, Dec. 1992.

S. McFarling. Combining branch predictors. Technical Report
TR-36, DEC-WRL, June 1993.

A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi.
Dynamic speculation and synchronization of data depen-
dences. IrProceedings of the 24th Annual International Sym-
posium on Computer Architectyneages 181-193, June 1997.
E. Rotenberg, Q. Jacobson, and J. Smith. A study of control
independence in superscalar processorsthinternational
symposium on High Performance Computer Architecture
1999.

E. Rotenberg and J. Smith. Control independence in trace pro-
cessors. IfiProceedings of the 32th annual international sym-
posium on Microarchitecturgpages 4-15, 1999.

] A. Sodani and G. Sohi. Dynamic instruction reuseRio-

ceedings of the 24th Annual International Symposium on
Computer Architecturgpages 194—-205, June 1997.

G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar proces-
sors. InProceedings of the 22nd Annual International Sympo-
sium on Computer Architectyrpages 414-425, June 1995.

J. Stark, P. Racunas, and Y. N. Patt. Reducing the perfor-
mance impact of instruction cache misses by writing instruc-
tions into the reservation stations out-of-ordePhoceedings

of the 30th annual international symposium on Microarchitec-
ture, pages 34-43, 1997.

T. N. Vijaykumar and G. S. Sohi. Task selection for a multi-
scalar processor. Broceedings of the 31st annual interna-
tional symposium on Microarchitectyneages 81-92, Nov.
1998.

S. Wallace, B. Calder, and D. M. Tullsen. Threaded multiple
path execution. IProceedings of the 25th Annual Interna-
tional Symposium on Computer Architectysages 238-249,
June 1998.

] T.Yehand Y. Patt. A comparison of dynamic branch predic-

tors that use two levels of branch historyPhoceedings of
the 20th Annual International Symposium on Computer Archi-
tecture pages 257-266, May 1993.

	1. Introduction
	2. Skipper Microarchitecture
	Figure 1: Exploiting control-flow independence.
	2.1. Overview of the Skipper microarchitecture

	3. Supporting control-flow independence
	3.1. Using the SCIT information
	3.1.1. Fetching a difficult branch
	Figure 2: Skipper pipeline.

	3.1.2. Resolving a difficult branch
	3.1.3. Fetching and executing skipped instructions
	3.1.4. Last instruction in the skipped computation

	3.2. Learning the SCIT information
	3.2.1. JRS for identifying the branches to skip
	3.2.2. Heuristic for identifying the reconvergence point
	3.2.3. Estimating the gap length
	3.2.4. Determining outputreg and inputreg set

	4. Experimental Results
	Table 1: Hardware parameters for base systems.
	Table 2: Benchmarks and inputs.
	4.1. Performance of Skipper
	Figure 3: Base performance of Skipper.
	4.1.1. Effectiveness of Skipper’s mechanisms
	Table 3: Measurements of Skipper’s mechanism.

	4.1.2. Characteristics of skipped computations

	4.2. Comparison between Skipper and Polypath
	Figure 4: Comparison of Skipper and Polypath.

	4.3. Misprediction Penalty
	4.4. Effect of gap-length-threshold
	Figure 5: Effect of misprediction penalty.

	5. Related work
	6. Conclusions

