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Abstract

Scaling of CMOS technology causes the power supply
voltages to fall and supply currents to rise at the same time
as operating speeds are increasing. Falling supply voltages
cause noise margins to decrease, while increasing current
and frequency makes supply noise injection larger, espe-
cially noise caused by inductance in the supply lines. Creat-
ing power distribution systems is one of the key challenges
in modern chip design. Decoupling capacitance helps
reduce inductance effects, but there is often a peak in the
supply impedance that occurs at a resonant frequency
caused roughly by the package inductance and the chip
decoupling capacitors. This frequency is on the order of
100MHz, which is much lower than the operating frequency
of the processor. We propose pipeline damping, an architec-
tural technique which controls instruction issue to guaran-
tee bounds on current variation around the frequency of the
supply resonance, thus reducing the resulting supply noise.
Damping is a cheaper alternative to expensive, circuit-
based noise-reduction techniques. We make the fundamental
observation that limiting the current flow change (di) within
resonant time period (dt) controls di/dt without large perfor-
mance loss. Damping guarantees bounds on current varia-
tion while allowing processor current to increase or
decrease to the magnitude required to maintain perfor-
mance. Our results show that a damped processor guaran-
tees a 33% reduction in the worst-case current variation
with an average performance degradation of 7% and aver-
age energy delay of 1.09 compared to an undamped proces-
sor.

1  Introduction

The downscaling of feature sizes in CMOS technologies
is resulting in faster transistors and lower supply voltages.
While this trend enables high overall performance and low
per-transistor power, an unwanted side-effect is reduced
noise margin. Furthermore, because total chip power is not
decreasing, the total chip current is growing. The increasing
current makes the design of the power distribution system

for these chips difficult, because changes in chip curre
must cause only small changes in the supply voltage (i.
supply voltage noise). Low-power techniques, such as clo
gating, exacerbate supply noise because gating compon
on and off causes large changes in chip current. While t
noise problem originates at the power supply and contr
utes to degraded logic signal integrity, this paper targets s
ply voltage noise and not logic signal noise.

To prevent current changes over a wide range of freque
cies (from kHz up to the clock frequency) from becomin
voltage spikes, designers create the power supply such
it has a low impedance over a wide frequency range. To c
ate a low-impedance power supply, circuit designers us
hierarchy of decoupling capacitors and voltage regulato
Typically systems use on-die capacitors, on-package cap
tors and voltage regulators, and off-package capacitors a
regulators. The decoupling capacitors compensate
impedance introduced by the parasitic inductance of t
power supply network at each level of the hierarchy. How
ever, it is not easy to compensate for the inductance of
wires between the die and the package. This inductan
often causes a peak of high impedance [8, 1] in the supply
the resonance of the chip capacitance and the pack
inductance. Noise at thisresonant frequency, which is in the
range of 10-100 MHz [1, 6], is the most dangerous and c
cause reliability problems [2]. Circuit techniques for com
pensating for this exposed inductance, such as increased
die capacitors [5] and on-die voltage regulators [7], a
expensive.

Not all current variations cause problems: inductive noi
occurs when the processor current variationmatchesthe res-
onant frequency. The key reason for processor current va
tion is the uneven nature of instruction level parallelis
(ILP) across program phases. In this paper, we focus
microarchitectural solutions to reducing current variation
the resonant frequency. While circuit-level solutions attem
to cure current variations, wepreventthe variations at the
source. We proposepipeline dampingto limit the rate of
changeof processor current occurring at the resonant fr
quency by controlling instruction issue.
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Unlike energy reduction schemes, which reduce the aver-
agemagnitudeof current, pipeline damping bounds therate
of changeof current. Pipeline dampingguaranteesa worst-
casebound on the di/dt (as opposed to reducing theaver-
age), which is required for circuit designers to avoid expen-
sive solutions.

An alternative approach to control di/dt is to limit the
peak current (max i) which bounds the maximum current
flow change (max di). Unfortunately, throttling the peak cur-
rent is equivalent to limiting the exploitable ILP, and results
in substantial performance loss. We make the fundamental
observation that limiting the current flow change (di) over a
windowof consecutive cycles (dt), which corresponds to the
resonant time period, to a pre-specified∆ bounds di/dt with-
out considerable performance loss. Instead of inflexibly
restricting the peak, limiting the change allows the current
to vary, in controlled steps of∆, to the magnitude required to
exploit the available ILP.

The main results of this paper are:

• For a resonant frequency 1/50th of the processor clock
frequency, one pipeline damping configuration guaran-
tees a 33% reduction in worst-case current variation.
This result can be put in perspective by comparing to the
circuit-based technique in [7] which reduces variation
about 40%.

• Pipeline damping prevents processor current from
increasing faster than a given bound by delaying instruc-
tion issue, trading-off performance. Damping prevents
current from decreasing faster than the bound by activat-
ing otherwise-unused resources, trading-off energy. For
the damped processor achieving 33% reduction in worst-
case variation, average performance degradation is 7%,
and average energy-delay is 1.09, relative to an
undamped processor.

• Pipeline damping outperforms an inductive noise con-
troller that limits peak current. To achieve a 33% reduc-
tion in worst-case variation, peak-current limitation
incurs an average performance degradation of 55%,
whereas damping incurs only 7% degradation.
In Section 2 we discuss resonant frequencies and induc-

tive noise. Section 3 Explains pipeline damping. Section 4
describes our methodology and Section 5 presents our
results. We discuss related work in Section 6 and conclude
in Section 7.

2  Resonance and Inductive Noise

As discussed in Section 1, this paper targets inductive
power supply noise around the resonant frequency of the
power supply network where current variation causes the
largest voltage noise. Therefore, we wish to prevent the cur-
rent from varying at the specific resonant frequency identi-
fied by design-time CAD tools.

Microprocessor current varies due to changes in instru
tion level parallelism (ILP) throughout programs. ILP is no
uniform throughout program execution. The medium-ter
ILP of a program varies substantially from the average IL
ILP is reduced for various time periods due to cache miss
long-latency instructions, and data dependencies. Spurts
high ILP are therefore necessary to maintain performanc

Unfortunately, the changes in ILP causes variation
resource utilization which in turn cause spikes in process
current. Consequently, we wish to prevent ILP variatio
from occurring at the microprocessor circuits’ resonant fr
quency. If the program causes current changes to occu
the resonant frequency, correspondingly large changes
supply voltage will result in high supply noise. An exampl
of a program that would cause such current changes i
loop with iterations as long as the period of the resonant f
quency. If the loop iterations have high ILP (high curren
for their first half and low ILP (low current) for their second
half, current would vary at the resonant frequency [6].

3  Pipeline Damping

In the previous section, we discussed the relationsh
between current variation at a circuit’s resonant frequen
and supply noise. In this section, we introduce pipelin
damping, an architectural technique to prevent current var
tions at a resonant frequency. From this point, we will disc
the period (time) of resonant frequencies rather than the f
quency (rate) to simplify the explanations.

Recall that dealing with supply noise requires guarante
ing a worst-case bound on the di/dt, as opposed to reduc
the average di/dt. This guarantee is needed by circuit desi
ers to avoid expensive solutions.

One approach to limiting current variation (di/dt) is to
limit the peak current per cycle (max i) which bounds th
maximum current flow change (max di) overanyamount of
time. Unfortunately, throttling the peak current is equivale
to limiting the exploitable ILP and results in substantial pe
formance loss. Furthermore, such a solution is overk
because it reduces di/dt overall time periods instead of
focusing on the processor’s resonant period. As we saw
Section 2, preventing current change over non-reson
periods is not crucial to supply noise reduction.

The concept of peak-current limitation is illustrated o
the left side of Figure 1 for a program profile with curren
changing at the resonant period (T). The original curre
profile shown is the worst-case because of the high curr
value for the first half of the resonant period followed by th
low current value for the second half, forming a wave wit
the resonant period. For the example we set the maxim
allowed variation over the resonance period to be a wa
with peak-to-peak magnitude M. To prevent the curre
from varying at peak-to-peak magnitude of 2M at th
resonant period, peak-current limitation simply caps th
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maximum current at M. Limiting the peak current delays
execution of many instructions compared to the original
profile and results in T/2 additional delay.

3.1 Concept

We make the fundamental observation that limiting the
change in “total current”—i.e., sum of all of the instanta-
neous currents in a “window of cycles”—between consecu-
tive windows to a pre-specifieddelta(∆) controls di/dt at the
time period of 2 * window. We set the window to behalf of
the resonant period (W = T/2) because we wish to prevent
large upward and downward changes making up the halves
of a wave with the resonant period. Instead of restricting
peakcurrent, limiting the current flowchangeallows current
to increase or decrease, in controlled steps of∆, to the mag-
nitude required to exploit the available ILP, without consid-
erable performance loss.

The right side of Figure 1 illustrates damping. For the
original profile in the figure, the total current flow before
window A is 0, the total current during window A is MT,
and the total current during window B is 0. For the profile in
Figure 1 that illustrated peak-current limiting, the maximum
current change allowed between windows corresponds to∆
of MT/2. Clearly, this∆ constraint is met neither between
the time before window A and window A nor between
windows A and B.

Pipeline damping ensures the∆ constraint is met by
establishing a relationship between the sums of the current
in consecutive windows. Using windows A and B from the
figure as examples withI representing the total current of
the window and in representing the current in the nth

individual cycle, we express the current change between

consecutive windows as:

We wish to constrain |IB - IA| to∆. To do so, we constrain
|in - in-W|, which is the maximum change in current allowe
between cycles that are W cycles apart, toδ. Therefore:

By the triangular inequality:

which gives:

Therefore, by settingδ = ∆/W, we can constrain |IB - IA|
to ∆. Consequently, pipeline damping is implemented b
constraining the current difference between cycles W cyc
apart to be less than or equal toδ = ∆/W. In our example,δ
equals M and∆ = MW. (Observe the difference between
little-delta and big-delta (δ and ∆) as both will be used
extensively.)

It is extremely important to note that to damp variation
the resonant period, the∆ constraint must be met forall pos-
sible pairsof consecutive W-cycle windows,regardlessof
where the windows start in the timeline. Otherwise, supp
noise will occur simply time-shifted with respect to the∆−
constrained windows. Examples of other window pairs
Figure 1 include the windows starting from the midpoints o
window A and B (referred to as midpoint-A and midpoint
B). Because theδ constraint is met forall pairs of cycles W
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FIGURE 1: Pipeline damping to control worst-case current variation at resonant frequency.
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cycles apart, the summations for∆ at the beginning of this
subsection hold forall adjacent pairs of windows.

Looking at the damped profile (medium dashes) in
Figure 1, we see thatupward dampingprevents the current
from increasing to more thanδ during window A because
the individual cycle currents in the previous window (before
time = 0, not entirely shown) were 0. The current is allowed
to increase to 2M in window B because 2M is withinδ of
the current from W cycles back. Postponing the current
expenditure from A to B delays execution of many
instructions compared to the original profile. The total delay,
with window A using M current and the first half of window
B using 2M current, is T/4 over that of the original profile,
compared to the T/2 additional delay for peak-current
limiting.

Upward damping is only half of the requirement. We also
wish to prevent large downward changes corresponding to
half of a wave with the resonant period, such as the drop in
the original current profile in Figure 1. Looking at the dotted
profile in window C we see an extra current “bump” that
corresponds todownward damping, which prevents the total
current from decreasing more than∆ between the midpoint-
A and midpoint-B windows mentioned above. With the help
of the bump, the total current for the midpoint-B window is
within ∆ of the total current for the midpoint-A window, so
the downward damping constraint is met. The bump exists
soley for the pupose of meeting the∆ constraint, and
therefore represents extra energy consumption for the
processor.

Two observations provide an illustration of how usingδ
facilitates meeting the∆ constraint to reduce di/dt at the
resonant period: (1) Because the current for the first half of
window B is 2M, theδ constraint requires that the current
increase to M only for the first half of window C. Placing
the bump in the second half of window B would meet the∆
constraint between the midpoint-A and midpoint-B
windows but would violate theδ constraint and still require
placing an additional bump at the beginning of window C to
meet the∆ constraint beetween windows B and C. (2) The
drop from 2M to zero current halfway through window B
does notviolate the∆ constraint because the drop does not
occur acrossadjacent windows. The drop occurswithin a
window and is not at the resonant frequency. This drop,
which already exists in the original profile at the end of
window A, is high-frequency di/dt that is handled by circuit
techniques discussed in Section 6.

It might seem that employing the triangular inequality is
conservative and may result in weak∆ constraint. In prac-
tice, we found that we achieve 33% worst-case di/dt reduc-
tion at only 7% average performance degradation.

3.2 Implementation

A real implementation requires that Ldi/dt, expressed as

L∆/W, is within the noise margin of the circuit. Based on th
values for the noise margin and L from circuit analysis,δ ( =
∆/W) is chosen to meet the noise-margin constraint.

Implementing pipeline damping in a modern out-of-orde
processor requires controlling current variation to meet theδ
constraint. In this subsection, we describe the sources
current variation in a microprocessor and then discuss h
to control current variation by scheduling current. Pipelin
damping schedules current in the same way that conv
tional schedulers schedule resources such as cache ports
functional units.

3.2.1 Back-End
In this discussion, we separate the pipeline into front-e

and back-end, and we start with the back-end. The key
variability in the back-end is the issue stage. The back e
exhibits a great deal of variability corresponding to bo
program phases and data dependencies, manifesting as
ations in the number and type of instructions issued ea
cycle. The issue stage itself is a source of substantial curr
variation, but the effects of the issue stage ripple through t
remainder of the pipeline: register read, functional unit
cache access, and register writeback.

The are two key implementation concerns for damping
the back-end. First, because an instruction’s current is
instantaneous and occurs over several cycles as the inst
tion moves through the back-end, damping must account
the current in each cycle. Theδ constraint establishes acur-
rent allocation for each cycle that establishes how muc
current may be drawn (and how much current must
drawn to meet the downward damping constraint). Befo
issuing an instruction, damping ensures theδ constraint will
not be violated for each cycle by counting the currents. Ea
affected cycle must be evaluated because we wish to av
satisfying the current allocation for the present cycle whi
creating a violation by allocating current above or belo
that of the constraint in a future cycle.

The second concern is that damping constraints must
met before an instruction issues and begins consuming c
rent, not after issue and immediately before aδ constraint

FIGURE 2: Using per-cycle current allocations to
control δ for entire back-end at the issue stage.

Time (in cycles)

i-W i-W+1 . . . . . . . . . . i-1

Tracking current allocations:

0

iissue iread iALU iWB

Conditions to determine if ALU op may be issued:

iWB ≤ i-w+4+ δimem = 0 ≤ i-w+3+ δ

iALU ≤ i-w+2+ δiread ≤ i-w+1+ δiissue ≤ i-w+ δ

imem

Future cyclesCurrent history register
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violation. It is key that damping ensure before issue that an
instruction will meet all relevantδ constraints. Instructions
cannot be arbitrarily stalled after issue to prevent aδ con-
straint violation because this would require freezing all suc-
cessive instructions in the back-end. Such a stall of several
pipeline stages would over-compensate and substantially
reduce the current drawn (assuming an energy-efficient pro-
cessor using some clock-gating), possibly violating the min-
imum current required for the cycle(s) by theδ constraint. In
the act of preventing an upward violation, a much larger
downward violation may occur. Damping avoids this prob-
lem by proactively counting all of theδ constraints at the
issue stage instead of attempting to react toδ constraint vio-
lations that are about to occur throughout the back-end.

Conventional select logic already counts resources to
determine if an instruction is eligible for issue. The logic
must count the number of instructions to ensure the issue
width is not exceeded, and it must count the number of
available ALUs, floating point units, and cache ports to
avoid conflicts over these resources. Select logic for pipeline
damping also counts current bounds as an additional
resource constraint. A key difference between counting
resources and current is that processor resources exist in
integral quantities (no fractions) but current magnitude is a
floating-point quantity. Handling non-integral quantities at
select is undesirable, so we simplify the counting process by
approximating currents with small (4-bit) integers in the
correct proportions.δ is then computed using the same inte-
gral units. (For example, a d-cache access might have twice
the current of an ALU operation, so the d-cache would be
assigned a current value of 2 and the ALU assigned a value
of 1.) While pipeline damping does burden the select logic
with a new constraint, we believe the benefits of addressing
supply noise, a key reliability problem in microprocessors,
are worth the complexity.

To track the counts for each cycle’s current allocation,
damping maintains a history register containing the current
allocations for the next W cycle similar to the branch history
register in the L1 of a two-level branch prediction. The allo-
cations are based on the previous W cycles (W being the
window size from the previous subsection) with any units of
already-allocated current deducted. Figure 2 illustrates the
decision-making process for a back-end where each archi-
tectural stage is one-cycle. The current allocation constraint
for each of the four cycles with a component for the ALU
instruction (issue, read, Ex, and WB; but not mem because
the ALU instruction doesn’t access the d-cache) must be
met in order to issue the instruction.

Downward damping follows a similar procedure as
upward damping but ensures that the present and future cur-
rent values are not too low to meet the minimum current
allocation. We implement downward damping by “issuing”
extraneous integer ALU operations that fire-up the issue
logic, register read ports, and an unused ALU (but do not

activate result busses or write-back). The sole purpose
these extraneous operations is to draw current necessar
meet theδ constraint.

Not all operations are scheduled at issue, such as sto
and predictor updates. However, the resources for th
operations, such as cache ports, still must not conflict w
instructions at issue. Conventional pipelines must hand
contention for cache ports at select because loads and st
share the same resource. Similarly, damping requires t
the current for stores and branch predictor updates
included in the current-allocations for the cycles in whic
they occur. The counts for these currents may be included
the select process for damping.

Pipeline damping faces two issues regarding d-cac
misses: the current variability from the miss due to squash
instructions in the pipeline and the current of the corr
sponding L2 access. Load misses conventionally cau
instructions that issued after the offending load to squa
Aggressive clock-gating may save energy by preventing t
squashed instructions from propagating down the pipelin
Such clock gating could result in a large downward spike
processor current. Instead, to reduce supply noise, squas
instructions may be allowed to continue down the pipelin
as extraneous, “fake,” events, similar to downward dampin
D-cache misses also initiate L2 accesses, which have a
per-cycle current because they are spread over many cyc
L2 accesses can be handled by deducting the appropr
values from the current allocations of the affected cycles.
some processors, the L2 may be included on a separate
chip power grid and may be irrelevant to pipeline dampin
in the core.

3.2.2 Front-end
The front-end of the pipeline is fairly consistent in cur

rent drain and is not a key source of variability. The i-cach
accounting for about 10% of maximum processor curre
[3] is a large component of front-end current. Variability in
the i-cache access rate corresponds to misses cause
changes in instruction working sets. Although front-en
variability is irrelevant to back-end current because dow
ward damping at issue compensates for any deficiency
instructions in the issue queue, requirements for a tight ov
all current variation constraint might require mitigating var
ability in the front end itself.

One simple solution for front-end variability is to activat
all i-cache ports and all decode/rename logic every cyc
This “always-on” solution is a simplistic form of downward
damping in that it never allows the current to drop. Whil
the energy overhead of this solution may seem high (there
no performance overhead), that may not be the case in li
of typically low i-cache miss-rates. If i-cache accesses occ
in the vast majority of cycles in a conventional system, th
additional energy overhead of firing up the front-end for th
remaining cycles is small. For example, with i-cach
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accesses occurring in 90% of cycles, the energy overhead
would be 2.5% if the front-end accounts for 25% of proces-
sor energy.

If having an always-on front-end is undesirable, the
front-end variability can be accounted for using the current
allocation scheme described for the back-end in Section 3.2.
Using damping, a fetch does not occur unless the current for
the corresponding fetch, decode, and rename cycles fall
within the δ constraints for those cycles. The process is the
same as back-end damping with the control at fetch instead
of at issue. Some coordination may be necessary between
the front-end and back-end to ensure that fetches are not
starved in favor allocating current to instruction issue, or
vice versa.

3.3 Implementation Simplifications

In this section, we observe two potential simplifications
for implementing pipeline damping. Our first observation is
that not all components of the processor may need to be
damped. The relevance of a particular component to pipe-
line damping depends on both variability in usage and the
magnitude of the current. For example, if the i-cache were
accessed every cycle, it would not be a source of current
variability regardless of the magnitude of its current.
Acceptable current bounds may be established without
damping the current of some variable, but low-current, com-
ponents. Excluding components from damping would
extend the∆ equation as follows:

where the iundampedterms are the maximum currents of
components not included in pipeline damping. In this case,
damping guarantees a looser∆ constraint.

Our second observation is that damping may be simpli-
fied if theδ constraint is applied over sub-windows of adja-
cent cycles. As clock frequencies become faster in future
technologies, the number of cycles in the processor’s reso-
nant period may increase from tens of cycles to hundreds of
cycles. For such long windows, it may be infeasible to main-
tain a history register containing the current allocation for
each cycle in a window or compute the current allocations
for each operation at issue. We can aggregate adjacent
cycles into sub-windows and then construct damping win-
dows from the sub-windows. An example for a window size
of 500 cycles would be utilize 20-cycle sub-windows and
then construct the 500 cycle window from 25 of the sub-
windows. Theδ constraint would then be applied to pairs of
sub-windows separated by 25 sub-windows. This coarser-
grained solution would have a somewhat looser∆ constraint
because of uncertainty in the individual cycles at the win-
dow edges. However, in terms of the total current feasible
over a window of hundreds of cycles, the slack introduced
by uncertainty in a few tens of cycles might only slightly
loosen the bound on di/dt over the full window.

A coarse-grained solution also could have a substan
advantage in simplifying the pipeline-damped scheduler.
the sub-window size is larger than the depth of the pipeli
back-end, it may not be necessary to separately track
current allocations for each stage of the pipeline. An agg
gate current allocation that included all of the back-end cu
rent could be used. Instead of counting current allocatio
for each affected cycle as described in Section 3.2.1, onl
single lumped current count would be necessary to det
mine if an instruction may be issued.

3.4 Effect of inaccuracies in current estimation

Because pipeline damping is based on predetermin
estimates of resource current, inaccuracies in the estima
are a concern. For example, an estimator may assume
all integer adds consume approximately the same curre
Because high-performance circuits are implemented
dynamic logic and dynamic logic power is dominated by th
clock, this assumption is not unreasonable. Though clo
power is dominant, some variability will still occur due to
differences in the inputs.

Even in the presence of estimation inaccuracies, it is po
sible to use pipeline damping to establish current variabil
bounds. If the current change between windows is estima
at ∆ but actually may be x% higher or lower, then the actu
maximum variability is an increase from the minimum cur
rent, (1 - x/100)∆, to the maximum current (1 + x/100)∆.
The total worst case variability is then (1 + 2x/100)∆. For
example, if the actual current change between windo
could be 20% higher or lower than∆, then the actual current
bound would be 1.4∆ instead of∆.

By knowing in advance the maximum error in the curre
change estimate, a∆ that will lead to a suitable actual cur-
rent bound may be chosen. While accounting for estimati
accuracies may lead us to tighten∆, in Section 5.1 we show
that tightening∆ does not result in large performance o
energy degradation. However, a fundamental limitation
that an x% error in current estimates implies that dampi
cannot bound current variation to a value less than x%. Th
is, ∆ cannot be set to less than x% of the total curren
Therefore, less error in the estimation is desirable.

4 Methodology

Table 1 shows the base configuration for the simulat
system. We modify Wattch [3] and incorporate SimpleSc
lar 3.0b [4] modifications to simulate a high-performanc
out-of-order microprocessor executing the Alpha ISA. T
facilitate more accurate estimation of per-cycle energy, w
modified Wattch to use energy-efficient L1 caches. To es
mate the rate of change of current flow (di/dt) we exten
Wattch to compute current for each cycle in addition
energy based on component activity. To enable calculat

∆actual δW W iundamped∑+=
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of per-cycle current, we spread the execution energy of
multi-cycle functional units and pipeline events (e.g., regis-
ter reads) over each of the relevant cycles. We calculate cur-
rent by observing that current is proportional to power with
a coefficient of (1/Voltage). To compute the actual di/dt in
amperes/s, this current change would have to be divided by
the cycle time. However, the average change in current over
adjacent windows is linearly proportional to the actual di/dt,
and allows us to abstract away clock speeds. Because we did
not want to assume specific clock speeds, we measure di/dt
as the average change over adjacent windows of cycles.

We use 23 of the 26 applications in the SPEC 2K bench-
mark suite (ammp, mcf,and sixtrack are excluded due to
simulation time), fastforwarding 2 billion instructions to
pass initialization code, and then running 500 million
instructions. The base (undamped) IPC for each application
are shown above the names in Figure 3.

To evaluate the effectiveness of pipeline damping we
compare theworst-casedi/dt that can occur at the resonant
period in an undamped system to theworst-case that is
guaranteed not to be exceededin the damped system. This
comparison corresponds to the worst-case nature of the
inductive problem—ensuring correctness requires ensuring
that di/dt never exceeds the guaranteed value. We compute
the worst-case di/dt from Wattch’s current values.

We also evaluate performance degradation due to upward
damping and energy increase due to downward damping. To
measure energy increase, we use the relative energy-delay
metric common in low-power research. Because damping
increases both execution time and energy, energy-delay rela-
tive to the undamped case will have values greater than one.

As discussed in Section 3.2.1, we approximate micropro-
cessor current components by integral units (using 4-bit
integers) to be used when counting current allocations.
These integral values are used to compute current bounds
and are based on the currents reported by Wattch. Table 2
shows the latencies and integral estimates of per-cycle cur-
rent for each of the variable current components in our
microprocessor. Each integral unit corresponds approxi-

mately to 0.5 A in a 2 GHz 1.9 V processor.
While we acknowledge that Wattch’s models may hav

some error in their estimates, damping is tolerant of estim
tion inaccuracies, as discussed in Section 3.4. Though so
of the integral estimates, such as those of the ALUs, m
seem high, we note that overestimating current is a cons
vative choice for our simulations, because pipeline dampi
will experience greater performance and energy degradat
by damping overestimated component currents to fit into
given ∆.

For the purposes of our simulations, each component
Table 2 is assumed to dissipate equal current over its en
latency. Changing this assumption would merely requi
changing the allocations and would not substantially alt
pipeline damping. Non-variable components, such as
global clock, do not contribute to current variability and ar
not included. The front-end is shown as a single valu
because we do not individually damp front-end componen

5  Results

First, we present our bounds on current variability usin
pipeline damping compared to an undamped processor. S
ond, we show that pipeline damping effectively reduces cu
rent variability with small performance degradation an
energy-delay increase. Then we show results for pipeli
damping for different resonant periods. Finally, we compa
the performance and energy impact of pipline damping to
simple peak-current limitation technique for reducing cu
rent variation.

Table 1: System parameters.

instruction issue 8, out-of-order

Issue queue/ROB 128 entries

L1 caches 64K 2-way, 2 cycle, 2 ports

L2 cache 2M 8-way, 12 cycles

Memory latency 80 cycles

Fetch up to 8 instructions/cycle
with 2 branch predictions
per cycle

Int ALU & mult/div 8 & 2

FP ALU & mult/div 4 & 2

Table 2: Integra l un it current est imates an d
latencies of variable components.

Component group/Item latency
(cycles)

per-cycle
current

Front-end (fetch--rename) N/A 10

Wakeup/Select 1 4

Register Read 1 1

Int. ALU 1 12

Int. Multiply 3 4

Int Divide 12 1

FP ALU 2 9

FP Mult 4 4

FP Divide 12 1

D-cache 2 7

D-TLB 1 2

LSQ Access 1 5

Result Bus 3 1

Register Write 1 1

Branch Pred., BTB, RAS 1 14
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5.1 Bounding variability with pipeline damping

5.1.1 Bounding current variability
From Section 3.1, we know that∆ = δ * W, where ∆ is

the worst-case current variability allowed during W cycles.
W, half of the resonant period, is known at design-time. As
per this equation, we pickδ to guarantee current variability
over W cycles to be less than∆. In this section, we show
how our worst-case guarantee of∆, corresponding to repre-
sentative values ofδ, compares to the worst-case current
variability in an undamped processor.δ and therefore∆ are
specified using the same integral units used in Table 2. Our
representative values forδ are 50, 75, and 100. We show
results assuming a resonant period of 50 cycles (the window
size, W, is 25 cycles). Other resonant periods will be shown
in the next section.

Because some of our configurations do not damp the
pipeline front-end, we use the equation shown in Section 3.3
to compute∆ instead of the simple∆ = δW. In the equation,
as shown in the first row of Table 3,∆ = δW + maximum
undamped components. The undamped component is the
per-cycle front-end current times the window size for the
configurations where the front-end is not “always on” as dis-
cussed in Section 3.2.2. When the front-end is always on,
the undamped component is zero. Table 3 shows the values
of the undamped components,δW, and∆ for our values ofδ
both with and without the “always-on” technique.

The worst-case current variation in the undamped pro-
cessor is shown in the last row of Table 3. This value is com-
puted by assuming the processor has minimum clock-gated
current corresponding to zero instructions issued in one win-
dow, and increases rapidly to maximum current correspond-
ing to the maximum number of ALU instructions issued in
the next window. Because there are 8 integer ALUs with
one-cycle latency they are a better choice to maximize cur-
rent than less available or longer-latency resources. The cur-
rent is lower for the first few cycles of the ramp-up as the
first operations propagate down the pipeline and begin con-
suming current at the ALUs, result busses, and register
write. The details of the computation are not shown.

Therelative worst-case∆ values shown in the right-most
column are ratios of guaranteed worst-case current variation
for the given damping configuration to worst-case current
variation in an undamped processor. We see that pipeline
damping reduces the worst-case current variability between
14 and 61 percent compared to an undamped processor.

Reduction in worst-case current variation at the resonant
frequency corresponds to reduction in worst-case supply
noise. Our reductions can be put in perspective by compar-
ing to the expensive, circuit-based voltage regulator pro-
posed in [7]. Figure 10 in [7] shows that their regulators
reduce voltage variation from about 0.2 volts to about 0.1
volts. The reduction is about 40%, similar to the relative
worst-case∆s for pipeline damping (recall current variation

is proportional to voltage variation as L * di/dt). Given a
value of L for the circuits, our reduction in worst-case cu
rent variation will correspond to a specific voltage variatio
and can be ensured to be within the noise margin of the p
cessor’s circuits. The valueδ can be adjusted to provide an
appropriate guarantee of worst-case voltage variation,
reducing the need for expensive circuit solutions.

While Table 3 shows theguaranteedworst-case current
variation (∆) computed using our values forδ, we now show
observedworst-case current variations over 25 cycles fo
our benchmarks using simulation. The variation shown f
each benchmark is the largest current variation observ
during the simulation.

Our simulation results show that the observed worst-ca
current variation stays well within the guaranteed wors
case shown in the right-most column of Table 3. The to
graph of Figure 3 shows current variation for the top thre
damping configurations in Table 3 and the undamped ca
based on actual currents reported by Wattch (notour integral
estimates used for counting current allocations in dampi
and establishing current bounds). The observed worst-c
current variation, shown on the Y axis, are all relative to th
worst-case current variation in the undamped case. The v
ous dashed lines represent the guaranteed worst-case v
tion for eachδ value from the right column of Table 3.

For theδ = 50, 75, 100, and undamped cases respective
the largest observed worst-case variation is 83% (gap), 68%
(gap), 58% (gap),and 78% (crafty)of the guaranteed worst-
case bound. While the difference between the observ
worst-case and guaranteed worst-case may seem large,
important to note that guaranteed bounds are theoret
worst-case, and most applications do not demonstrate th
retical worst-case behavior at the resonant frequen
Although the theoretical worst-case variation may not ofte
be observed, such variation is possible andmustbe within
the constraints of the circuit; guaranteeing better boun
aids circuit designers in avoiding expensive solutions.

Even under damping, the observed worst-case does
always approach the guaranteed worst-case because da
ing controls discrete, high-current events, such as inte
ALU operations. Because of the high current of man
events, it may not be feasible for damping to allow variatio
to approach arbitrarily close to the bound while guarante
ing that future cycles will not exceed the bound.

5.1.2 Performance and energy impact
In this section, we evaluate the performance and ene

impact of the pipeline damping configurations discussed
the previous subsection. As discussed in Section 3.2
upward damping decreases performance by slowi
increases in ILP, while downward damping increases ene
by activating otherwise-unneeded functional units to mai
tain current. The lower graph of Figure 3 depicts perfo
mance degradation (black sub-bars, scale on left) a
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energy-delay (full bars, scale on right) for each benchmark
with respect to the undamped case. There is no bar for the
undamped case because it is the reference.

The performance and energy penalties decrease with the
tightness of theδ constraint. The tight constraint ofδ = 50
results in substantial performance and energy penalty, while
the looser constraints have less severe impact. Forδ of 50,
75, and 100, the average performance degradations are 14%,
7%, and 4%, respectively. The corresponding average pro-
cessor energy-delays are 1.17, 1.09, and 1.05.

The tight δ=50 constraint results in substantial perfor-
mance penalty for some applications in order to achieve the
61% reduction in worst-case current variation.Fma3d
stands out particularly with a 51% performance degradation
and a relative energy-delay of 1.74.Fma3dthe highest-IPC
benchmark (4.1) in our simulations and is unable maintain
that throughput under the constraints of damping at this fre-
quency. The energy-delay increase in this case is due prima-
rily to the increased execution time, not downward damping.

Using the “always on” front-end damping technique fur-
ther reduces the variation bound and narrows the gap
between the maximum observed current variation and the
worst-case allowed∆ at the expense of additional energy.
The middle three rows (W = 25) of Table 4 summarize
results for all applications both without front-end damping
(left half) and with front-end damping (right half). The left
half results repeat those already given and are shown for ref-
erence. We see that the expense of the tighter current varia-
tion bound of the “always on” front-end is an average
relative energy delay increase between 0.07 and 0.14. The
slight narrowing of the gap between maximum observed∆
and worst-case allowed∆ occurs because the uncertainty of
the undamped front-end is removed.

5.2 Pipeline damping at different periods

In the last section, we showed results with W = 25, but
the resonant time period could have a value other than 25
that is on the order of 10 to 100 times the clock period. We
show other values of W in this section. We expect a specific
resonant period value not to affect damping, and that damp-
ing will achieve similar variation bounding, performance

penalty, and energy-delay penalty for any resonant peri
While it may seem that using the sameδ for a larger (or
smaller) window would loosen (or tighten) the variatio
bound, it is important to remember that in terms of di/dt,δW
is an expression of di. Because the corresponding dt of
resonant period is also expressed by W, di/dt is controlled
δ, independent of W.

Table 4 shows results for damping corresponding to res
nant periods of 30, 50, and 80 cycles (and W values of 1
25, and 40, respectively). The results for the W of 25 ha
already been discussed in the previous section. Because
details of∆ computation for W values of 15 and 40 are iden
tical to that for W of 25 (discussed in Section 5.1.1), w
omit the details here. We show the relative worst-case∆ cor-
responding to earlier values in the rightmost column
Table 3. The “observed worst-case” column represents
worst-case variation observed among all 23 benchma
simulated; the performance and energy-delay values
averages across the 23 benchmarks.

From the relative worst-case∆ columns, we see that for
the sameδ value, the guaranteed current bound becom
slightly tighter (i.e., smaller in value) for longer periods
The bounds become tighter because the first few low-curr
cycles in the worst-case current window for an undamp
processor (discussed in Section 5.1.1) are less domin
over longer windows. We also see that the worst-ca
observed in our simulations, as a percent of∆, approaches
higher values for the shorter windows, even reaching 100
once. Shorter windows are more likely to experience bur
of worst-case variation than long windows. For example,
is unlikely that a processor would issue at the maximu
issue width for 40 consecutive cycles.

Performance degradation and energy-delay increase
not change substantially with window sizes. For all windo
sizes, average performance degradation forδ of 100 is 5%
or less, and the average degradation forδ of 75 is 8% or less.
δ of 50 has substantial average performance and energy p
alties for all window sizes because the bound is so tight.

5.3 Comparison to peak current limitation

In this section, we compare the performance and ene

Table 3: Computed integral current bounds for window size (W) of 25 cycles

Configuration Max undamped over W δW ∆=worst-case variation over W Relative worst-case∆

δ=50 250 1250 1500 0.47

δ=75 250 1875 2125 0.66

δ=100 250 2500 2750 0.86

δ=50, frontend always on 0 1250 1250 0.39

δ=75, frontend always on 0 1875 1875 0.59

δ=100, frontend always on 0 2500 2500 0.78

undamped processor (noδ) N/A N/A undamped variation = 3217 1.00
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penalties of pipeline damping to schemes which reduce cur-
rent variation by limitingpeakcurrent instead of limiting
rate of change like pipeline damping. When using peak cur-
rent limitation to achieve the same current variation bounds
as pipeline damping, we expect large performance and
energy penalties.

The graphs in Figure 4 plot guaranteed worst-case varia-
tion bounds against performance degradation and energy-
delay for six peak-current-limiting configurations (a through
f) and three pipeline damping configurations (S throughU).
The performance degradation and energy-delay values are

averages across the 23 benchmarks simulated. The wind
size is 25 cycles, and front-end damping is not applied. T
current limiting configurations achieve current variatio
bounds the same as those of the damping schemes by se
the peak per-cycle current to be the same asδ. Thus, the
maximum total current over a window of W cycles is th
peak per-cycle current multiplied by the window size.

Limiting peak current results in performance and energ
delay penalties that dramatically increase as the bou
becomes tighter. Comparing the performance and ener
delay trends of the peak current limiting schemes to t

FIGURE 3: Current variation and performace/energy-delay penalty for W=25.
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IPC

Table 4: Results for W = 15, 25, and 40.

(without front-end damping) (front-end “always on”)

W δ Relative
worst-case∆

observed worst-
case as % of∆

avgperf.
penalty

avg e-
delay

Relative
worst-case∆

observed worst-
case as % of∆

avgperf.
penalty

avg e-
delay

15

50 0.53 95 12 1.15 0.41 100 12 1.23

75 0.72 77 6 1.07 0.62 78 6 1.14

100 0.92 67 3 1.04 0.83 66 3 1.11

25

50 0.47 83 14 1.17 0.39 89 14 1.26

75 0.66 68 7 1.09 0.59 70 7 1.23

100 0.86 58 4 1.05 0.78 59 4 1.12

40

50 0.45 65 15 1.18 0.38 70 15 1.27

75 0.64 54 8 1.10 0.58 55 8 1.17

100 0.83 46 5 1.06 0.75 46 5 1.12
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trend of the damping schemes indicates that damping penal-
ties increase more slowly as current bounds become tighter.
To achieve the same variation bound as ourδ = 100 scheme,
peak current limitation incurs a total performance degrada-
tion of 31% with relative energy-delay of 1.31. Pipeline
damping’s degradation of 4% with relative energy-delay of
1.12 seems small in comparison. As the variation bound
becomes tighter, the performance degradation of the cur-
rent-limiting scheme increases to 105%. Relative energy-
delay increases to 2.39 compared to the undamped case.
Both are much worse than the 14% performance penalty and
1.26 relative energy-delay experienced by our tightest
damping configuration withδ of 50.

6  Related Work

Previous circuits work focused on current spikes due to
component-level clock gating but not processor-level ILP
variation. [10] proposed a circuit-level mechanism to reduce
current spikes due to clock gating by slowly turning off
clock-gated units at a modest cost in hardware and perfor-
mance. Others have improved this scheme to reduce the per-
formance loss [11].

A recent paper discusses microarchitectural simulation
and control of supply noise [6]. The authors propose a reso-
nant circuit model for supply noise and observe that avoid-
ing stimulus at the resonant frequency addresses the supply
noise problem. The authors then suggest an architectural
framework that prevents constraint violations by reacting to
large changes in current. Their technique computes
weighted sums of previous cycle currents, converts the val-
ues to voltage, and uses a “convolution engine” to determine
if additional instructions may be issued without violating
voltage constraints.

The authors of [6] mention that the latency of their con-
volution engine may necessitate pipelining it; the convolu-
tion engine thus would be placed in parallel to the front-end
of the pipeline so that results would be available in time for
issue. Delay in the convolution engine may complicate
reacting to changes in voltage before constraint violations
occur. In contrast to the complications of the convolution

engine, damping involves simple counting of current alloc
tions.

A simultaneous architectural work on supply noise in th
10-100MHz range appears in [9]. The authors create a “di
stressmark” to stimulate a microprocessor at its resonant
quency and evaluate the resonant behavior of applicatio
The authors also propose an architectural technique to re
to voltage emergencies by gating/firing functional uni
when the supply voltage drops too low/high.

The technique in [9] senses small variations in voltag
and responds, after allowing for sensor delay, by gati
functional units and caches before violation of worst-ca
constraints. Pipeline damping and this technique arefunda-
mentallydifferent. Pipeline damping can be thought of a
proactively preventing variation while this technique aims
cure reactively variations before constraint violations occu

7  Conclusions

Inductive noise in power supply induced by switching
current surges in the processor circuitry degrades data int
rity causing reliability problems. The key reason for induc
tive noise is ILP variation causing current changes at
specific, resonant frequency of the processor’s RLC circu
and stimulating large variations in the supply voltage. W
proposed pipeline damping, an architectural technique t
controls instruction issue to guarantee bounds on curr
variation at resonant frequencies which are 1/10th to
100th of the clock frequency. Damping is an alternative
expensive, circuit-based noise-reduction techniques.
made the fundamental observation that limiting the curre
flow change (di) to a pre-specified value within the resona
time period (dt) controls di/dt without large performanc
loss. Damping guarantees bounds on current variation wh
allowing processor current to increase or decrease to
magnitude required to maintain performance.

We showed that pipeline damping can guarantee red
tions in worst-case current variation for resonant freque
cies in the range of 1/10th to 1/100th of the clock frequenc
For a resonant frequency which is 1/50th of the clock fr
quency, pipeline damping guarantees a 33% reduction
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FIGURE 4: Comparing damping to limiting peak current. W=25.
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worst-case inductive noise while incurring only a 7% per-
formance degradation and 1.09 relative energy-delay over
an undamped processor. Pipeline damping compares favor-
ably to peak-current limitation schemes, which incur 55%
performance degradation to achieve the same bound on cur-
rent variation. The performance gap between damping and
peak-current limitation increases as current variation bounds
become stricter. As supply voltages and processor noise-
margins continue to shrink, damping-like techniques will
become important for bounding inductive noise while main-
taining performance.
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