
Wire delay is not a problem for SMT (in the near future)

Zeshan Chishti and T. N. Vijaykumar
School of Electrical and Computer Engineering, Purdue University

{zchishti, vijay}@purdue.edu

Abstract

Previous papers have shown that the slow scaling of wire
delays compared to logic delays will prevent superscalar per-
formance from scaling with technology. In this paper we show
that the optimal pipeline for superscalar becomes shallower
with technology, when wire delays are considered, tightening
previous results that deeper pipelines perform only as well as
shallower pipelines. The key reason for the lack of perfor-
mance scaling is that superscalar does not have sufficient par-
allelism to hide the relatively-increased wire delays. However,
Simultaneous Multithreading (SMT) provides the much-needed
parallelism. We show that an SMT running a multipro-
grammed workload with just 4-way issue not only retains the
optimal pipeline depth over technology generations, enabling
at least 43% increase in clock speed every generation, but also
achieves the remainder of the expected speedup of two per
generation through IPC. As wire delays become more domi-
nant in future technologies, the number of programs needs to
be scaled modestly to maintain the scaling trends, at least till
the near-future 50nm technology. While this result ignores
bandwidth constraints, using SMT to tolerate latency due to
wire delays is not that simple because SMT causes bandwidth
problems. Most of the stages of a modern out-of-order-issue
pipeline employ RAM and CAM structures. Wire delays in con-
ventional, latency-optimized RAM/CAM structures prevent
them from being pipelined in a scaled manner. We show that
this limitation prevents scaling of SMT throughput. We use bit-
line scaling to allow RAM/CAM bandwidth to scale with tech-
nology. Bitline scaling enables SMT throughput to scale at the
rate of two per technology generation in the near future.

1 Introduction

CMOS scaling trends are leading to a greater number of
smaller and faster transistors in a single chip, but a relative
increase in wire delays. Clock speeds have increased consistently,
owing not only to faster transistors but also to deeper pipelines
with a minimal degrading impact on instruction throughput (i.e.,
instructions per cycle or IPC). However, because global wire
delays (e.g., register bypass wires) and RAM/CAM delays scale
much slower than transistor delays, deeper superscalar pipelines
experience increased latencies and a significant degradation in
instruction throughput.

Optimizing the pipeline depth is based on balancing the clock
rate and IPC to maximize the number of instructions executed per
second. The tradeoff between clock rate and IPC has been a topic

of several recent studies. [14] suggests that the optimal logic
depth per pipeline stage is 8 FO4 inverter delays. Because [14]
implicitly assumes that wire delays and RAM/CAM delays scale
at the same rate as logic gate delays, the optimal pipeline depth of
8 FO4 is valid only for the 100-nm technology assumed by the
study; the paper does not provide any quantitative data of optimal
depths taking into account the slow scaling of wire delays. This
gap is partly filled by [2] which points out that wire delays dictate
that deeper pipelines will not perform better than shallower pipe-
lines in future technologies. [2] concludes that superscalars do not
have sufficient parallelism to tolerate the relatively-increased wire
delays. [12] also makes similar observations about the impact of
wire delays.

In this paper, we extend the analyses of the previous papers:
First, we show that the optimal pipeline becomes shallower with
technology when wire delays are considered, tightening [2]’s
results that deeper pipelines perform only as well as shallower
pipelines. Second, while [14,2] analyze superscalars, which do
not have sufficient parallelism, we analyze Simultaneous Multi-
threading (SMT) [27], which has sufficient parallelism. SMT
overlaps multiple (either multiprogrammed or explicitly parallel)
threads on a wide-issue pipeline and provides the much-needed
parallelism to tolerate the slowly-scaling wire delays. We show
that an SMT running a multiprogrammed workload with just 4-
way issue not only retains the optimal pipeline depth over technol-
ogy generations, enabling at least 43% increase in clock speed
every generation, but also achieves the remainder of the expected
speedup of two per generation through IPC. As wire delays
become more dominant in future technologies, the number of pro-
grams needs to be scaled modestly to maintain the scaling trends,
at least till the near-future 50nm technology.

We put this result in perspective. While single-program perfor-
mance may continue to be important, our results are interesting
because future desktop- and server-class computers are likely to
run multiprogrammed workloads on SMT. Our results show that
wire delays can be tolerated in this important class of machines.

While this result ignores bandwidth constraints, using SMT to
tolerate latency due to wire delays is not that simple, because
SMT causes bandwidth problems. Most of the stages of a modern
out-of-order-issue pipeline employ RAM and CAM structures.
While decode and execute stages are combinational logic, fetch,
rename, register read, memory, and register write involve RAMs
(caches and register file), and issue and memory involve CAMs
(issue queue and load/store queue). As such, SMT’s throughput is
bound by the bandwidth of these structures. Wire delays of RAM/
CAM bitlines and wordlines limit the structures’ bandwidth
which in turn limits not only single-program but also SMT perfor-

mance. While it is generally believed that wire delays increase
latency, we show that they also fundamentally limit bandwidth.
[14] ignores this constraint and implicitly assumes that the band-
width will scale at the same rate as logic gate delays. This band-
width issue is the third point analyzed in this paper.

SMT’s bandwidth demand may not be met easily by tradi-
tional multiporting, banking [22], line buffers [28], or hierarchical
bitlines [17]. As we explain in Section 3, these approaches are
also limited by wire delays. Another technique to improve RAM
bandwidth is pipelining. Some previous papers [16, 8] propose a
shallow, two-stage pipeline of the wordline decode in one stage
followed by the rest of the access in another.

As pointed out in [8], the key impediment to deeper pipelining
of RAM is that the bitline delay cannot be pipelined because the
signals on the bitlines are weak, and not digital; latching can be
done only after the sense amplifiers convert the bitline signals to
digital. Conventional designs partition RAM structures into sub-
arrays and the bitline delay depends on the subarray size [21].
Because the bandwidth demand of superscalar processors can be
satisfied without resorting to deep pipelining, and because super-
scalar processors are sensitive to RAM (especially L1 cache)
latency, traditional designs choose subarray sizes that optimize
latency. However, we show that SMT throughput does not scale
with shallow pipelining of such latency-optimized RAM struc-
tures; deeper pipelining is needed.

To achieve deep pipelining, a simple strategy is to reduce the
subarray size such that the bitline + sense amplifier delay fits
within one clock cycle (e.g., [1,20]). Because the subarray size
has to scale to counter wire delays in future technologies, we call
such designs as bitline-scaled designs. Reducing the subarray
size, however, both increases the amount of address decoding
needed to determine the subarray, and requires a larger subarray
multiplexer. Bitline scaling counters the resulting delay increases
by pipelining the subarray decode and subarray multiplexer steps
themselves. We similarly pipeline CAM bitlines into multiple
subarrays. Bitline-scaled CAM has some similarities to seg-
mented issue queues of [14,19].

For the final result in the paper, we show that even though a
bitline-scaled RAM (or CAM) has worse latency than a latency-
optimized RAM (or CAM), the higher bandwidth offsets the
latency penalties allowing SMT throughput to scale. While previ-
ous papers have explored bitline scaling and segmented issue
queue, this is the first paper to show that SMT can use the tech-
niques to tackle the wire delay problem.

Using simulations with SPEC2000 benchmarks, we find the
following:

• Latency effect on superscalar: The optimal pipelines for
superscalar become shallower due to slow scaling of wire
delays in future technologies.

• Latency effect on SMT: With unlimited bandwidth, a 4-
way issue SMT retains the optimal pipeline depth over
technology generations, enabling at least 43% increase in
clock speed every generation, and achieves the remainder
of the expected speedup of two per generation through
IPC, at least till the near-future 50nm technology.

• Bandwidth limitation of wire delays: Wire delays in con-
ventional, latency-optimized RAM/CAM structures pre-

vent them from being pipelined in a scaled manner. This
bandwidth limitation prevents scaling of SMT throughput.

• Overcoming bandwidth limitation: Bitline scaling
enables SMT throughput to scale at the rate of two per
technology generation in the near future.

The rest of the paper is organized as follows. We discuss the
latency effect of wire delays and deeper pipelines next. In
Section 3, we discuss the bandwidth effect. In Section 4, we
describe the experimental methodology. We present our results in
Section 5 and conclude in Section 6.

2 Latency effect of wire delays and deeper
pipelines

In this section, we analyze the impact of wire delays and
deeper pipelines on the performance of both superscalar and SMT
processors. While some of this analysis is presented in [23,2,14],
we present more comprehensive analysis by combining the notion
of pipeline loops (from [5]) and wire delays. While [5] showed
the detrimental effect of lengthening the loops on performance,
we derive new properties exhibited by the loops and explain the
impact of wire delays in the context of these properties.

2.1 Pipeline loops

Figure 1 shows a conventional out-of-order processor pipeline.
The out-of-order pipeline can be thought of as being composed of
two in-order half-pipelines connected by the issue queue: the
front-end and the back-end. Figure 1 also shows the loops in the
pipeline. The branch misprediction loop and bypass loops are
well-known. The fetch loop is due to the dependence between the
current PC being used to predict the next PC. The rename loop is
due to the dependence between a previous instruction assigning a
rename tag and a later instruction reading the tag. The issue loop
is due to the dependence between the select of a producer and
wakeup of a consumer. The load misspeculation loop is due to
load-miss replay. The load/store queue loop is due the depen-
dence between a previous store and a later load to the same
address.

The loops affect performance differently from each other,
depending on: 1) frequency of loop usage, 2) loop length, and 3)
the interaction among loops.

The more frequent a loop usage is, the higher the impact on
performance. While the fetch, rename, issue, and bypass loops are
all fairly frequent, load misspeculation and branch misprediction

FIGURE 1: Pipeline Loops

Fetch DecodeRename Reg
ReadIssue EX MEM Writeback

8
2 3

4 5

6
7

1. Fetch Loop 2. Rename Loop 3. Issue Loop
4. Load Misspeculation Loop 5. EX-EX bypass Loop
6. MEM-EX bypass Loop 7. Writeback-EX bypass Loop

Front-End Back-End

1

8. Branch Misprediction Loop

9

9. Load/Store Queue Loop

loops are used only upon load misses and branch mispredictions,
respectively, and are less frequent.

As pointed out by [5], lengthening any of the loops in terms of
number of clocks negatively impacts IPC. A loop gets longer if 1)
the latency of any pipeline stage encompassed by the loop
increases, or 2) wire delay between the loop endpoints increases.
Increasing the clock speed by deepening the pipeline results in
increasing the latency of pipeline stages. As shown in [14], the
increase in the clock speed beyond a limit is offset by the decrease
in IPC due to longer loops. Furthermore, because wire delays
constitute a significant portion of RAM/CAM delays, and because
wire delays scale slowly as compared to gate delays, the latency
of several pipeline stages increases with technology. The slow
scaling of various tables (prediction, rename), caches, issue
queue, and load/store queue lengthens fetch, rename, issue,
MEM-EX, writeback-EX, load misspeculation, and load/store
queue loops, many of which are used frequently. Apart from
RAM/CAM structures, the slow scaling of global wires [12,4]
lengthens all the bypass loops (also observed by [18]), which are
used frequently.

The effect of one loop on IPC is not entirely independent of
the other loops. The interplay among loops exhibits the following
two properties: 1) Loop Inclusion property: An increase in the
latency of a pipeline stage affects all the loops that encompass the
stage. 2) Dominance property: For the set of all mutually-disjoint
loops in a half-pipeline that are used by a producer-consumer
dependence, the loop with the maximum length impacts IPC and
the shorter loops do not further degrade IPC. The longest loop
stalls the consumer enough from the producer that the shorter
loops do not cause any more stalls. Thus the longest loop domi-
nates the rest of the loops. For example, a back-to-back-issued
producer-consumer register dependence uses both the issue loop
and the EX-EX bypass loop. If the issue loop is 3 cycles, increas-
ing the bypass loop from 1 to 2 or 3 cycles does not have any
impact on performance because the issue loop already stalls the
consumer such that by the time the consumer reaches EX, the pro-
ducer exits EX allowing the bypass loop to provide the bypassed
value without any more stalls. However, lengthening the rename
loop affects performance, because the rename loop and the issue
loop belong to different half-pipelines.

While the dominance property has the positive implication that
lengthening non-dominant loops do not cause IPC loss, there is a
negative implication that all the dominant loops (if multiple loops
are at maximum length then all such loops are dominant) need to
be shortened to improve the IPC.

The effect of loops can be reduced by exploiting indepen-
dence. If there are enough independent instructions to fill all the
pipeline stages in the dominant loop(s), then the impact of the
loops can be eliminated. While superscalars do not have sufficient
parallelism, SMT does.

2.2 Latency effect on superscalar

There are several architectural techniques to enhance indepen-
dence and reduce the impact of the loops in superscalars. We list a
few examples: Slow scaling of CAM has made it difficult to retain
single-cycle issue loop (i.e., back-to-back issue of dependent
instructions using single-cycle issue queue). Several techniques

[24,19,10] have been proposed to obtain back-to-back issue, even
with a multiple-cycle issue queue. Similarly, lengthening of the
EX-EX bypass loop due to multiple-cycle ALUs can be alleviated
by partial bypasses which allow partial ALU outputs to be
bypassed back to the next instruction [6]. Also, load misspecula-
tion and branch misprediction loops result in squashes whose
penalty may be reduced by selective squashing [11,5]. Finally,
lengthening of the rename loop due to multiple-cycle rename
tables can be alleviated by using bypasses from the later rename
stages to the front of the rename tables [23].

Unfortunately, the dominance property implies that all the
loops have to be shortened to improve IPC, requiring most, if not
all, of the above schemes. This requirement adds substantial com-
plexity to the pipeline, not to mention extra levels of logic in
many of the stages putting a limit on pipeline depth scaling. Even
if all the above schemes are used to enable back-to-back issue and
perfect pipelining in rename, issue, and EX-EX bypass loops,
there are still some difficult loops which are lengthened by wire
delays and prevent back-to-back issue. The difficult loops are the
MEM-EX bypass loop, which is lengthened by cache latency and
is used frequently by load-use dependencies, and the less-fre-
quently-used branch misprediction and load misspeculation
loops. Finally, even if there were as much parallelism available as
needed by a deep pipeline, pipelines cannot be arbitrarily deep-
ened due to latch, clock skew and jitter overheads [14]. Due to the
above problems, the optimal pipeline for superscalar at 50nm
technology is actually shallower than that at 100nm technology,
as we show in Section 5.2.

2.3 Latency effect on SMT

SMT overlaps multiple threads on a wide-issue pipeline and
provides the much-needed parallelism to tolerate slowly-scaling
wire delays and deeper pipelines. All the loops in the back-end are
alleviated by SMT’s parallelism even without using the aforemen-
tioned aggressive schemes. However, the loops in the front-end
need a slight change in SMT’s fetch policy. The ICOUNT fetch
policy [26] favors fetching from the thread that has the fewest in-
flight instructions motivated by the fact that such a thread is the
fastest progressing thread. Multiple-cycle loops in the front-end
imply that instructions from the same thread cannot be fetched
back to back. Accordingly, we modify ICOUNT so that a thread
fetched in cycle i is not considered for fetching until cycle i +
length of the dominant loop in the front-end. The best thread, as
per ICOUNT applied to the rest of the threads, is chosen in cycle
i+1, and so on. As we show in Section 5.2, SMT throughput can
be scaled by 2x every technology generation even as wire delays
become more dominant by modestly increasing the number of
programs.

3 Bandwidth scaling

Using SMT to tolerate latency due to wire delays is not that

Fetch DecodeRename Reg
ReadIssue EX MEM Writeback

RAM RAM RAMRAM /RAMLogic Logic
CAM

CAM

FIGURE 2: Circuits used in pipeline stages

simple because SMT causes bandwidth problems. Figure 2 shows
that most of the stages of a modern out-of-order-issue pipeline
employ RAM and CAM structures. Wire delays of RAM/CAM
bitlines and wordlines limit the bandwidth of these structures,
which in turn limits not only single-program but even SMT per-
formance. While it is generally believed that wire delays increase
latency, we show that they also fundamentally limit bandwidth.

SMT’s bandwidth demand may not be met easily by tradi-
tional multiporting, banking [22], line buffer [28], or hierarchical
bitlines [17,3]. Adding true ports causes considerable increase in
area and wire delays. Bank conflicts and line buffer misses, which
are inevitable, reduce the effectiveness of banking and line buffer.
Hierarchical bitline approach breaks up the bitlines into a two-
level hierarchy of many “local” and one “global” bitlines. The
hierarchy allows two accesses, one in each level, to proceed
simultaneously. Because global bitlines are as long as all local bit-
lines put together, global bitline wire delay fundamentally limits
the bandwidth through the hierarchy.

While pipelining is another approach to achieve high band-
width, we show how naive pipelining is also limited by wire
delays. Then we describe bitline scaling. We discuss RAM using
cache as example and then CAM.

3.1 Bitline-scaled RAM

Figure 3 shows the components of cache access time: i)
decoder delay (A to B) ii) wordline driver + bitline + senseamp
delay (B to D) iii) mux + output driver delay (D to F). The cache
access time is usually reduced by partitioning the cache into mul-
tiple smaller subarrays. The parameters Ndwl and Ndbl represent
the extent to which partitioning is done. Ndwl indicates vertical
partitions (creating more, but shorter wordlines), and Ndbl indi-
cates horizontal partitions (creating more, but shorter bitlines).
The total number of subarrays is Ndwl*Ndbl. Conventional cache
designs are latency-optimized and adjust the subarray size such
that the overall access time is minimized [21].

One solution to improve bandwidth is to pipeline the cache
access. Some designs have a separate stage for wordline decode
[16], shown in Figure 4(a). The decoder delay contributes only
25%-30% of the overall cache latency and the bandwidth of a
pipeline is determined by the slowest pipeline stage. Therefore,
using a pipelined decoder alone results in an ineffective pipeline.
This imbalance can be removed by deeper pipelining. However,
because the signals on bitlines are weak, and not digital, latching
can be done only after the sense amplifiers convert the analog bit-
line signals to digital [8]. Therefore, in Figure 3, the delay from B
to D cannot be pipelined, and a latch can be placed only at D.
Figure 4(b) shows such a naively-pipelined cache. We observe
that pipelining a latency-optimized cache naively results in a sub-
stantially uneven split, because the wordline + bitline + sense
amplifier delay dominates the mux + output driver delay.

A bitline-scaled cache (e.g., [1,20]) eliminates the uneven split
in pipeline stages by reducing the wordline + bitline + sense

amplifier delay so that it no longer dominates the mux + data
driver delay. In a bitline-scaled cache, the size of subarrays is cho-
sen such that the wordline + bitline + sense amplifier delay fits in
one clock cycle. As a result, the wordline + bitline + sense ampli-
fier stage no longer limits the bandwidth. However, for same
cache size, a reduction in subarray size means an increase in the
total number of subarrays, thus increasing both the subarray
decode delay and the subarray multiplexer delay, which may
become multiple clock cycles. Fortunately, unlike the wordline +
bitline + sense amplifier stage, the decode and mux + drive stages
have digital data and can be pipelined further. The delay increases
in decode and mux + drive stage are countered by pipelining these
stages, so that the bandwidth remains unaffected, despite an
increase in overall latency. Pipeline latch overhead also increases
the bitline-scaled cache’s latency. Typically, we see a one- or two-
cycle difference between the latency of a latency-optimized cache
and that of a bitline-scaled cache. However, the bitline-scaled
cache’s higher bandwidth offsets the increase in latency for SMT.

Some implementation issues with bitline-scaled caches are:
(1) The extra latches needed for deeper pipelining increase both
the area and power. (2) Precharging creates a resource conflict:
While an access in the wordline + bitline + sense amplifier stage
is discharging the bitlines, at the same time another access in the
decode stage would try to precharge. Therefore, precharging and
discharging must occur atomically in the wordline + bitline +
sense amplifier stage. (3) Stores cause structural hazards: After
reading the bitlines and matching the tags, stores also write to the
bitlines. Thus, stores reuse some of the stages causing structural
hazards. Such hazards can be resolved by appropriate waiting.

Wave pipelining the cache overlaps wordline delays of the
next access with the bitline + sense-amplifier delays of the previ-
ous access (without using latches) [8]. Therefore, in a wave-pipe-
lined cache, only the delay from C to D in Figure 3 cannot be
pipelined. However, this delay worsens in future technologies due
to slow-scaling wire delays of the bitlines, becoming more domi-
nant, and limiting the cache bandwidth. Thus, bitline scaling is
needed even if wave pipelining is employed. To add bitline scal-
ing to a wave-pipelined cache, the subarray size is chosen such
that the bitline + sense amplifier delay fits in one clock cycle. We
note that wave pipelining requires controlling signal propagation
delays to a high precision which may be hard to do in future tech-
nologies due to increasing process variations. In contrast, bitline
scaling is simpler and more robust.

Banked caches [22] and line buffers [28] have uncertainty in
even their load hit latencies. This uncertainty disrupts the schedul-
ing of wakeups, and degrades performance significantly. In com-
parison, the bitline-scaled cache has a fixed load hit latency, and
does not disrupt wakeups.

FIGURE 3: Access time components (to scale)

Decoder
Delay

Bitline +

Delay

Mux
DelayDriver

Delay
Sense Amplifier Driver

Delay

Wordline

A B C D E F

Output

FIGURE 4: Cache pipelining configurations

a) Decoder-
pipelined

b) Naively-
pipelined

c) Bitline-
scaled

Decode Wordline Drive + Bitline +

Decode Wordline Drive + Mux+drive

Sense Amp + Mux+Drive

Bitline + Sense Amp

Decode
1 or more
stages

Wordline Drive +
Bitline +Sense Amp

1 stage

Mux+Drive
1 or more
stages

3.2 Bitline-scaled CAM

A conventional CAM structure is implemented as a fully-asso-
ciative tag array, in conjunction with a direct-mapped data array.
A CAM access first searches all tag entries in parallel, and then
reads/writes the matching entry in the data array. The main com-
ponents of the CAM access time are (1) tag bitline drive delay (2)
tag comparison and match signal generation delay (3) match line
or-ing delay (4) direct-mapped array’s access time. Because
CAMs typically have small data arrays, the access time is domi-
nated by components (1), (2), and (3). As shown in [18], the tag
bitline drive delay scales slowly, and becomes more and more sig-
nificant at feature sizes of 180nm and below. The overall CAM
access time scales slower relative to logic delays, preventing the
CAM access from fitting within a cycle.

To explain bitline-scaled CAMs, we consider the example of
the issue queue. The main components of issue queue are wakeup
and select [18]. Wakeup performs a CAM access for waking up
instructions when their source operands become available, and
select chooses instructions for execution from the pool of ready
instructions. Because wakeup is a CAM access and select is a tree
of logic, wakeup scales slowly and select scales as well as gate
delays [18]. We use bitline scaling to pipeline the CAM access by
partitioning the CAM into multiple segments such that each seg-
ment fits within a cycle. Consequently, wakeup proceeds in a
pipelined fashion from one segment to the next. While select
scales with technology, it may still take multiple cycles for deeper
processor pipelines within one technology. Fortunately, select is
logic and can be pipelined easily. Unlike a single-cycle issue
queue where wakeup and select operate in close synchrony, a bit-
line-scaled issue queue’s wakeup and select pipelines proceed
independent of each other. Wakeup proceeds from one segment to
another and select chooses from whichever instructions are ready
at any given cycle. The pipelined wakeup of bitline scaling is sim-
ilar to the segmented issue queue in [14].

Bitline-scaling of CAM structures such as the issue queue and
load/store queue raises some architectural issues. While pipelin-
ing the structures allows multiple instructions to proceed simulta-
neously, dependencies will still prevent back-to-back issue. One
option, called back-to-back (b2b), is to use the architectural
schemes mentioned in Section 2.2 to enhance independence using
just one thread. Another option, called no-back-to-back (nb2b), is
to use more programs to provide independent instructions without
incurring the complexities of the schemes. In this paper we are
interested in scaling bounds. While the schemes mentioned in
Section 2.2 incur misspeculations and stalls, we assume idealized
versions of these schemes without such inefficiencies. We opti-
mistically assume that in b2b, even dependent instructions can be
issued in consecutive cycles. And in nb2b, we conservatively
assume that only independent instructions can be issued in con-
secutive cycles. These two options provide the best-case and
worst-case bounds for scaling. Using a subset of the schemes will
result in performance between these bounds. To simplify the anal-
ysis, we show only these two options in our results.

4 Methodology

Table 1 shows the baseline configuration for the simulated pro-

cessor which is similar to Alpha 21264 [15]. We modify SimpleS-
calar 3.0 [7] to simulate a high-performance, out-of-order SMT.
We model separate active lists, load store queues, first-level
branch predictors and return address stacks for each context. We
carefully model both the latency and bandwidth effects of pipe-
line loops (Section 2). The SMT in this study has two fetch ports,
and fills up fetch bandwidth from up to two programs. We use the
ICOUNT fetch policy [26]. Our simulator also incorporates
thread squashing upon L2 misses [25].

Table 2 shows the benchmarks from the SPEC2K suite, cate-
gorized into three classes—Low, Medium and High—based on
their single-program IPCs. For each application, we use ref
inputs, and fast-forward 2 billion instructions. For single-program
workloads, we run 200 million instructions, and for multipro-
grammed workloads, we execute till one of the benchmarks com-
pletes 200 million instructions.

Table 3 lists the SMT workloads used in our simulations. We
obtain multiprogrammed workloads by using different combina-
tions of benchmarks from the three classes shown in Table 2. For
example, MIX1.1.2 represents a workload with one benchmark
each from low and medium IPC classes, and two benchmarks
from high IPC class. Our SMT workloads contain combinations
both within (e.g., MIX3.0.0) and across classes (e.g., MIX1.1.1).
We ensure that every benchmark appears in exactly one 2-pro-
gram, one 3-program, and one 4-program workload, so that the
average IPS (instructions per second) for workloads with any
number of programs can be compared directly to the average IPS
for single-program workloads. For the 5-program workload MIX
0.3.2, we use an additional medium-IPC benchmark, equake,
because the number of benchmarks is not divisible by 5.

We modify Cacti 3.2 [21] to model the latency and bandwidth
of RAM and CAM structures. Our modifications to Cacti are as
follows: 1) We extend Cacti’s wire delay model by using the
resistance and capacitance parameters for mid-level metal wires
projected by the 2001 ITRS roadmap [4] and its 2002 update. 2)
Cacti assumes that the voltage swing on bitlines decreases as fast
as supply voltage. As pointed out by [3,9], the input offset voltage
of sense amplifier does not scale, causing a slower reduction in

Table 1: Parameters
Issue Width 4

Active List 64 entries per
thread

LSQ 32 entries per
thread

Physical
Registers

256 int and
256 FP

L1 I-cache 64KB, 2-way,
2-ports

L1 D-cache 64KB, 2-way
2-ports

L2-cache 1MB, 8-way,
unified, 1-port

Issue Queue 32 entries

Branch pre-
dictor

2-level hybrid,
8K per thread

Table 2: Benchmarks
Number Benchmark Type

Low IPC

1 mcf, 2 twolf, 3 vpr int

4 ammp, 5 parser, 6
lucas

FP

Medium IPC

7 bzip, 8 eon, 9 gap, 10
gzip, 11 perlbmk

int

12 applu, 13 apsi, 14 art,
15 galgel

FP

High IPC

16 gcc, 17 crafty, 18 vor-
tex,

int

19 facerec, 20 fma3d, 21
mesa, 22 mgrid, 23
swim, 24 wupwise

FP

bitline swing relative to supply voltage. As recommended in [3],
we modify Cacti to keep input offset voltage constant at 50mV for
all technologies. 3) The cycle time calculation in Cacti does not
consider the bitline precharge delay during the calculation of
cycle time. As mentioned in Section 3.1, the bitline precharge and
discharge must complete in the same cycle. We extend Cacti to
account for bitline precharge delay in cycle time calculation.

We use Cacti to model CAMs as fully-associative caches with
appropriate number of tag and data bits. We obtain issue queue
wakeup latency from Cacti. To obtain select latency, we use
Alpha 21264 at 180nm as reference point. Based on results in
[18], we scale the select latency with technology.We obtain the
latencies for integer and floating-point operations by scaling the
Alpha 21264 functional-unit latencies using a methodology simi-
lar to that of [14]. The functional-unit latencies in terms of FO4
remain unchanged at different technologies.

We show results in Section 5 only for 6,8, and 10 FO4 clock
periods. FO4 measures the delay of an inverter driving a fan-out-
of-four. 1 FO4 is roughly equal to 360 picoseconds times the min-
imum gate length for a technology, measured in microns [12]. The
FO4 metric abstracts away transistor speed variations due to tech-
nology. We experimented with other clock periods, but found
them to be non-optimal at the technologies being considered. We
believe that the results for 6, 8, and 10 FO4 are comprehensive
enough to show the scaling trends.

5 Results

We present circuit results in Section 5.1 We quantify the
impact of latency on superscalar and SMT, and that of bandwidth
on SMT in Section 5.2 and Section 5.3, respectively. We analyze
the effect of issue width on scaling trends in Section 5.4

5.1 Circuit Results

In this section, we quantify the latencies and bandwidths of the
structures in the pipeline. We show that the RAM and CAM
delays scale slower with technology, relative to gate delays. We
also show that bitline scaling in RAMs and CAMs results in
higher bandwidth as compared to a latency-optimized design.

5.1.1 RAM

We show results for L1 cache and then other RAM compo-
nents. Because wave pipelining provides some bandwidth advan-
tage to the latency-optimized design, we assume wave pipelining
for both latency-optimized and bitline-scaled RAMs.

Figure 5 shows the effect of changing the partitioning schemes
on the bitline delay, wordline delay, bitline + sense-amplifier
delay, and overall delay for the 64KB, dual-ported L1 cache at
different technologies. The X-axis shows the different partition-
ing schemes in terms of Ndwl x Ndbl (Section 3.1). We fix Ndwl
at 2, because other values of Ndwl result in sub-optimal overall
delays. For each scheme, the three bars from left to right represent
the delays for 100nm, 70nm, and 50nm technology, respectively.

As the subarray size decreases (i.e., number of subarrays
increases), the overall access time (top graph) first decreases,
reaches a minimum value, and then increases. The latency-opti-
mized approach chooses the partitioning that minimizes the over-
all delay. In all the three technologies, the latency-optimized
cache has 4 (2x2) partitions. We discuss optimal partitioning for
bitline-scaled cache later. The wordline and bitline delays (middle
graph) scale slowly with technology. As gate delays decrease by
50% from 100nm to 50nm technology, the wordline and bitline
delays for the 2x2 partitioning scheme decrease only by 28% and
30%, respectively. Although decoder delay and mux + output
driver delay scale as fast as logic, the slow scaling of bitline and
wordline delays significantly impacts scaling of overall delay.
Going from 100nm to 50nm, the overall delay for latency-opti-
mized cache decreases by 42%, though gate delays decrease by
50%. The bitline + sense-amplifier delay (bottom graph) becomes

Table 3: Multiprogrammed workloads
MIX Benchmark numbers MIX Benchmark numbers

2-Program 1.2.0 3, 8, 15

2.0.0 1, 4 1.0.2 5, 16, 21

0.2.0 9, 12 0.2.1 9, 10, 22

0.2.0 10, 14 0.1.2 11, 18, 24

0.0.2 22, 24 4-Program

0.0.2 17, 21 2.1.1 1, 4, 14, 20

1.1.0 6, 11 1.1.2 6, 12, 17, 19

1.1.0 3, 15 1.2.1 5, 8, 10, 23

1.0.1 5, 16 1.3.0 2, 7, 11, 13

1.0.1 2, 23 1.0.3 3, 16, 21, 22

0.1.1 13, 19 0.2.2 9, 15, 18, 24

0.1.1 10, 18 5-Program

0.1.1 8, 20 3.1.1 1, 4, 6, 14, 20

3-Program 1.3.1 5, 7, 11, 13, 17

3.0.0 1, 4, 6 1.1.3 3, 8, 16, 21, 22

0.3.0 12, 13, 14 1.2.2 2, 10, 12, 19, 23

0.0.3 17, 19, 23 0.3.2 9, 15, equake, 18, 24

1.1.1 2, 7, 20

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0

0.5

1.0

1.5

De
la

y
(n

s)
De

la
y

(n
s)

De
la

y
(n

s)

Number of subarrays
2 84 16 32

Bi
tlin

e/
W

or
dl

in
e

Bi
tlin

e+
Se

ns
e

Am
p

O
ve

ra
ll

Bitline Delay Wordline Delay

a b c

FIGURE 5: Effect of varying partitioning

a: 100nm b: 70nm c: 50nm

Optimal
Latency

more dominant in future technology generations. For the 2x2 par-
titioning scheme, the bitline + sense-amplifier delay increases
from 29% of overall cache delay at 100nm, to 35% of overall
cache delay at 50nm. Because the optimum for bitline scaling is
the partitioning where the bitline + sense-amplifier delay fits in
one clock cycle, this dominance implies that with deeper pipe-
lines (i.e., higher clock speeds or smaller FO4) finer partitioning
is needed. This trend is clear in Table 4 which shows the optimum
partitioning schemes for the latency-optimized (“l-o”) and bitline-
scaled (“b-s”) caches (assuming wave pipelining in both cases),
and compares their latency and (hazard-free) bandwidth for dif-
ferent technologies and clock periods. The bandwidth numbers
are based on bitline + sense-amplifier delay and clock period, also
shown in Table 4.

We observe that the optimum subarray size in the bitline-
scaled cache is always smaller (i.e., more subarrays) or equal to
that in the latency-optimized cache. The bandwidth of the
latency-optimized cache is limited by the bitline + sense-amplifier
delay. At low clock speeds, latency-optimized subarrays allow
access every cycle. However, as clock speed increases, the
latency-optimized cache cannot be accessed every cycle despite
wave pipelining. In comparison, the subarray size scaling in bit-
line-scaled cache enables access every cycle. However, we see
that the latency of the bitline-scaled cache is up to two cycles
more than that of the latency-optimized cache, as expected from

Section 3.1. Table 5 shows similar results for register file, rename
table, and L2 cache. These results were obtained by using the
same methodology as that for the L1 cache. Like L1 cache, both
register file and rename tables need bitline scaling at high clock
speeds to allow them to be accessed every cycle. We also show L2
latency. For the same FO4, L2 latency increases with technology
because of the slow scaling of global wires in L2. Because we
assume a simple L2 which allows only one access at a time, its
bandwidth is 1/latency and is not shown.

[2] uses ITRS 1999 projections for wire parameters, and
assumes that the sense-amplifier input offset voltage scales lin-
early with technology. We ran simulations using these assump-
tions and obtained results which match [2] within 5%. However,
because we use the more recent ITRS 2001 roadmap and consider
the lack of scaling of sense-amplifier input offset voltage, our
latencies are longer.

5.1.2 CAM

Table 6 shows the latency and bandwidth results for the 32-
entry issue queue at different technologies. We scale select
latency linearly with technology, as argued in [18]. The latency-
optimized issue queue chooses a single segment for optimum
latency. At higher clock speeds, the wakeup latency for single
segment does not fit in one clock cycle, preventing the issue
queue port from being accessed every cycle. This limitation
implies that for nb2b (Section 3.2), even independent instructions
cannot perform wakeups in consecutive cycles using the same
port. This restriction does not apply to b2b because b2b uses ide-
alized versions of schemes mentioned in Section 2.2 to circum-
vent such issue queue limitations. Bitline-scaled CAM uses
multiple segments to allow wakeup to proceed in a pipelined fash-
ion every cycle. For example, the bitline-scaled issue queue at
50nm technology requires 2, 3, and 4 segments for 10, 8, and 6
FO4 clock periods, respectively. Similar to bitline-scaled RAM,
the bitline-scaled CAM provides more bandwidth at the expense
of extra latency (at most 2 cycles), as compared to latency-opti-
mized CAM.

We performed latency and bandwidth analysis for the load/
store queue (LSQ) as well. We found that the LSQ latency is
always less than L1 cache latency. Because the LSQ access and
cache access proceed in parallel, the LSQ latency can be hidden
behind L1 cache access. We also found the LSQ bandwidth to be

Table 4: Optimum partitioning for latency-
optimized (l-o) and bitline scaled (b-s) caches

Tech
nol-
ogy
(nm)

Clock
Period
(FO4/
ns)

Optimum
number of
subarrays

bitline +sense
amp delay
(ns)

latency(cycles)/
bandwidth
(access per cycle)

l-o b-s l-o b-s l-o b-s

100
nm

6/0.22 4 16 0.32 0.21 5/0.5 7/1

8/0.29 4 8 0.32 0.25 4/0.5 5/1

10/0.36 4 4 0.32 0.32 3/1 3/1

70
nm

6/0.16 4 16 0.25 0.16 5/0.5 7/1

8/0.21 4 8 0.25 0.2 4/0.5 5/1

10/0.26 4 4 0.25 0.25 3/1 3/1

50
nm

6/0.11 4 32 0.2 0.11 6/0.5 8/1

8/0.14 4 16 0.2 0.13 5/0.5 6/1

10/0.18 4 8 0.2 0.16 4/0.5 4/1

Table 5: RAM results for other components

Tech-
nol-
ogy
(nm)

Clock
Period
(FO4)

Register File Rename Table L2 cache
latency(cycles)/
bandwidth (access
per cycle)

latency(cycles)/
bandwidth
(access per cycle) latency

(cycles)l-o b-s l-o b-s
100 6 4/1 4/1 3/1 3/1 27

8 3/1 3/1 2/1 3/1 21
10 3/1 3/1 2/1 3/1 16

70 6 4/0.5 4/1 3/1 3/1 30
8 3/1 3/1 3/1 3/1 23
10 3/1 3/1 2/1 3/1 18

50 6 5/0.5 5/1 4/0.5 4/1 39
8 4/0.5 4/1 3/1 3/1 30
10 3/1 3/1 3/1 3/1 23

Table 6: Issue Queue Results

Tech
nol-
ogy
(nm)

Clock
Period
(FO4)

latency-optimized bitline-scaled
of cycles Access

per
cycle

of
seg-
ments

of cycles Access
per
cycle

Wake
up

Sel
ect

Wake
up

Sel
ect

100 6 2 2 0.5 2 2 2 1
8 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1

70 6 2 2 0.5 3 3 2 1
8 2 1 0.5 2 2 1 1
10 1 1 1 1 1 1 1

50 6 2 2 0.5 4 4 2 1
8 2 1 0.5 3 3 1 1
10 2 1 0.5 2 2 1 1

equal or better than that of the L1 cache. Therefore, we do not
show LSQ results.

5.1.3 Bypass wires and functional units

Table 7 shows the number of cycles for bypass wires and func-
tional units. We list Alpha 21264 (800MHz at 180nm) functional-
unit and bypass-wire latencies as well. Alpha 21264 has 19FO4
clock period. For bypass wires, we use the half-cycle delay in
Alpha 21264 at 19FO4 clock period and scale to other clock peri-
ods. To obtain bypass delays at other technologies, we use the
ITRS 2001 projections [4], [12], and [13] for wire delay scaling.
For functional units, we use a methodology similar to that of [14].
Assuming 10% of clock period (1.8FO4) for latch overhead and
clock skew, we scale the functional unit latencies from 19 - 2= 17
FO4 to 10 - 2 = 8 FO4, 8 - 2 = 6 FO4, and 6 - 2 = 4 FO4 for clock
periods of 10, 8, and 6 FO4, respectively. We see that while the
number of cycles for functional units remain unchanged across
technology, the number for bypass wire delays increase.

5.2 Latency effect of wire delays

In this section, we analyze the latency effect of slow scaling of
wire delays on superscalar and SMT processors. As mentioned in
Section 3.2, we consider the two options of no-back-to-back
(nb2b) and back-to-back (b2b). Because we want to isolate the
latency effect of wire delays from bandwidth effect, we assume
that all the RAM/CAM structures are perfectly pipelined. In
Section 5.3, we will discuss the bandwidth effects.

5.2.1 Relative impact of wire delays on superscalar & SMT

Figure 6 show the normalized IPCs for 1-, 2-, 3-, 4- and 5-pro-
gram workloads for 100, 70, and 50nm technologies at 8 FO4
clock period for nb2b and b2b. We obtain the latency numbers for
the various structures from Table 4 through Table 7. The IPC val-
ues for a certain workload and technology are normalized with
respect to the IPC for that workload in 100nm technology. For
example, the left-most black bar in Figure 6 represents the aver-
age single-program IPC at 50nm technology and 8 FO4 clock
period normalized with respect to the average single-program IPC
for 100nm technology and 8 FO4 clock period. This normaliza-

tion clearly shows the relative effect of slow scaling of wire
delays with technology on different numbers of programs. In the
interest of space, we show only IPC averages, and not individual
IPCs, of the benchmarks in the single-program and multipro-
grammed workloads. While we show the results for 8 FO4, 6 FO4
and 10 FO4 (not shown) follow similar trends as 8 FO4. We will
show 6 and 10 FO4 to find the optimal clock period in the next
subsection. As mentioned in Section 2.2, the single-program IPC
substantially degrades due to relatively-increased wire delays
with technology. As we go from 100nm to 50nm, the average sin-
gle-program IPC decreases by 24% and 12% for nb2b and b2b,
respectively. In comparison, the IPC degradation in multipro-
grammed workloads due to relatively-increased wire delays is
less severe. Going from 100nm to 50nm, the average IPC degra-
dation for 2-, 3-, 4-, and 5-program workloads is 16%, 14%, 12%,
and 12%, respectively, for nb2b, and 10%, 8%, 5%, and 4%,
respectively, for b2b.

Two other trends are clear: First, in both single-program and
multiprogrammed workloads, the IPC degradation for nb2b is
higher than that for b2b. By using architectural techniques to cir-
cumvent pipeline loops (Section 2.1), b2b is more tolerant to wire
delays and incurs less IPC degradation. However, as mentioned in
Section 2.2, some loops are still lengthened, even if these tech-
niques are used. Consequently, even b2b incurs IPC degradation.
Using multiple programs compensates for this degradation. Sec-
ond, as the number of programs increase from 2 to 5, the IPC deg-
radation becomes progressively less substantial. As mentioned in
Section 2.3, more programs provide more latency tolerance, mak-
ing the relatively-increased wire delays less significant.

5.2.2 Optimal pipeline depths for superscalar and SMT

We discuss the optimal pipeline depths for superscalar and
SMT processors, based on maximizing the number of instructions
executed per second. Figure 7 shows throughput in billions of
instructions per second (BIPS) for 1-, 2-, 3-, 4-and 5-program
workloads at different technologies and clock periods. We obtain
n-program BIPS by multiplying the clock frequency (in GHz) and
the average IPC of all n-program workloads. The absolute values
of BIPS are shown so that the optimal pipeline depths at each
technology are clearly visible. The horizontal lines represent 2x
and 4x improvement in throughput over the optimal single-pro-

Table 7: Functional unit and bypass wire latencies
Tech
nol-
ogy
(nm)

Clock
Period
(FO4)

of cycles

Bypass
wires

Integer Floating Point

Add Mult Add Div Sqrt Mult
100 6 2 3 28 15 50 76 17

8 2 2 19 10 33 51 12
10 1 2 14 8 25 38 9

70 6 3 3 28 15 50 76 17
8 2 2 19 10 33 51 12
10 2 2 14 8 25 38 9

50 6 4 3 28 15 50 76 17
8 3 2 19 10 33 51 12
10 2 2 14 8 25 38 9

Alpha 19 0.5 0.5 7 4 12 18 4

0.75

0.85

0.95

0.8

0.9

1.0

1-p
rog

ram

2-p
rog

ram

100nm 70nm 50nm

No
rm

al
ize

d
IP

C

3-p
rog

ram

4-p
rog

ram

5-p
rog

ram

1-p
rog

ram

2-p
rog

ram

3-p
rog

ram

4-p
rog

ram

5-p
rog

ram

FIGURE 6: Effect of wire delays on IPC for 8FO4
pipeline

No-Back-to-Back (nb2b) Back-to-Back (b2b)

gram throughput at 100nm technology.
For single program, the optimal pipeline depth decreases with

technology. Going from 100nm to 50nm technology, the optimal
clock period for single-program increases from 8 FO4 to 10 FO4
in nb2b, and from 6 FO4 to 8 FO4 in b2b. Our results for 100nm
technology match with those in [14], which shows that the opti-
mal pipeline depth for 100nm technology is 6 to 8 FO4. However,
the optimal pipeline depth decreases as wire delays become more
dominant, as mentioned in Section 2.2. Even in the wire-delay-
tolerant b2b, there are some pipeline loops whose effect cannot be
compensated (Section 2.2), resulting in shallower optimal pipe-
lines.

In contrast, multiprogrammed workloads maintain a constant
optimal pipeline depth across technology generations. All the
multiprogrammed workloads achieve optimal clock period at 8
FO4 in nb2b, and 6 FO4 in b2b. Because the b2b numbers seem
like throughput may not peak at 6 FO4, we simulated 4FO4 (not
shown) for b2b and found 4 FO4 to be worse than 6 FO4, as men-
tioned in Section 4. This constant pipeline depth enables the clock
period to be increased by 43% every technology generation with-
out having sub-optimal throughput.

We see three other trends. First, b2b has a deeper optimal pipe-
line than nb2b in all technologies. Deeper pipelines cause rela-
tively less IPC degradation in b2b, allowing a higher optimal
clock period. Second, single-program optimal throughput scales
slowly with technology. Going from 100nm to 50nm, the optimal
throughput improves 1.54x (from 2.9 to 4.5BIPS) in nb2b, and
1.73x (from 4.5 to 7.9BIPS) in b2b. These improvements are sig-
nificantly less than the 4x improvement in two technology genera-
tions expected by Moore’s Law. Using multiple programs, SMT
achieves the 2x improvement every generation with just a modest
4-way issue width. As compared to the optimal single-program
throughput at 100nm, nb2b requires 2 and 4 programs for 2x
improvement from 100nm to 70nm and from 70nm to 50nm,
respectively. b2b requires 3 and 5 programs for the same improve-
ment. Third, b2b requires more programs than nb2b to provide 2x
improvement every generation. Because b2b uses wire-delay-tol-
erance mechanisms, the gap between the single-program and mul-
tiple-program throughput in b2b is relatively less compared to
that in nb2b. Therefore, b2b needs more programs. With the wire
delay effect more dominant in nb2b, SMT requires fewer pro-
grams to scale throughput because of its ability to tolerate the

wire delays effectively. Recall from Section 3.2 that b2b and nb2b
provide bounds. Therefore, a pipeline that implements some tech-
niques to alleviate pipeline loops (such as those discussed in
Section 2.2) will do better than nb2b and worse than b2b for sin-
gle-program. Consequently, such a pipeline will require between
2 to 3 programs and between 4 to 5 programs for 2x improvement
from 100nm to 70nm and from 70nm to 50nm, respectively.

5.3 Bandwidth effect of wire delays

In this section, we analyze the effect of bandwidth scaling of
RAM/CAM structures on SMT throughput. As mentioned in
Section 4, we assume wave pipelining in both the latency-opti-
mized and bitline-scaled RAM/CAM. This assumption favors
latency-optimized by reducing the bandwidth gap between
latency-optimized and bitline-scaled. We consider bandwidth
constraints of RAM and CAM structures in both b2b and nb2b,
with the exception that the issue queue in b2b is perfectly pipe-
lined, as explained in Section 5.1.2. For comparison purposes, we
also show a perfect configuration with the latency of latency-opti-
mized and the bandwidth of perfect pipelining. Because
Section 5.2 assumes perfect pipelining, the results for perfect are
the same as those using the optimal clock period for each technol-
ogy in Section 5.2.

Figure 8 shows the BIPS for perfect, bitline-scaled, and
latency-optimized, both for nb2b and b2b at different technolo-
gies. We compared other bandwidth schemes, 8-way banked
cache, and line buffer having 8-full-cache-block entries (as rec-
ommended by [28]), with latency-optimized (2-ported, wave-
pipelined) cache, and found latency-optimized cache to perform
better (we do not show those numbers in the interest of space).
While [28] reports the schemes to be better than two ports, [28]
does not consider wave-pipelining, and ignores scheduling dis-
ruptions due to line buffer misses and bank conflicts (Section 3.1).
Therefore, we compare to a latency-optimized cache. Though we
evaluated the schemes only for caches, other RAM structures
using banking or line buffer would incur similar disruptions in
scheduling. Therefore, we compare to latency-optimized designs
for all structures. We obtain the latency and bandwidth numbers
for various structures from Table 4 through Table 7. As in
Figure 7, we show average BIPS for different number of pro-
grams. All the results are shown for the clock periods found to be

(b) Back-to-Back (b2b)

1-program 2-program 3-program 4-program 5-program

6 FO4 clock

100
nm

70
nm

50nm

8 FO4 clock10 FO4 clock

FIGURE 7: BIPS for single-threaded and multi-threaded workloads

Bi
llio

ns
 o

f I
ns

tru
ct

io
ns

 p
er

 s
ec

on
d

0

4

8

12

16

20

(a) No-Back-to-Back (nb2b)
0

4

8

12

16

20

100
nm

70
nm

50nm
1-program 2-program 3-program 4-program 5-program

1xP: 1x optimal 1-program BIPS @ 100nm 4xP: 4x optimal 1-program BIPS @ 100nm2xP: 2x optimal 1-program BIPS @ 100nm

4xP

2xP

1xP

4xP

2xP

1xP

optimal for each technology in Section 5.2. The solid horizontal
lines show the 1x, 2x and 4x BIPS values as compared to the opti-
mal single-program BIPS in perfect at 100nm, while the dotted
horizontal lines show the 1x, 2x, and 4x BIPS values as compared
to the optimal single-program BIPS in latency-optimized at
100nm.

The throughput for latency-optimized is reasonably close to
that of perfect for single-program, but the gap widens signifi-
cantly with increasing number of programs. For example, at 50nm
technology, latency-optimized lags behind perfect by 5%, 7%,
11%, 16%, and 21% in nb2b, and by 11%, 19%, 24%, 26%, and
29% in b2b for 1, 2, 3, 4, and 5 programs respectively. With more
programs, the bandwidth demand on RAM/CAM structures also
increases. The inability of latency-optimized to provide the much-
needed bandwidth limits the throughput of multiprogrammed
workloads. b2b suffers more degradation due to limited band-
width than nb2b. Because b2b uses techniques to extract more
parallelism and hide latency, the bandwidth requirement in b2b is
higher than that in nb2b.

The scaling trends for latency-optimized are substantially
worse than those for perfect. In comparison with latency-opti-
mized single-program throughput at 100nm, latency-optimized
requires 3 programs in both nb2b and b2b, for 2x improvement at
70nm technology. Going from 70nm to 50nm technology, even 5
programs are not enough to get further 2x improvement in both
nb2b and b2b. We simulated 6 programs (not shown), and found
2.02x and 1.71x improvement in nb2b and b2b, respectively.
Increasing the number of programs does not provide enough
improvements for latency-optimized due to limited bandwidth.

The throughput for bitline-scaled is reasonably close to perfect
in all the workloads. For example, at 50nm, bitline-scaled lags
behind perfect by 7%, 4%, 3%, 2%, and 2% in nb2b, and by 8%,
3%, 3%, 2%, and 3% in b2b for 1, 2, 3, 4, and 5 programs respec-
tively. The increased latency of RAM/CAM structures in bitline-
scaled, as compared to perfect, does not have a significantly
worse impact on throughput of multiprogrammed workloads due
to SMT’s ability to hide latency.

Bitline-scaled shows almost similar scaling trends as perfect.
In comparison with the single-program throughput for perfect at
100nm, bitline-scaled requires 2 programs in nb2b, and 3 pro-

grams in b2b to achieve 2x improvement at 70nm, and 5 programs
in both nb2b and b2b to achieve further 2x improvement at 50nm.
Note that in the latency-optimized case we see if throughput
scales to 2x and 4x of that of itself and not perfect, whereas in the
bitline-scaled case, we see if throughput scales to 2x and 4x of
that of perfect. These results confirm that bitline scaling is key to
scaling SMT throughput in future technologies.

5.4 Effect of issue width

In this section, we analyze the effect of increasing issue width
on the scaling trends for superscalar and SMT. We use a wide-
issue configuration for all results in this section. wide-issue uses
8-way issue with a 48-entry issue queue and 400 integer and FP
physical registers, both for superscalar and SMT processors.
Except the register file, and issue queue, the other architectural
parameters for wide-issue are similar to those for the base config-
uration shown in Table 1. We compare the scaling trends in wide-
issue due to the latency and bandwidth effects of wire delays with
the scaling trends in base configuration.

Table 8 shows the latency and bandwidth results for the issue

0

4

8

12

16

20

Bi
llio

ns
 o

f I
ns

tru
ct

io
ns

 p
er

 s
ec

on
d

1-program 2-program 3-program 4-program 5-program

(a) No-Back-to-Back (nb2b)

1-program 2-program 3-program 4-program 5-program

(b) Back-to-Back (b2b)

perfectbitline-scaled + wave-pipelinedlatency-optimized + wave-pipelined

100
nm

70
nm

50
nm

100
nm

70
nm

50
nm

FIGURE 8: Effect of bandwidth scaling on performance

4xP
4xL

2xL

2xP: 2x optimal 1-program BIPS for perfect @ 100nm
4xL: 4x optimal 1-program BIPS for latency-optimized +wave-pipelined @ 100nm
2xL: 2x optimal 1-program BIPS for latency-optimized +wave-pipelined @ 100nm

0

4

8

12

16

20

2xP

4xP: 4x optimal 1-program BIPS for perfect @ 100nm

4xP

4xL

2xP

2xL

1xP: 1x optimal 1-program BIPS for perfect @ 100nm 1xL: 1x optimal 1-program BIPS for latency-optimized +wave-pipelined @ 100nm

1xP

1xL

Table 8: Issue queue and register file results f or
wide-issue

Tec
hnol
ogy
(nm
)

Clock
Perio
d(FO
4)

Register File Issue Queue

latency(cycles)/
bandwidth
(access/cycle)

l-o b-s
of
cycles

Access
/cycle

of
cycles

Access
/cyclel-o b-s

Wak
eup

Sel
ect

Wak
eup

Sel
ect

100 6 4/1 4/1 2 2 0.5 3 2 1
8 3/1 4/1 2 1 0.5 2 1 1
10 3/1 3/1 1 1 1 1 1 1

70 6 5/0.5 5/1 3 2 0.3 5 2 1
8 4/0.5 4/1 2 1 0.5 3 1 1
10 3/1 3/1 2 1 0.5 2 1 1

50 6 5/0.5 5/1 3 2 0.3 6 2 1
8 4/0.5 4/1 2 1 0.5 4 1 1
10 3/1 4/1 2 1 0.5 3 1 1

queue and register file in wide-issue. For all other RAM/CAM
structures, the results are the same as the ones already shown for
the base case in Table 4 through Table 7. We obtain latency and
bandwidth results for register file and issue queue wakeup from
Cacti. We use the results in [18] to scale the select latency for
wider issue.

In both the latency-optimized and bitline-scaled cases, the reg-
ister file in wide-issue has higher latency as compared to the regis-
ter file in the base case. While the latency-optimized register file
in wide-issue has worse bandwidth, the bitline-scaled register files
in both wide-issue and the base case have the same bandwidth.

The latency and bandwidth results for latency-optimized and
bitline-scaled issue queues in both wide-issue and the base case
show similar trends as the latency and bandwidth results for the
register files in the two configurations. Also, note that the larger
and wider bitline-scaled issue queue in wide-issue requires more
segments than in the base configuration.

Table 9 shows the optimal clock period for wide issue at differ-
ent technologies. We obtain the optimal clock periods by maxi-
mizing the IPS, using a methodology similar to the one used for
the base case in Section 5.2.2. In the interest of space, we do not
show complete IPS results, and show only the optimal periods.

For single program, the optimal pipeline depth decreases with
technology. Going from 100nm to 50nm technology, the optimal
clock period for single-program increases from 8 FO4 to 10 FO4
in nb2b, and from 6 FO4 to 8 FO4 in b2b. In contrast, multipro-
grammed workloads maintain a constant optimal pipeline depth
across technology generations. These results are similar to the
results obtained for the base case in Section 5.2.2.

Figure 9 shows the BIPS in wide-issue for perfect, bitline-
scaled, and latency-optimized, both for nb2b and b2b at different
technologies. All the results are shown for the optimal clock peri-

ods shown in Table 9.
We discuss latency effect first. Recall from Section 5.3 that

perfect has the latency of latency-optimized and the bandwidth of
perfect pipelining. To isolate latency effect of wire delays from
bandwidth effect, we analyze the results for perfect.

Single-program optimal throughput scales slowly with tech-
nology. Going from 100nm to 50nm, the optimal throughput
improves 1.71x (from 3.1 to 5.3BIPS) in nb2b, and 1.76x (from
4.6 to 8.1BIPS) in b2b. As compared to the optimal single-pro-
gram throughput at 100nm, both nb2b and b2b require 2 and 4
programs for 2x improvement from 100nm to 70nm and from
70nm to 50nm, respectively. Comparing these results with the
base case results in Figure 7, we see that wide-issue requires
fewer programs to achieve 2x improvement every generation.
Because of more parallelism, SMT utilizes the increased issue
width available in wide-issue more efficiently, and is able to
achieve the 2x improvement with fewer programs.

Next, we discuss bandwidth effect. The throughput for
latency-optimized is reasonably close to that of perfect in single-
program, but lags behind perfect progressively with increasing
number of programs. In comparison with latency-optimized opti-
mal single-program throughput at 100nm, latency-optimized
requires 3 programs both in nb2b, and b2b, for 2x improvement at
70nm. From results not shown here, we found that even 6 pro-
grams are not enough to get further 2x improvement from 70nm
to 50nm in both nb2b and b2b. The multiprogrammed workloads,
because of their higher bandwidth demand, show worse scaling
trends for latency-optimized in wide-issue than in the base case.

The throughput for bitline-scaled is reasonably close to that of
perfect in all the workloads. In comparison with the optimal sin-
gle-program throughput for perfect at 100nm, bitline-scaled
requires 2 programs to achieve 2x improvement at 70nm, and 4
programs to achieve further 2x improvement at 50nm, both in
nb2b and b2b. Comparing with the base case bitline-scaled results
in Figure 8, the wide-issue bitline-scaled SMT requires fewer pro-
grams to maintain the scaling trends.

6 Conclusions

Using simulations with SPEC2000 benchmarks, we found the
following: (1) The optimal pipelines for superscalar become shal-
lower due to slow scaling of wire delays in future technologies.

Table 9: Optimal clock periods for wide-issue

Tech-
nology
(nm)

Optimal Clock Period (FO4)
No-back-to-back(nb2b) Back-to-Back(b2b)

Number of Programs Number of Programs
1 2 3 4 5 1 2 3 4 5

100 8 8 8 8 8 6 6 6 6 6
70 10 8 8 8 8 8 6 6 6 6
50 10 8 8 8 8 8 6 6 6 6

1-program 2-program 3-program 4-program 5-program

(a) No-Back-to-Back (nb2b)

1-program 2-program 3-program 4-program 5-program

(b) Back-to-Back (b2b)100
nm

70
nm

50
nm

100
nm

70
nm

50
nm

FIGURE 9: BIPS results for wide-issue

perfectbitline-scaled + wave-pipelinedlatency-optimized + wave-pipelined

2xP: 2x optimal 1-program BIPS for perfect @ 100nm
4xL: 4x optimal 1-program BIPS for latency-optimized +wave-pipelined @ 100nm
2xL: 2x optimal 1-program BIPS for latency-optimized +wave-pipelined @ 100nm

4xP: 4x optimal 1-program BIPS for perfect @ 100nm

1xP: 1x optimal 1-program BIPS for perfect @ 100nm 1xL: 1x optimal 1-program BIPS for latency-optimized +wave-pipelined @ 100nm

0

4

8

12

16

20

Bi
llio

ns
 o

f I
ns

tru
ct

io
ns

 p
er

 s
ec

on
d

0

4

8

12

16

204xP
4xL

2xP
2xL

4xP
4xL

2xP
2xL

1xP

1xL

(2) An SMT running a multiprogrammed workload with just 4-
way issue not only retains the optimal pipeline depth over tech-
nology generations, enabling at least 43% increase in clock speed
every generation but also achieves the remainder of the expected
speedup of two per generation through IPC. As wire delays
become more dominant in future technologies, the number of pro-
grams needs to be scaled modestly to maintain the scaling trends,
at least till the near-future 50nm technology. (3) While this result
ignores bandwidth constraints, using SMT to tolerate latency due
to wire delays is not that simple because SMT causes bandwidth
problems. We show that using conventional, latency-optimized
RAM/CAM structures prevents scaling of SMT throughput. (4)
We use bitline scaling to allow RAM/CAM bandwidth to scale
with technology. Bitline scaling enables SMT throughput to scale
at the rate of two per technology generation in the near future.

Previous papers have concluded that revolutionary changes are
needed to achieve single-program performance scaling in wire-
delay-dominated future technologies. We have shown that for
multiprogrammed workloads, SMT suffices for the near future.
While single-program performance may continue to be important,
many commercial microprocessors have adopted SMT and future
high-performance machines are likely to run multiprogrammed/
multithreaded workloads on SMT. However, more programs will
be needed to continue the scaling trends beyond the technologies
we have considered.

Acknowledgments

We would like to thank the anonymous reviewers for their
comments on an earlier draft of this paper. This research is sup-
ported in part by NSF under CAREER award 9875960-CCR and
NSF Instrumentation grant CCR-9986020.

References

[1] A. Agarwal, K. Roy, and T. N. Vijaykumar. Exploring high band-
width cache architecture for scaled technology. In Design Automation
and Test in Europe Conference 2003, pages 778–783, 2003.

[2] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock rate
versus IPC: The end of the road for conventional microarchitectures.
In Proceedings of the 27th Annual International Symposium on Com-
puter Architecture, pages 248–259, June 2000.

[3] B. Amrutur and M. Horowitz. Speed and power scaling of SRAMs.
IEEE Transactions on Solid-State Circuits, 35(2):175–185, 2000.

[4] S. I. Association. International technology roadmap for semiconduc-
tors, 2002.

[5] E. Borch, E. Tune, S. Manne, and J. Emer. Loose loops sink chips. In
Eighth International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 299–310, Feb. 2002.

[6] M. Brown and Y. Patt. Using internal redundant representations and
limited bypass to support pipelined adders and register files. In Eighth
International Symposium on High Performance Computer Architec-
ture (HPCA), pages 289–298, Feb. 2002.

[7] D. Burger and T. Austin. The SimpleScalar Tool set, version 2.0.
Technical report, University of Wisconsin-Madison, 1997.

[8] T. Chappell, B. Chappell, S. Schuster, J. Allan, S. Klepner, R. Joshi,
and R. Franch. A 2-ns cycle, 3.8-ns access 512-kB CMOS ECL
SRAM with a fully pipelined architecture. IEEE Journal of Solid State
Circuits, 26(11):1577–1585, 1991.

[9] V. De and S. Borkar. Technology and design challenges for low pow-
er and high performance. In Proceedings of the International Sympo-

sium on Low Power Electronics and Design, pages 163–168, 1999.
[10] D. Ernst and T. Austin. Efficient dynamic scheduling through tag

elimination. In Proceedings of the 28th Annual International Sympo-
sium on Computer Architecture, pages 253–264, June 2002.

[11] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel. The microarchitecture of the Pentium 4 processor. In-
tel Technology Journal, Feb. 2001.

[12] R. Ho, K. Mai, and M. Horowitz. The future of wires. Proceedings of
the IEEE, 89(4):490–504, 2001.

[13] R. Ho, K. Mai, and M. Horowitz. Managing wire scaling: A circuit
perspective. In Digest of Technical Papers International Interconnect
Technology Conference, 2003.

[14] M. Hrishikesh, D. Burger, N. Jouppi, S. Keckler, K. Farkas, and
P. Shivakumar. The optimal logic depth per pipeline stage is 6 to 8
FO4 inverter delays. In Proceedings of the 29th Annual International
Symposium on Computer Architecture, pages 14–24, June 2002.

[15] R. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24–
36, 1999.

[16] K. Nogami and T. Sakurai. A 9-ns hit delay, 32-kbyte cache macro for
high speed RISC. IEEE Journal of Solid State Circuits, 25(1):100–
108, 1990.

[17] K. Osada, H. Higuchi, K. Ishibashi, N. Hashimoto, and K. Shiozawa.
A 2-ns access, 285 Mhz, two-port cache macro using double global
bit-line pairs. In ISSCC Dig. Tech. Papers, pages 402–403, 1997.

[18] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective su-
perscalar processors. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, June 1997.

[19] S. Raasch, N. Binkeri, and S. Reinhardt. A scalable instruction queue
design using dependence chains. In Proceedings of the 29th Annual
International Symposium on Computer Architecture, pages 318–329,
June 2002.

[20] T. Sherwood, G. Varghese, and B. Calder. A pipelined memory archi-
tecture for high throughput network processors. In Proceedings of the
30th Annual International Symposium on Computer Architecture,
pages 288–299, 2003.

[21] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache tim-
ing, power and area model. Technical report, Compaq Computer Cor-
poration, Aug. 2001.

[22] G. S. Sohi and M. Franklin. High-bandwidth data memory systems
for superscalar processors. In Proceedings of the 4th International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 53–62, 1991.

[23] E. Sprangle and D. Carmean. Increasing processor performance by
implementing deeper pipelines. In Proceedings of 29th Annual Inter-
national Symposium on Computer Architecture, pages 25–36, 2002.

[24] J. Stark, M. Brown, and Y. Patt. On pipelining dynamic instruction
scheduling logic. In Proceedings of the 33rd International Symposium
on Microarchitecture, pages 57–66, Dec. 2000.

[25] D. Tullsen and J. Brown. Handling long-latency loads in a simulta-
neous multithreading processor. In Proceedings of the 34th Interna-
tional Symposium on Microarchitecture, pages 318–327, 2001.

[26] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm. Ex-
ploiting choice: instruction fetch and issue on an implementable si-
multaneous multithreading processor. In Proceedings of the 23rd
Annual International Symposium on Computer Architecture, pages
191–202, 1996.

[27] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages 392–403,
1995.

[28] K. Wilson, K. Olukotun, and M. Rosenblum. Increasing cache port
efficiency for dynamic superscalar microprocessors. In Proceedings
of the 23rd Annual International Symposium on Computer Architec-
ture, pages 147–157, 1996.

