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Abstract

Power density is a growing problem in high-performance pro-
cessors in which small, high-activity resources overheat. Two cat-
egories of techniques, temporal and spatial, can address power
density in a processor. Temporal solutions slow computation and
heating either through frequency and voltage scaling or through
stopping computation long enough to allow the processor to cool;
both degrade performance. Spatial solutions reduce heat by mov-
ing computation from a hot resource to an alternate resource (e.g.,
a spare ALU) to allow cooling. Spatial solutions are appealing
because they have negligible impact on performance, but they
require availability of spatial slack in the form of spare or
underutilized resource copies. Previous work focusing on spatial
slack within a pipeline has proposed adding extra resource copies
to the pipeline, which adds substantial complexity because the
resources that overheat, issue logic, register files, and ALUs, are
the resources in some of the tightest critical paths in the pipeline.
Previous work has not considered exploiting the spatial slack
already existing within pipeline resource copies. Utilization can
be quite asymmetric across resource copies, leaving some copies
substantially cooler than others.

We observe that asymmetric utilization within copies of three
key back-end resources, the issue queue, register files, and ALUS,
creates spatial slack opportunities. By balancing asymmetry in
their utilization, we can reduce power density. Scheduling policies
for these resources were designed for maximum simplicity before
power density was a concern, our challenge is to address asym-
metric heating while keeping the pipeline simple. Balancing asym-
metric utilization reduces the need for other performance-
degrading temporal power-density techniques. While our tech-
niques do not obviate temporal techniques in high-resource-utili-
zation applications, we greatly reduce their use, improving overall
performance.

1 Introduction

Power density is a growing problem in high-performance
processors in which small, high-activity resources such as func-
tional units overheat. Power density increases with technology
generations as scaling of clock speed, processor current, and
device area further exceeds the ability of affordable micropro-
cessor packages to dissipate heat away from the hot spots.

Two categories of techniques, temporal and spatial, can
address power density in a processor. Temporal solutions slow
computation and heating either at fine-granularity through fre-
quency and voltage scaling [16] or at coarse-granularity through

stopping computation long enough to allow the processor to cool
before resuming at full speed [10]. The slowing down or stop-
ping results in performance degradation. Spatial solutions
reduce heat by moving computation from a hot resource to an
alternate resource copy (e.g., a spare ALU) to allow cooling.
Spatial solutions are appealing because they have negligible
impact on performance, but they require availability of spatial
slack in the form of spare or underutilized resource copies. Pre-
vious work focusing on spatial slack has either proposed adding
extra resource copies to a pipeline [16, 11] or targeted chip mul-
tiprocessors (CMPs) without addressing power density within an
individual core [14]. Unfortunately, adding extra resource copies
usually increases design complexity and critical-path delay.

Previous work has not considered exploiting the spatial slack
already existing within the resource copies of a processor pipe-
line. Our key observation is that in modern processors not only
is there resource underutilization, but utilization can be quite
asymmetric, leaving some copies substantially cooler than oth-
ers. For example, a processor with four ALUs will have one
ALU that is used much more often than the others. There are two
key reasons for this asymmetric utilization. (1) Processor issue
width is chosen for bursty issue of many instructions to achieve
high performance, but in most cycles at most one or two instruc-
tions are available for issue. (2) To achieve design simplicity,
hardware schedulers statically prioritize resource copies such
that even though only one or two instructions may execute, the
same copies are used again and again while others remain
mostly idle. It may seem that asymmetric utilization would not
result in substantially asymmetric heating because the copies are
adjacent. In reality, these overutilized copies become substan-
tially hotter than their underutilized neighbors because heat con-
ducts much more vertically to the heat sink than laterally to
adjacent copies [16]. In our example of four ALUs where one is
hotter than the others, evenly utilizing all four ALUs distributes
the power effectively over four times the area. Such asymmetry
causes hotspots, necessitating the use of performance-degrading
temporal techniques. Previous work [16, 14] has not detected
this heating asymmetry because aggregated resource copies (e.g.
all ALUs) were modeled as a single thermal block and not indi-
vidually.

The issue queue, ALUs, and register files are the source of
most overheating in modern processors [5, 11, 17]. We propose
to balance the asymmetric utilization within these resources to
reduce power density. Scheduling policies for these resources
were designed for maximum simplicity in technologies where
power density was not a concern; our challenge is to balance



asymmetric utilization while keeping the pipeline simple and
minimally impacting processor cycle time. Previous work [16,
11] has not addressed this challenge of implementation simplic-
ity in power-density techniques. While balancing asymmetry is a
common goal for all the three resources, fundamental differ-
ences in how the resources are structured dictate different tech-
niques for each resource. For example, the processor may
continue operating using other ALUs if some ALUs are over-
heated, but not if any part of the issue queue is overheated. The
contributions of this paper are our techniques for balancing utili-
zation of the three resources.

Modern superscalar processors use compacting issue queues
which statically assign priorities to queue entries: the head con-
tains older, high-priority instructions and the tail contains newer
instructions. When lower-priority instructions issue, compaction
logic defragments the resulting empty spaces, resulting in high-
energy reads and writes to these entries. Entries near the head of
the queue undergo compaction only if one of their instructions
issues, but entries near the tail of the queue undergo compaction
when any instruction issues. Because of these priority policies,
compaction occurs most frequently in the low-priority tail-
region queue entries, creating an asymmetry in utilization. To
balance this asymmetry, we divide the issue queue into two
halves, and we toggle the head and tail between the halves when
a substantial temperature difference builds between them. We
use a detailed model of issue and compaction logic to show that
this technique has minimal impact on logic complexity. This
activity-toggling issue queue is our first contribution.

In contrast to the issue queue which is a single monolithic
resource, modern processors have multiple copies of ALUs
allowing more flexible exploitation of spatial slack. Processors
can issue instructions to any of these ALUs, but to keep instruc-
tion select and map simple, ALUs are statically prioritized such
that high-priority ALUs are used again and again even when
low-priority ALUs are idle. This static priority policy results in
asymmetric utilization across the ALU copies. Ideally, we would
like to balance perfectly ALU utilization using round-robin pri-
ority, but this priority scheme would add substantial complexity
to instruction mapping logic. Instead, as a simple alternative to
round-robin, we shut down overheated ALUs by marking them
as busy, forcing select and map to choose among the underuti-
lized ALUs while the overheated ALUs cool. This fine-grain
turnoff policy allows the other ALUs to execute instructions
while some cool, in contrast to conventional temporal tech-
niques which shut down the entire processor if even a single
ALU (or some other resource copy) overheats. Marking resource
copies as busy does not affect the critical mapping logic and
minimally degrades performance. Fine-grain turnoff is our sec-
ond contribution.

Processors employ register-file copies to achieve low latency
and high bandwidth; read ports of a register-file copy are wired
to ALUs, creating a static mapping between ports and ALUs.
Because each copy is mapped to multiple ALUs, there exists a
many-to-one mapping between copies (not ports) and ALUs,
giving rise to two utilization symmetries: one for ports within
each register-file copy, and the other across register-file copies.
If this mapping were one-to-one then only the second utilization

symmetry would exist and our ALU techniques would suffice
for the register file. However, the many-to-one nature requires
achieving both of these utilization symmetries. One easy-to-
implement option for achieving utilization symmetry across
copies is balanced mapping, which interleaves high- and low-
priority ALUs to individual register-file copies (e.g., priority 1
and 3 to one copy, and priority 2 and 4 to another). Balanced
mapping slows overheating of any copy by spreading the utiliza-
tion among all copies, and seems like a good solution. In addi-
tion, fine-grain turnoff can be employed for register-file copies,
similar to ALUs, to allow continued processor operation as long
as not all register-file copies are overheated. Fine-grain turnoff
for register-file copies may be implemented simply by marking
busy the ALUs mapped to an overheated copy.

However, combining balanced mapping and fine-grain turn-
off creates an unexpected inefficiency in port usage because nei-
ther technique achieves utilization symmetry within a copy.
Consequently, we advocate a counter-intuitive strategy of prior-
ity mapping, which maps all high-priority ALUs to one copy and
all low-priority ALUs to another copy (e.g., priority 1 and 2 to
one copy, and priority 3 and 4 to another), to be used with fine-
grain turnoff. Under priority mapping combined with fine-grain
turnoff, only one copy is utilized heavily until it overheats at
which point other copies are used while the first one cools. Thus,
the combination achieves utilization symmetry both across and
within copies; this combination is our third contribution. While
balanced mapping heats each copy more slowly than priority
mapping, balanced mapping uses ports less efficiently. We find
that the slower rate of heating is offset by the lower port-usage
efficiency.

While our techniques do not obviate the need for temporal
techniques in high-resource-utilization applications, our tech-
niques greatly reduce their use, improving overall performance.

The main contributions of this paper are:
® We identify that proven techniques of compacting issue

queues and static priority in ALUs and register-file ports,

which have been habitually used for generations due to their
overwhelming simplicity, interact unfavorably with the
emerging problem of power density.

® In an issue-queue constrained processor, activity toggling in

the issue queue improves performance by an average of 14%

in applications constrained by issue queue and 9% overall.
® In an ALU-constrained processor, fine-grain turnoff

improves performance by an average of 40%.
® In aregister-file constrained processor, fine-grain turnoff and

priority mapping improve performance by an average of

17% over priority mapping without fine-grain turnoff and

7% over balanced mapping without fine-grain turnoff.

The rest of this paper is organized as follows. Section 2
describes balancing asymmetric utilization. Section 3 discusses
our experimental methodology. Section 4 presents our results,
and Section 5 discusses related work. We conclude in Section 6.

2 Balancing Resource Utilization

In this section we describe the details of techniques that



exploit spatial slack within microarchitectural resources to
reduce the occurrence of hotspots. We address intra-resource
hotspots in the following microarchitectural resources: issue
queue, ALUs, and register-file copies. For each resource we first
discuss why there is an asymmetric distribution of activity
within the resource or its resource copies and therefore why
there is spatial slack. We then show how the distribution can be
evened out to utilize the spatial slack by applying variations to
the priority schemes that do not significantly increase complex-
ity or area.

2.1 Issue Queue

Compaction in the issue queue is frequently identified as one
of the largest consumers of energy in the processor [9]. The pur-
pose of the compaction process is to maintain a priority order of
un-issued instructions: older ready instructions should be issued
first. Compaction allows for the critical select logic to be simple.
Without compaction, select must determine which instructions
in an un-ordered list are highest priority. With compaction, pri-
ority is determined simply by position in the queue.

Unfortunately compaction is not a symmetric process. When
the instruction at the head of the queue issues and is marked
invalid, every instruction in the queue must be compacted down
one entry, assuming head is at the bottom and tail is at the top as
shown in Figure 1. If the instruction at the tail of the queue is
issued, no compaction is necessary. In other words, only instruc-
tions newer than the oldest instruction issued must be updated.
This policy results in entries at the tail of the queue compacting
after every issue, while entries at the head remain idle for a large
fraction of the time.

To understand why this asymmetric compaction behavior
leads to asymmetric power consumption and therefore asymmet-
ric power density we describe typical compaction hardware as
described in [8]. Figure 1 shows a simplified version of the com-
paction logic for a 3-way issue processor. Each entry holds an
instruction tag, 2 physical-register tags, ready bits for the two
operands, and a valid bit for the entry. The instruction tag corre-
sponds to an address in a payload RAM that holds the additional
instruction information. The payload RAM is read only when
the instruction issues [3]. The output of each queue entry feeds
to higher-priority entries. Generally, in an n-way issue processor,
compaction of up to n invalid entries (i.e., the full issue width) is
supported per cycle. Supporting n invalid entries requires that
each entry can move down (towards the head) a maximum of n
positions in the queue, or more specifically, each entry must
drive inputs to the n entries below it for all bits in the entry. Each
entry must then choose its new value from the above valid
entries. Each entry produces its own mux selects using global
invalid counts determined by a global adder. Once each entry
calculates its mux select, the value is driven across the width of
the queue to the mux. Driving the mux selects across the width
of the queue, and driving the entry contents down part of the
length of the queue consume much more energy than the transis-
tors implementing the compaction policy.

Optimizations reduce energy consumption by limiting when
these long wires are charged. Two opportunities exist when an
entry can avoid driving its long wires. 1) When an entry is
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FIGURE 1: Compaction logic details

invalid or there are no invalid entries below the current entry, the
current entry need not charge its data output lines because no
lower entries will compact from it. 2) When an entry is valid and
there are no invalid entries below the current entry, the current
entry need not charge its mux select lines because its state will
not change. There is ample time to determine and perform the
above clock gating because compaction does not occur immedi-
ately after an instruction is issued and marked invalid. Instruc-
tions must remain in the issue queue one or more cycles after
being marked invalid in case there is a L1 miss and the instruc-
tion must be replayed.

The above strategies result in the tail dissipating power on
every compaction access, while the head dissipates power on
only a fraction of the compaction accesses. Consequently, the
head of the queue does not get as hot as the tail of the queue and
there remains unexploited spatial slack.

2.1.1 Exploiting Spatial Slack in Issue Queue

We propose that this intra-resource spatial slack can be uti-
lized by simply adjusting the position of head and tail pointers.
Activity toggling moves the head and tail pointers to balance the
activity of entries in the queue. Ideally, after migrating the head
close to the hot entries, hot entries are accessed less frequently
while cold entries are accessed more frequently. Moving the
head and tail pointers is different from energy-saving techniques
such as in [9], because those techniques only resize the queue
and do not reduce activity in high-utilization regions of the
queue.

Allowing for multiple positions of head and tail pointers in
the queue may seem to add excessive complexity to carefully
designed compaction and selection processes. As mentioned
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before, the purpose of a compacting issue queue is to simplify
select by encoding each instruction’s priority by its location, and
moving the head can break this encoding. To understand how
moving the head affects the priority encoding we use Figure 2,
which depicts the select tree for 1 instruction of a 16 entry issue
queue and demonstrates how compaction simplifies select. In
Figure 2, when an instruction is ready to issue, it raises a request
bit that is sent to its L1 arbitrator. The L1 arbitrator checks all
four of its inputs and if any are requesting it sends a request up
the tree to its L2 arbitrator. The L2 arbitrator does the same
sending a request to the root (L3) arbitrator. The L3 arbitrator is
responsible for selecting only one instruction for the specific
ALU hard-wired (statically mapped) to this select tree. If the
ALU is ready for an instruction, the L3 arbitrator sends a grant
signal back down the tree. If both its request inputs are high, the
L3 arbitrator must send only one grant in priority order. In this
case, the L3 node would send a grant signal to the bottom sub-
tree because the bottom of the queue is the higher-priority head
region. L2 does the same sending of a grant to the bottom-most
(highest priority) L1 block that it requesting. Finally the L1
block sends a grant signal to the bottom-most (highest priority)
requesting instruction. Priority can be satisfied easily at every
tree node, by sending grants down to the bottom-most request-
ing node. The simplicity of this scheme comes from its static
nature that the bottom-most input has the highest priority at all
levels of the select tree.

In the remainder of the section we show that we can provide
for another head/tail configuration, which spreads compaction
heat better in the issue queue, with only simple modifications to
the selection and compaction policy. In Section 4 we show that
one extra compaction mode is sufficient to achieve significant
performance improvements.

Good choices for the new head/tail configuration are not at
first obvious. It may seem that it would be ideal to exchange the
head and tail for the second configuration, but such an exchange
is not realistic. Switching the head and tail would require a com-
plete second copy of the compaction logic and wires so that
instructions could be compacted in the opposite direction. In
addition, every node in the tree would have to be redesigned so
the high-priority end could be dynamically selectable between
top-most and bottom-most requesting input.

Instead, we propose that the head be moved to the middle of
the issue queue as depicted in Figure 3, with the tail one entry
below. With this scheme the lower half of the queue holds newer
instructions. Instructions still compact downward, but when they

reach the bottom of the queue they wrap around and are com-
pacted into the topmost entries of the queue. Instructions in the
top half are not allowed to compact past the tail. Moving the
head to the middle of the queue requires the following changes
to compaction. (1) Dispatch must be able to drive instructions to
the middle of the queue instead of just to the top of the queue.
(2) the entries at the bottom of the queue require additional long
wires to drive their contents to the top of the queue.

Maintaining the compaction direction, and placing the head
in the middle of the queue requires only a minor change to the
select logic. Notice that within each half, higher priority is still
located at the bottom of the half. This mean that the lower select
subtrees of the queue require no modifications and therefore do
not increase in complexity. Only the absolute root node of the
select tree which decides to grant to the top half of the queue or
to the bottom half of the queue must support two modes. In the
conventional head/tail configuration, the root’s bottom request
port is higher priority than the top request port. In the new con-
figuration, the root’s bottom request port is lower priority than
the top request port.

Our scheme takes advantage of the free spatial slack by mon-
itoring issue queue temperature and toggling compaction modes
when the temperature difference between the two halves
exceeds a certain threshold. We can sense temperature using on-
chip temperature sensors, which [16] says are reasonable to
place on-chip at resource or resource-copy granularity. In fact,
POWERS uses 24 such temperature sensors [7]. Toggling modes
causes no correctness problems because priority order of
instructions in the queue is not required for correctness. Immedi-
ately after a toggle, older instructions that should have higher
priority may become lower priority than newer instructions. But
after these older instructions issue, all instructions in the queue
will stay in priority order until the next toggle. Because tempera-
tures change slowly, at scales on the order of milliseconds, tog-
gles are infrequent (millions of cycles) and the effect of these
instructions having lower priority is negligible.

Although we move the head to combat the utilization asym-
metry we are not able to guarantee moving the head will prevent
overheating, because we cannot turn off completely the hot half
and keep the processor running. For correctness, unless issue is
completely halted, broadcast must continue to all entries and
may trigger high amounts of compaction even in the head (i.e., a
hot half could get even hotter). As such our technique attempts
to even out the utilization and prevent a half from reaching the
thermal threshold. If one does overheat we stop all issue and
allow the processor to cool, which is a performance-degrading
temporal technique as discussed in Section 1. In the next two
subsections, we discuss resources that have independent
resource copies that can be turned off entirely, unlike issue-
queue halves, allowing more flexibility in utilizing spatial slack.

2.2 ALUs

While compaction leads to asymmetric utilization in the issue
queue, instruction select and map leads to asymmetric utilization
of the ALUs. Figure 2 shows one select tree that selects for one
ALU; a superscalar has one such tree responsible for select and
map for each individual ALU. Without restricting which region



of the issue queue a select tree may select from, select logic
must take special precautions to ensure that multiple select trees
do not select the same instruction. This requirement is handled
by serializing the select trees [12]. Select happens in static prior-
ity order; the first tree selects, and the second masks its request
signals with the grant signals of the first tree, ensuring that it can
not select something already selected, and so on.

Because the select trees are constructed in a static priority
order and each select tree is hard wired to a specific ALU, the
ALUs are also forced into a corresponding static priority order.
Consequently, if even just one instruction issues, the highest-pri-
ority ALU will always be accessed. On the other hand, the low-
est-priority ALU will be accessed only in the much rarer case
that the full processor width is issued. This policy results in the
highest-priority ALU being accessed frequently and heating
while the lowest-priority ALU is rarely accessed and stays cool.
There is spatial slack in the lower-priority ALUs.

Ideally, we would like to perfectly balance ALU utilization
by issuing instructions to ALUs in a round-robin order. In fact
this assumption is effectively what previous research (uninten-
tionally) modeled by treating all ALUs as one thermal block [16,
14]. However, round-robin issue is not realistic because it would
require completely redesigning the select trees so they could be
re-linked into many dynamic priority orders. Such dynamic
ordering would add substantial complexity to the select trees.

Instead, we propose a much simpler solution as an alternative
symmetric utilization. We propose that instead of stopping issue
completely when one ALU is hot, we use fine-grain turnoff and
simply stop issue to the hot ALU while exploiting the spatial
slack in the remaining ALUs. Stopping issue only to the hot
ALU requires informing the corresponding select tree that the
ALU has overheated and that no grants should be issued from
that tree. Typical select trees already support a busy signal from
the ALU that prevents select. We can simply mark an ALU as
busy when it has crossed the temperature threshold. When the
busy signal is raised, the select tree issues no grant signals, and
no requests will be masked to the lower priority select tree. Any
remaining instructions will be selected by lower-priority select
trees assigned to cool ALUs.

It may seem that accessing an ALU adjacent to an overheated
ALU may cause the overheated ALU to get hotter, violating the
purpose of the thermal threshold and causing damage. The
above condition will not occur because any active ALU must be
cooler than any violating inactive ALU, and heat flows only
from the hotter inactive ALU to cooler, active ALUs.

Ideally overheated ALUs will cool and become active as
other ALUs overheat. If that does not happen and all ALUs over-
heat, we resort to a temporal technique and halt issue to wait for
the ALUs to cool.

2.3 Register File

Processors employ register-file copies to provide low latency
and high bandwidth to the ALUs. Each ALU access requires two
register reads which are provided by hard wiring the ALU to two
register ports (of a copy). Because some ALUs are utilized more
than others (as discussed in the previous section), some ports are
utilized frequently while others are underutilized, leaving spatial
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FIGURE 4: Register-file mapping and ALU priority

slack. Each register-file copy typically has (many) more than
two ports, so there exists a many-to-one mapping from ALUs to
register-file copies. Because of this many-to-one mapping, we
are concerned with both utilization symmetry within each regis-
ter-file copy (i.e., are all ports within a copy equally utilized?)
and utilization symmetry across register-file copies (i.e., are all
copies equally utilized?). If this mapping were one-to-one then
only the second symmetry would exist and our ALU techniques
would work for the register file as well. However, the many-to-
one nature implies that efficient utilization of the register-file
requires achieving both of these symmetries. (Register writes are
inherently symmetric because all values must be written to all
copies; we do not discuss register writes.)

The most-direct way to achieve symmetric utilization within
and across two register-file copies (a typical number) would be
to use completely-balanced mapping as shown in Figure 4. This
mapping would ensure that one read access for every ALU went
to each register copy. Unfortunately, completely-balanced map-
ping requires long wires between the register-file and ALU,
which is undesirable because of delay and complexity.

A simpler alternative to completely-balanced mapping is sim-
plified balanced mapping, also called balanced mapping, as
shown in Figure 4. This mapping interleaves high and low-prior-
ity ALUs on each register-file copy but does not require long
wires. Because balanced mapping slows overheating of any reg-
ister-file copy, it achieves utilization symmetry across copies,
which is the more critical symmetry if the processor must shut
down when any register-file copy overheats.

If continued processor operation is allowed as long as not all
register-file copies are overheated, then fine-grain turnoff for
register-file copies can achieve utilization symmetry across cop-
ies, similar to ALUs. If one copy overheats then the processor
can continue to use the other copy while the first one cools.
Fine-grain turnoff of copies is implemented by marking busy the
ALUs mapped to the overheated copy. (As in Section 2.2 and
Section 2.1, if all register-file copies become hot, we halt all
issue and wait for cooling.)

While it may seem that combining balanced mapping and
fine-grain turnoff would result in optimal utilization symmetry,
that is not the case. The key problem is that by spreading high-
priority ALUs among multiple register-file copies, balanced
mapping ends up overheating a/l the copies, forcing fine-grain



Table 1: Register-port mappings

Power-density | Balanced mapping | Priority mapping
conventional symmetric across | symmetric only within
copies but not high-priority copy;
within not other copies
fine-grain symmetric across | symmetric both within
turnoff copies but not and across copies
within

turnoff to shut down all the copies. Because each copy has mul-
tiple ports, shutting down a copy when only a few ports are
overutilized results in underutilization of the copy’s other ports.
Shutting down many copies starves the processor of register
ports even when some ports are underutilized. This unexpected
inefficiency, as mentioned in Section 1, occurs because neither
balanced mapping nor fine-grain turnoff target utilization sym-
metry within a copy.

Because fine-grain turnoff achieves utilization symmetry
across copies, we replace balanced mapping by the counter-intu-
itive strategy of priority mapping, which maps all high-priority
ALUs to one copy and all low-priority ALUs to another, as
shown in Figure 4. Priority mapping concentrates register reads
in a single copy, causing high utilization of that copy’s ports
(and low utilization of other copies’ ports). When one copy
overheats, fine-grain turnoff shuts it down and forces high utili-
zation of the other copy and its ports. Thus, the combination of
priority mapping and fine-grain turnoff achieves both symme-
tries. Our mapping strategies are summarized in Table 1.

Combined with fine-grain turnoff, priority mapping uses
ports more efficiently than balanced mapping whereas balanced
mapping heats each copy more slowly than priority mapping.
However, the higher efficiency of priority mapping outweighs
the slower heating of balanced mapping. Priority mapping’s
increased port utilization within a copy allows many more regis-
ter accesses while only somewhat decreasing the heating time
before a copy overheats. The heating time decrease is small
because a hot copy (with high utilization) dissipates more heat
per unit area than a warm copy (with low utilization), as dictated
by physics. Although we consider much finer spatial granularity
than [14] (register files instead of processor cores), this effect is
similar to that observed in [14] which found that coscheduling
carefully-chosen threads on a simultaneously-multithreaded pro-
cessor (SMT) resulted in increased throughput over single-
thread runs in spite of faster processor overheating.

Fine-grain turnoff causes a problem for register writes
because an overheated copy may become stale. When the over-
heated copy cools it must contain correct register values before
it can be read from. There are two simple solutions to this prob-
lem. The first is to set the thermal threshold for shutting down a
copy slightly below the critical thermal threshold and allow
writes to continue. Because register-files are read approximately
twice as often as they are written, the cooling register file
receives one-third as many accesses as normal, which is ade-
quate to allow cooling. The second solution is to disallow writes
to the overheated copy and to copy register values into the for-
merly-overheated copy at the end of cooling. Because cooling

Table 2: Processor Parameters

Out-of-order issue 6 instructions/cycle

Active list 128 entries (64-entry LSQ)

Issue queue 32-entries each Int and FP

Caches 64KB 4-way 2-cycle L1s (2
ports); 2M 8-way unified L2

Memory 250 cycles

Heatsink thickness 6.9 mm

Convection resistance 0.8 K/'W

Thermal cooling time 10 ms

Maximum temperature 358K

Frequency (GHz), volt- 4.2; 1.2V; 90nm

age, and technology

intervals are quite long, on the order of hundreds-of-thousands
to millions of cycles, the overhead of copying register values is
negligible when amortized over the cooling period.

3 Methodology

In this section we discuss our simulation environment, design
parameters, and benchmarks. We use SimpleScalar 3.0b [4] and
Wattch [2] to execute the Alpha ISA. We use Wattch’s aggres-
sive clock gating to avoid unnecessary power dissipation. We
use the HotSpot [16] model to extend our environment for ther-
mal simulation, sensing temperature at 100,000 cycle intervals,
substantially less than the thermal time constant of any resource,
which is on the order of ms. HotSpot models both vertical and
lateral heat conduction of all components. Register file copies
and ALUs are turned off when they reach the maximum temper-
ature. We toggle the issue queue policy whenever one half is
hotter than the other half by more than .5 degree (before either
half overheats). If any resource overheats beyond control of our
techniques, we stall the processor and allow it to cool for the
thermal cooling time, which is based on the thermal time-con-
stant of the package. This temporal technique is similar to that
used in the Pentium 4 [10]. We use a relatively high maximum
temperature of 358 K. A lower temperature threshold would heat
up faster making our techniques more important. So our results
are conservative. Our processor parameters are listed in Table 2.
Note that floating point ALUs do not represent free spatial slack
in integer programs because floating ALUs can not be used for
integer programs (and vice-versa). Also note that 6 integer ALUs
includes arithmetic, load/store, and branch units and therefore
does not provide free spatial slack for us.

We run 22 of the 26 SPEC2000 [18] benchmarks, fast-for-
ward to the early-simpoint specified by [13], and then run 500
million instructions instead of 100 million instructions. (100
million instructions is not long enough to simulate thermal heat-
ing and cooling.) We omit four benchmarks due to long run time.
We warm-up the L2 cache for the last 1-billion instructions of
fast-forward.

To observe intra-resource power density variation we modify
the simulator to account more accurately for energy consump-
tion in the issue queue, ALUs and register-file copies. The fol-
lowing two subsections describe the circuit and floorplan



Table 3: Issue energy by component (nJ)

Compact (entry-to-entry) (per entry) | .0123
Compact (Mux select) (per entry) .0023
Long Compaction (per entry) .0687
Counter Stage 1 (per entry) .0011
Counter Stage 2 (per entry) .0021
Clock Gating Logic (entire queue) .0015
Tag Broadcast/Match (per broadcast) | .0450
Payload RAM Access (per inst.) .0675
Select Access (per inst.) .0051
modifications.

3.1 Circuit Model

We modify the base simulator to model two compacting issue
queues (integer and floating-point), each similar to [8, 3, 12].
Table 3 lists the power components of our issue queue model.
Counter stages | and 2 are dynamic logic including adders and
muxes as described in [8]. We assume that counter stage 1 and
counter stage 2 can be selectively clock gated per entry, as
described in Section 2.1. Clock gating is determined by clock-
gating logic which consumes energy every cycle. We also model
the wires used during compaction including entry-to-entry data
wires and cross-queue mux-select wires. The entry-to-entry data
wires run from each entry down to the next n higher-priority
entries in an n-way issue processor. The cross-queue mux-select
wires run the width of the queue and select which of the above
entries should replace the current entry during compaction. Both
sets of wires dissipate power only when compaction occurs. We
assume that the queue entries are static memory elements and do
not need to be refreshed when no compaction occurs. For power/
temperature measurements we sample the power of each half of
the queue (head and tail). We also model the payload RAM
which is a small RAM that holds information about each instruc-
tion currently in the queue. It is written when the instruction is
inserted in the queue, and read when an instruction is executed.
We assume this RAM is distributed across the area of the two
halves and its power dissipation likewise distributed evenly
among the two segments. Similarly, we distribute the power
consumed by tag broadcast, match and select to both halves of
the queue because they are global queue operations. Finally
when the issue queue toggles and the head moves to the middle
of the queue, compaction must wrap around from one end of the
queue to the other. We charge additional power (long compac-
tion in Table 3) to each entry that must drive its data across the
length of the queue. This additional power puts our activity-tog-
gling issue queue at a power-density disadvantage when these
wires must be used.

Changes to the register file are minor. We model two adjacent
copies reducing the number of read ports in each by half but
maintaining the number of write ports. We do not adjust the
floating point register file because in Alpha, copies are not used.

3.2 Floorplan Model

We base our floorplan model on the Alpha EV6 model pro-
vided with HotSpot and scaled to 90 nm. As mentioned previ-
ously we account separately for the power of each half of the
issue queue. To derive a corresponding floorplan, we divide the
area of each queue into two equal parts, one representing each
half. Similarly, we divide the integer register file area into 2
equal components, each representing one copy. Finally we
divided the IntExec area by the 6 integer ALUs, and the FPAdd
area by the 4 floating point adders in our simulated processor.

Recall that we are providing techniques for 3 different
resources. Each technique targets a different resource that can be
a thermal bottleneck. Architectures have different thermal bot-
tlenecks depending on floorplan and circuit-level implementa-
tion details that are not readily available. In the Power4, the
issue queue is the thermal bottleneck [5] while in the Alpha (and
default HotSpot floorplan) the register file is hottest [17]. ALUs
also may be a thermal bottleneck [11]. Because we cannot model
this large diversity of floorplans and circuit-level implementa-
tions, we follow a simpler methodology that makes slight floor-
plan modifications to simulate different bottlenecks. For each of
these three resources, issue queue, ALU, and register file, we
scale its area such that it becomes the hottest resource for the
peak-utilization applications. We fill-in the remaining area by
enlarging another nearby resource. We scale area instead of
power to keep the total chip power constant and ensure a fair
comparison to the baseline. Figure 5a, b and ¢ show the resulting
floorplans. We believe that in ideal designs, the hottest resource
would be allowed to approach the thermal threshold at steady
state but should cross it only occasionally. Our scaling scheme
reflects this idea well.

4 Results

In this section we present our experimental results for three
different CPU models each constrained by power density of dif-
ferent backend resource. Section 4.1 presents results for activity
toggling applied to a processor constrained by power density in
the floating-point and integer issue queues. Section 4.2 discusses
performance of fine-grain turnoff applied to a processor design
constrained by power density in the ALUs. Finally, Section 4.3
discusses performance of fine-grain turnoff, balanced mapping
and priority mapping applied to a design constrained by power
density in the register file. We do not show results combining
techniques for different resources because most floorplans have
a single critical thermal bottleneck; however it would be possi-
ble to combine our techniques.

4.1 Issue Queue: Activity Toggling

In this section we present results for our activity-toggling
scheme when applied to a CPU constrained by high power den-
sity in the issue queue. We apply activity toggling to both the
integer and floating-point issue queues. We expect activity tog-
gling to balance temperature differences between the issue-
queue halves, reducing the need to shut-down the processor and
increasing performance.
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FIGURE 5: Floorplans constrained by power density in a) issue queue, b) ALUs, and c) register-file copies

To examine how activity-toggling effects issue-queue tem-
perature we show integer issue-queue head and tail temperatures
averaged across the execution time (non-overheated time) of
three representative benchmarks in Table 4. The IPCs of these
benchmarks are included in Figure 6 which is discussed later.
Mesa has a 19% speedup with activity toggling, while both fac-
erec and art have no speedup. The tables shows that for all three
benchmarks, activity-toggling effectively distributes heat evenly
over the two queue halves. 4rt simply never causes the issue
queue to overheat, and therefore redistributing heat has no effect
on performance. Facerec on the other hand overheats just as fre-
quently as the base design even though activity-toggling does a
good job of equalizing the two halves’ temperatures. Some
benchmarks such as facerec have high-IPC bursts of activity that
cause overheating regardless of temperature balance. For other
benchmarks, including mesa, evenly distributing heating effec-
tively reduces processor shutdowns and produces significant
speedup.

Figure 6 shows the IPC with activity-toggling (black bars)
and the baseline without activity-toggling (white bars) for all of
our benchmarks. Of the 22 benchmarks we simulate, 13 show
speedup with activity toggling. Those that show no improve-
ment are not limited by power density in either the integer or
floating-point issue queue. Of the benchmarks constrained by
issue-queue power density, eon shows the largest speed up of
25%. The smallest positive speedup occurs for wupwise, apsi
and gcc each at roughly 8%. The average speedup over all
benchmarks is 9%. Average speedup over just benchmarks con-
strained by issue-queue temperature is 14%.

As mentioned in Section 2.1 toggling is infrequent, so perfor-

Table 4: Average temp. of issue-queue halves

Benchmark Technique Tail (K) Head (K)
art Activity-toggling 352.7 | 352.7
Base 353.1 | 3523
facerec Activity-toggling 354.8 | 354.8
Base 3553 | 3542
mesa Activity-toggling 3553 | 3553
Base 3554 | 354.0

mance is not impacted by transiently incorrect instruction priori-
ties in the issue queue after a head/tail swap. There are 42 head/
tail swaps over the 500 million instructions executed in eon, cor-
responding to an average of 12 million instructions between tog-
gles. Bzip toggled the most with 44 toggles and applu toggled
the least with only 8 toggles. Frequency of toggling does not
correspond to performance improvement from activity toggling;
facerec toggles 17 times but does not speed up.

4.2 ALUs: Fine-grain turnoff

In this section we present results for fine-grain turnoff in an
ALU-power-density constrained design. We apply fine-grain
turnoff to both integer and floating-point ALUs. We expect fine-
grain turnoff to balance ALU temperature across high-priority
and low-priority ALUs almost as well as the ideal round-robin
scheme, resulting in performance improvement over the base
design. Our round-robin results issue instructions to ALUs in
continuous round-robin priority to spread evenly accesses across
all ALUs and allow fine-grain turnoff of any overheated ALU,;
round robin provides an upper bound on performance. As dis-
cussed in Section 2.2, round-robin would require much greater
complexity than fine-grain turnoff alone.

Table 5 shows IPC and average integer-ALU temperatures of
two representative integer benchmarks: parser which is not con-
strained by ALU heat and perlbmk which is. Parser shows no
difference in IPC or ALU temperatures with or without fine-
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grain turnoff because no ALUs ever overheat. Despite not over-
heating we do see significant variation in the temperatures
across the ALUs. The hottest ALU is over 4 degrees hotter than
the coldest even though the ALUs are in close proximity to each
other on the floorplan. This temperature difference is a result of
better vertical heat conduction (away from the processor) than
lateral heat conduction (from one ALU to the next) as mentioned
in Section 1.

Perlbmk with fine-grain turnoff also shows high temperature
differences between the hottest and coldest ALU, but ALUO
through ALU3 have elevated temperatures. ALUO and ALU1 are
almost at the thermal threshold meaning they likely frequently
overheat and require turnoff. ALU2 and ALU3 have high tem-
peratures because they are taking over execution of instructions
that would have gone to ALUO and ALUI. ALU4 and ALUS
remain cool, allowing the processor with fine-grain turnoff to
support issue of 4 instructions even if ALUO and ALUI are
turned off. In perlbmk, the baseline behavior is much different
than fine-grain turnoff. For baseline, the hottest ALU is much
colder than the hottest ALU in fine-grain turnoff because base-
line has to stall the processor and cool whenever ALUO reaches
the temperature threshold. Fine-grain turnoff does not need to
stall, and can tolerate an overheated ALUO. Moving utilization
to underutilized resource copies when one copy overheats
allows fine-grain turnoff to exploit more spatial slack and
achieve more performance before reverting to stalling.

Both parser and perlbmk show constant low temperatures
across all ALUs with round-robin, but it is interesting that equal
temperature across all ALUs is not critical to achieving high
IPC. In perlbmk, fine-grain turnoff has uneven temperatures
across its ALUs and two extremely hot ALUs, while round-robin
maintains evenly low temperature across all ALUs. Yet fine-
grain turnoff achieves high performance. The critical aspect is
preventing the whole processor from overheating and stalling,
and fine-grain turnoff is as effective as round-robin. The only
drawback to fine-grain turnoff’s two hot ALUs is the possibility
of limited issue bandwidth (because the ALUs are marked busy)
in some cycles, while round-robin always has all resources
available. Because ILP to sustain such high issue bandwidth
over long periods is rare, IPC of fine-grain turnoff and round-
robin are similar.

Figure 7 shows the IPC with fine-grain turnoff (black bars),
the baseline without fine-grain turnoff (white bars), and with an
ideal round-robin issue policy (hatched bars) for all of our
benchmarks. Despite being much simpler, fine-grain turnoff
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FIGURE 7: ALU-constrained IPC

approaches the IPC of round-robin to within 1%. Round robin
does slightly better because it is often able to prevent any ALU
from overheating, while fine-grain turnoff has to turnoff the
higher priority ALUs when they overheat. Fine-grain turnoff
shows significant speedup compared to the baseline that always
issues to ALUs in a fixed priority order and cannot turn off indi-
vidual ALUs. Fine-grain turnoff achieves average speedup of
40% across all benchmarks and 74% across only those bench-
marks that are constrained by the ALU power density.

4.3 Register File: Fine-grain Turnoff and Priority
Mapping

In this section we discuss results for fine-grain turnoff and
port mapping in a register-file constrained design. We apply our
techniques only to the integer register file because our floating-
point register file does not employ copies. Without fine-grain
turnoff, we expect balanced mapping to outperform priority
mapping because balanced mapping at least balances register-
file copy utilization (i.e., achieves symmetry across copies).
With fine-grain turnoff, we expect priority mapping to outper-
form balanced-mapping because the combination of fine-grain
turnoff and priority mapping balances port utilization within
copies and register-file copy utilization (i.e., achieves symmetry
within and across copies).

Table 6 shows IPC and the temperatures of the register-file
copies for a representative benchmark, eon, for all 4 combina-
tions described above. (Recall that the symmetry characteristics
of these configurations are in Table 1.) The temperatures show
that balanced mapping effectively balances heating across cop-

Table 5: Average integer ALU temperatures using different techniques

Benchmark | Technique IPC ALUO (K) | ALU1 (K) | ALU2 (K) | ALU3 (K) | ALU4 (K) | ALUS5 (K)

parser Round robin (ideal) 1.0 352.6 352.6 352.6 352.6 352.6 352.6
Fine-grain turnoff 1.0 354.8 353.8 3532 3524 351.0 3504
Base 1.0 354.8 353.8 353.2 3524 351.0 350.4

perlbmk Round robin (ideal) 2.5 355.0 355.0 355.0 355.0 355.0 355.0
Fine-grain turnoff 2.5 357.2 357.0 356.5 355.2 353.0 351.2
Base 1.4 3554 3549 353.8 352.8 351.3 3504

high priority low priority



Table 6: Average register-file copy temp. for eon

Technique IPC || Copy 0 (K) | Copy 1 (K)
Priority-mapping + 1.2 357.1 356.3
fine-grain turnoff

Balanced-mapping + 1.1 357.2 356.9
fine-grain turnoff

Balanced-mapping only 0.9 357.7 357.3
Priority-mapping only 0.8 357.1 356.3

ies both with fine-grain turnoff and without fine-grain turnoff.
The remaining temperature difference is due to using simplified
balanced mapping instead of completely-balanced mapping as
described in Section 2.3.

Because balanced mapping has more equal temperatures
across copies, it is less likely to have to turn off a register-file
copy. In eon balanced mapping with fine-grained turnoff turns
off at least one register-file copy 330 times while priority-map-
ping turns off of at least one copy 950 times. Despite having
three times more turnoffs, priority mapping achieves higher IPC,
indicating better overall utilization of the register file as dis-
cussed in Section 1. It is also important to note that the tempera-
ture difference is greater with fine-grain turnoff and priority
mapping than with fine-grain turnoff and balanced mapping
because of increased utilization; this difference is not a problem
because fine-grain turnoff switches to utilizing copy 1 if copy 0
overheats.

Figure 8 shows IPC for four configurations: fine-grain turn-
off with balanced mapping (black bars), fine-grain turnoff with
priority mapping (white bars), only balanced mapping (hatched
bars), and only priority mapping (gray bars). Comparing IPCs of
the two sets that do not have fine-grain turn off (processor must
be halted if either copy becomes too hot), we see significant
speedup with balanced mapping compared to priority mapping.
As described in Section 2.3, balanced mapping forces symmetry
in accesses across copies so it takes longer for either copy to
overheat, allowing for better performance. Across all bench-
marks the average speedup was 9% and across only benchmarks

Il Fine-grain turnoff + balanced mapping
1 Fine-grain turnoff + priority mapping

constrained by the register-file temperature, the speedup was
14%. Balanced mapping effectively reduces performance degra-
dation due to register-file overheating if fine-grain turnoff is not
available.

We next consider IPC improvement when fine-grain turnoff
of register-file copies is available. Adding fine-grain turnoff to a
priority-mapped register file improves IPC over a priority-
mapped register file without fine-grain turnoff by 17% on aver-
age across all benchmarks and 30% across register-file con-
strained benchmarks. Fine-grain turnoff with priority mapping
outperforms balanced mapping without fine-grain turnoff by 7%
over all benchmarks and 14% over register-file constrained
benchmarks. As discussed in Section 2.3 priority mapping plus
fine-grain turnoff is the best among the 4 combinations. Com-
bining fine-grain turnoff and balanced mapping results in lower
IPC than fine-grain turnoff plus priority mapping because that
combination fails to address utilization symmetry within copies.
Across all benchmarks, fine-grain turnoff with priority mapping
produces a 1.8% higher average IPC than fine-grain turnoff with
balanced mapping. Across those benchmarks constrained by the
register file, fine-grain turnoff with priority mapping produces a
3.1% higher average IPC than fine-grain turnoff with balanced
mapping. Eon and wupwise show the largest speedups, 8%, from

priority mapping.
5 Related work

Several previous proposals address thermal management or
power density in superscalars. First we list the temporal tech-
niques which are orthogonal to our spatial technique. These tem-
poral techniques can all be applied if our spatial techniques are
unable to prevent overheating, but they result in various
amounts of performance degradation. [ 1] evaluates techniques to
balance the rate of heat production to heat dissipation at chip-
level granularity. [15] proposes fetch-throttling techniques and
use of PID controllers to manage power density. [16] introduces
the HotSpot temperature model used in this paper and proposes
PID-controlled dynamic frequency and voltage scaling. Fre-
quency-scaling is a temporal technique with similar perfor-
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mance-degradation as the Pentium 4’s [10] thermal technique
compared against in this paper. [16] also proposed dynamic-
voltage scaling (DVS) and temperature-tracking frequency-scal-
ing (TTDFS) as control mechanisms. DVS may not be practical
in future circuit technologies as nominal supply voltages
approach transistor threshold voltages, leaving little room for
additional voltage adjustment for power-savings. Temperature-
Tracking Frequency Scaling (TTDFS) allows the processor to
heat above its “maximum” temperature by slowing the clock and
relaxing timing constraints. As stated in [16] TTDEFS is effective
only if the sole limitation on power density is circuit timing.
TTDFS does not reduce maximum temperature or prevent phys-
ical overheating and cannot handle large increases in tempera-
ture, which may damage the chip.

A few previous proposals have discussed spatial techniques.
[16] proposes duplicating the integer register file, which would
add substantial wiring and select-logic complexity. [11] pro-
poses “ping-ponging” resource activity for various pipeline
resources between duplicate resource copies within a supersca-
lar core but does not address the scheduling-logic or wiring
implications of providing these duplicates. [14] proposes a spa-
tial technique that migrates jobs among cores in a simulta-
neously-multithreaded chip-multiprocessors (SMT CMPs), but
does not address hotspots within the cores. [6] proposes another
spatial technique that uses a clustered architecture with many
complex clusters (each containing distributed rename logic,
issue queues, ALUs, a register file, and distributed commit
logic). Like [14], [6] does not address hotspots internal to the
clusters.

6 Conclusions

We have identified that proven techniques of compacting
issue queues and static priority in ALUs and register-file ports,
which have been habitually used for generations due to their
overwhelming simplicity, actually limit performance by causing
asymmetric utilization. We have proposed three techniques, one
for each of the issue queue, ALUs, and register file copies. These
techniques improve performance by balancing utilization sym-
metrically across resource copies while keeping the implementa-
tion simple.

We show that symmetric utilization can significantly improve
IPC in processors that are constrained by power density. In con-
figurations constrained by issue queue power density, our tech-
niques produce speedups averaging 14%. In configurations
constrained by ALU resources our techniques produce speedups
averaging 74%, and finally, in configurations constrained by
register file power density our techniques produce speedups
averaging 30%.
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