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Introduction

The recent announcement by Michael Lynn at Black Hat 2005 of a software flaw in Cisco

routers has grabbed the attention of many technology news sources. The flaw is an instance

of a buffer overflow, a type of security vulnerability that has been discussed since the 1960s,

yet remains one of the most frequently reported type of remote attack against computer
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systems. The CVE1 lists 303 buffer overflow vulnerabilities reported during the year 2004,

an average of more than 25 new instances each month. For the first six months of 2005,

331 buffer overflow vulnerabilities were reported – clearly a problem not going away in the

near future.

However, security researchers have been working for many years on developing tech-

niques to prevent or detect the exploitation of these vulnerabilities. This article discusses

what buffer overflow attacks are and briefly surveys the various tools and techniques that

can be used to mitigate their threat.

What is a “buffer overflow”?

In basic terms, a buffer overflow occurs during program execution when a fixed size buffer

has too much data copied into it. This causes the data to overwrite into adjacent memory

locations, and depending on what is stored at these locations, this can affect the behavior

of the program itself.

Buffer overflow attacks can take place in processes that use a stack during program

execution. (Another type can occur in the heap, but this article looks at the former.) On

the left-hand side of Figure 1 we show the three logical areas of memory used by a process.

During program execution, when a function is called, a stack frame is allocated containing

the function arguments, return address, previous frame pointer, and local variables. Each

function prologue pushes a stack frame onto the top of the stack, and each function epilogue

1A list of Common Vulnerabilities and Exposures: http://www.cve.mitre.org/

2



Becausethestackisaccessedatinstructioncommitwhich
isnotontheexecutionpathofinstructions,SmashGuard
does not impact the critical path of the pipeline.

Arecentpaper[lee]independentlyandconcurrently
proposedtheideaofusingahardwarestacktoprotectthe
returnaddress,similartoSmashGuard.Incomparisonto
[lee], the novel contributions  of our paper are:

\begin{description}
\item[Microarchitectureissues:]Modernprocessorsuse

branchprediction,but[lee]doesnotconsideroravoid
cleaningupthehardwarestackduetobranchmispredic-
tions.Inaddition,[lee]doesnotconsiderregisterportcon-
tentionwhenthehardwarestackaccessestheregister
holdingthefunctionreturnaddress.Theseissuesarenot
minorimplementationdetailsbecausetheyfundamentally
affecthowthehardwarestackisimplemented.\item[Secu-
rityissues:]While[lee]coversthestraight-forwardcasesof
callsandreturns,itdoesnotconsiderthecornercasesof
\texttt{setjmp}and\texttt{longjmp},andcontextswitches.
\texttt{setjmp}and\texttt{longjmp}circumventthefirst-in
first-outorderingoftheprogramstackandcollapseseveral
stackframesinonereturn,causingthehardwarestackto
becomeinconsistentwiththeprogramstack.[lee]provides
newuser-mode(i.e.,non-privilege-mode)instructionsto
makethehardwarestackconsistentagain.However,a
malicioususercouldtousetheinstructionstotamperwith
thereturnaddressonthehardwarestackitself,compromis-
ingsecurity.Inaddition,[lee]doesnotaddresshowthe
hardwarestackisaccessedoncontextswitches.Whilethe
stackshouldnotbeaccessibletouserprograms,theOS
needstobeabletosaveandrestorethestackoncontext
switchesandstackoverflows.Althoughperformanceisnot
affectedbythesecornercasesduetotheirlowfrequency,
correcthandlingofthesecasesis{\emnecessary}toguar-
anteesecurity.Weprovidesecuresolutionstothesecorner
cases.

\item[Performanceevaluation:]Ourpaperperformsthe
firstdetailedperformanceanalysiscomparingthesoftware-
basedStackGuardandthehardware-basedSmashGuardon
acommonsimulatorforamodern,high-performancepro-
cessor.Incontrast,[Lee]reportsperformanceonasingle-
issue,in-order-issueprocessor,anddoesnotcompare
against software-based approaches.

 \end{description}
InSection\ref{sec:anatomy}wedescribethevulnera-

bilityofthefunctionreturnaddressanddifferentwaysan
attackercanexploitthisvulnerability.InSection
\ref{sec:related}wesummarizerelatedworktopointout
theirstrengthsandweaknesses,bothintermsofperfor-
manceandfunctionality.TheninSection\ref{sec:smash-
guard}wedescribetheproposedhardwaresolutionin
detail.InSection\ref{sec:results}wepresentperformance
resultsofourmodificationonSimpleScalar,anAlphasim-

ulator.FinallyinSection\ref{sec:conclusion}weprovide
ourconclusionsandweoutlinefutureextensionstoour
work.

2  Anatomy of an Attack

Thissectionprovidesanoverviewofthevulnerability
ofreturnaddresspointersstoredonthestackanddescribes
how``stacksmashing’’attacksexploitthisvulnerabilityto
execute the attacker’s code.

2.1 The Stack

Beforedescribingthevulnerabilitiesandtheattacks
affectingthefunctionreturnaddress,wefirstbrieflyreview
thememoryorganizationofaprocess.Onthelefthandside
ofFigure\ref{fig:stack},weshowthethreelogicalareasof
memoryusedbyaprocess.\footnote{Ourdiscussionis
basedonthex86architecturebecauseitisperhapsthemost
widelyknown;forotherarchitectures,detailswillvary
slightly.}Attacksonthereturnaddressarepossible
becausethereturnaddressisstoredonthestackwhena
functioniscalledandispoppedoffthestackonfunction
exit.OntherighthandsideofFigure\ref{fig:stack}we
showafunctionstackframe,whichcontainsthefunction
arguments,returnaddress,previousframepointerandlocal
variables.
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Figure 1: The memory layout of a stack frame after a function
has been called.

pops the stack frame currently on the top of the stack. The return address in the frame

points to the next instruction to execute after the current function returns. This introduces

a vulnerability that allows an attacker to cause a program to execute arbitrary code.

Consider the following C function:

int foo(int a, int b) {

char homedir[100];

...

strcpy(homedir,getenv("HOME"));
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...

return(1);

}

If an overflow occurs when strcpy() copies the result from getenv() into the local variable

homedir, then the copied data continues to be written toward the high end of memory (up

in Figure 1), eventually overwriting other data on the stack, including the stored return

address (RA) value. This will cause function foo() to return execution to whatever address

happens to lie in the RA storage location. In most cases, this type of corruption results in

a program crash (e.g., a “segmentation fault” or a “bus error” message). But an attacker

can carefully select the value to place in the return address in order to redirect execution

to the location of her choosing. If that location contains machine code, the attacker causes

the program to execute any arbitrary set of instructions – essentially taking control of the

process.

A buffer overflow usually contains both executable code as well as the address of where

that code is stored on the stack. Frequently, this is a single string constructed by the

attacker with the executable code first followed by enough repetitions of the target address

that the RA is overwritten. This requires knowing exactly where the executable code will

be stored or else the attack will fail. Attackers get around this by prepending a sequence

of unneeded instructions (such as NOP) to their string. This creates a ramp or sled leading

to the executable code. Now the modified RA only needs to point somewhere in the ramp
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to cause a successful attack. While it still takes some effort to find the proper range, an

attacker only needs a close guess to hit the target.

On successful modification of the return address, the attacker can execute commands

with the same level of privilege as that of the attacked program. If the compromised

program is running as root then the attacker can use the injected code to spawn a superuser

shell and take control of the machine. In the case of worms, a copy of the worm program

is installed and the system begins looking for more machines to infect.

Other Methods to Redirect Program Execution

As prevention methods were developed and attacks became more sophisticated, many vari-

ants of the basic buffer overflow attack were developed to bypass protection methods. In

addition to the buffer overflow attack described above, a format string attack in C can be

used to overwrite the return address. Format string attacks are relatively new and are first

thought to have gained notice in mid-2000 [9].

Regardless of the function involved, there are two general methods an attacker can

use to change the stored return address in the stack: direct and indirect. The previous

section described a direct attack where a local buffer is overwritten, continuing until a

RA value has been changed. In an indirect attack, a pointer to the stored return address is

used to cause the modification of only the stored value, not the surrounding data. Indirect

attacks have a greater number of dependencies, but were developed to avoid methods used

to prevent direct attacks. By making the assignment via a pointer, an attacker is able to

5



jump over any protection or boundary that might exist between the buffer and the stored

return address.

Sometimes, program control is directed through the use of a function pointer (e.g.,

continuations or error handlers). If an attacker modifies the pointer value as part of an

overflow attack, then she can redirect program execution without modifying a RA. Function

pointers are vulnerable to both direct and indirect attacks as well.

The final characteristic of an attack is based on where execution is redirected. The

most well-known approach is to write shellcode either a) into the buffer being overflowed,

b) above the RA on the stack, or c) in the heap. A second approach is called the return-

to-libc attack. It was invented to bypass protection methods that prevent user data from

being treated as program code. It does so by redirecting execution to the system()library

function in libc with the argument “/bin/sh” (placed on the stack by the attacker).

For more information on how buffer overflows are written, see [1].

Prevention Techniques

Fortunately, there has been extensive research into tools and techniques that can be used

to prevent (or detect) buffer overflow vulnerabilities. There are four basic groups of tech-

niques: static analysis, compiler modifications, operating system modifications, and hard-

ware modifications. Many of these can be composed together to provide a layered approach

to the problem. We examine each in turn.
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Static Techniques

One of the best ways to prevent the exploitation of buffer overflow vulnerabilities is to detect

and eliminate them from the source code before the software is put into use. Usually this

is done by performing some sort of static analysis on either the source code or compiled

binaries.

An effective technique for uncovering flaws in software is that of source code review or

source code auditing. While there are a number of efforts along these lines, the best known

is the OpenBSD project.2 Since 1996, the OpenBSD group has had six to twelve developers

auditing the source code of a free, BSD-based operating system. This type of analysis re-

quires substantial expenditure of time, and its effectiveness depends upon the expertise of

the auditors. However, the payoff can be noticeable as evidenced by the fact that OpenBSD

has one of the best reputations for security and one of the historically lowest rates of re-

mote vulnerabilities (http://www.securitymap.net/sdm/docs/general/Bugtraq-stat/

stats.html).

Tools designed to perform automatic source code analysis complement the act of a

manual audit by identifying potential security violations including functions that perform

unbounded string copying. Some of the best known tools are its43, RATS4, and LCLint

[7]. An extensive list of auditing tools is provided by the Sardonix portal at https:

2http://www.openbsd.org/
3http://www.cigital.com/its4/
4http://www.securesw.com/rats/
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//sardonix.org/Auditing_Resources.html.

Most buffer overflow vulnerabilities are due to the presence of unbounded copying func-

tions or unchecked buffer lengths in programming languages like C. One way to prevent

programs from having such vulnerabilities is to write them using a language that does

perform bound checking such as Java or Pascal. However, these languages often lack the

low-level data manipulation needed by some applications. Therefore, researchers have pro-

duced “more secure” versions of C that are mostly compatible with existing programs

but add in additional security features. Cyclone [5] is one such C-language variant. Un-

fortunately, the performance cost of bounds checking was reported to be up to a 100%

overhead.

The solutions presented up to this point assume that the analyst has access to, and can

modify, the program’s source code. There are circumstances in which this assumption does

not hold (e.g., legacy applications and commercial software). However, Prasad and Chiueh

[11] present a technique by which an existing binary can be re-written to keep track of

return addresses and verify they have not been changed without needing the source code.

Their worst reported overhead was 3.44% for instrumenting Microsoft PowerPoint.

Compiler Modifications

If the source code is available, individual programs can have buffer overflow detection

automatically added in to the program binary through the use of a modified compiler.

StackGuard, ProPolice, StackShield, and RAD are four such compilers.
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One technique to prevent buffer overflow attacks is a modified C-language compiler that

automatically inserts detection code into a program when compiled. StackGuard [4] detects

direct attacks against the stored RA by inserting a marker (called a canary) between the

frame pointer and the return address on the stack. Before a function returns, the canary

is read off the stack and tested for modification. The assumption is that a buffer overflow

attack can be detected because in order to reach the stored address, it had to overwrite

the canary first. StackGuard uses a special fixed value called a terminating canary that

is composed of the four bytes most commonly used to terminate some sort of string copy

(NULL, CR, LF, and EOF). It would be difficult, if not impossible, for an attacker to insert

this value as part of their exploit string, therefore such attacks will be detected.

The ProPolice compiler5 (also known as the stack-smashing protector or SSP) pro-

tects against direct attacks with a mechanism similar to that of StackGuard. In addition,

ProPolice reorders the memory locations of variables such that pointers are below arrays

and pointers from arguments are before local variables. The first helps prevent indirect

attacks and the latter makes it more likely that a buffer overflow will be detected.

StackShield6 is a Linux development security add-on (specifically an assembler file pre-

processor) that can work with the gcc compiler to add protection from both direct and

indirect buffer overflow attacks. It operates by adding instructions during compilation

that causes a program to maintain a separate stack of return addresses in a different data

5http://www.research.ibm.com/trl/projects/security/ssp/
6http://www.angelfire.com/sk/stackshield/
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segment. It would be difficult for an attacker to modify both the return address in the

stack segment and the copy in the data segment through a single unbounded string copy.

During a function return, the two values are compared and an alert is raised if they do not

match.

StackShield also provides a secondary protection mechanism – it can implement a range

check on both function call and function return addresses. If a program attempts to make

a function call outside of a predefined range, or a function returns to a location outside

of that range, then the software presumes an attack has taken place and terminates the

process. This also allows software to protect against function pointer attacks.

The Return Address Defender or RAD [3] is a patch to gcc that automatically adds

protection code into the prologues and epilogues of function calls. RAD stores a second

copy of return addresses in a repository (similar to StackShield) but then uses OS memory

protection functions to detect attacks against this repository. RAD either makes the entire

repository read-only (causing significant performance degradation) or by marking neigh-

boring pages as being read-only (minor overhead, but avoidable by an indirect attack).

Operating System Modifications

Several protection mechanisms operate by a modification of some aspect of the operating

system. Because many buffer overflow attacks take place by loading executable code onto

the stack and redirecting execution there, one of the simpler approaches is to modify the

stack segment to be non-executable. This prevents an attacker from directing control to
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code they have uploaded into the stack. However, an attacker can still direct execution

to either code uploaded in the heap or to an existing function (such as system() in libc).

Most Unix-like operating systems have an optional patch or configuration switch that will

remove execute permissions from the program stack.

A library modification called Libsafe [2] intercepts all calls to functions known to be

vulnerable and executes a “safe version” of those calls. The safe versions estimate an

upper limit for the size of the target buffer. Since it is highly unlikely that a program

would deliberately overwrite a frame boundary, copies into buffers are bounded by the top

of the frame in which they reside. Libsafe doesn’t require programs to be recompiled.

Unfortunately, library modifications only add in protection for a subset of functions, and

only in dynamically linked programs. Many security critical applications are compiled

statically, and it is possible in some instances for a determined attacker to bypass the

modified libraries.

Perhaps the most comprehensive set of changes to an operating system to detect and

prevent buffer overflows were introduced in the release of OpenBSD 3.37 with a multi-

layered approach. First, they modify binaries to make it harder to have a successful

exploit. They combine stack-gap randomization with the ProPolice compiler to make it

harder for scripted attacks to work and add in detection capabilities. Secondly, they modify

the memory segments allocated by the OS to remove execute permissions from as many

places as possible and ensure that no segment is both writable and executable when in

7http://www.openbsd.org/33.html
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user mode. This makes it much harder for an attacker to find code to run that already is

present, and impossible for them to upload their own.

Microsoft recently has been putting increased emphasis on their developers to perform

both source code auditing and use of automated bounds checking tools. They have stated

that beginning with Service Pack 2 for Windows XP8 there will be a number of security

protections built into the operating system as well.

There are also techniques based on restricting the control flow of a program. While

these do not detect buffer overflow attacks, they can mitigate their effects by restricting

what can be executed afterwards. One technique is known as proof-carrying code [8]. In

this, binary programs are bundled with a machine verifiable “proof” of what the program is

going to do. As the program executes, the behavior is observed and compared against the

proof by a new addition to the OS kernel. Any deviations are noticed, and the program can

be killed. Another technique is called program shepherding [6]. Shepherding requires the

verification of every branch instruction and verifying they match a given security policy.

This is done by restricting where executable code can be located in memory, restricting

where control transfers (e.g., jump, call, return) can take place and what their destinations

are, and adding “sandboxing” on other operations. Their implementation is for the RIO

runtime system on IA-32 platforms. Their reported worst case performance on SPEC2000

benchmarks was over 70% on Linux and 660% on Windows NT.

8http://msdn.microsoft.com/security/productinfo/xpsp2/
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Hardware Modification

Any technique for buffer overflow detection is going to exact a performance cost on the

system employing it. Depending on the technique, this can vary from 4% to over 1000%

as reported by the various researchers. One way to reduce the execution time needed is to

move operations from software to hardware which can execute the same operations tens or

hundreds of times faster.

The SmashGuard proposal [10] uses a modification of the the microcoded instructions

for the CALL and RET opcodes in a CPU to enable a transparent protection against buffer

overflow attacks.9 SmashGuard takes advantage of the fact that a modern CPU has sub-

stantial memory space on the chip and creates a secondary stack that holds return addresses

similar to the RAR employed by StackShield. Unlike StackShield, the SmashGuard mod-

ifications to the CPU microcode make it possible to gain protection without needing to

modify program software at all.

The CALL instruction is modified such that it will transparently store a copy of the return

address on a data stack within the processor itself. The RET instruction will compare the top

of the hardware stack with the address to which the software is trying to redirect execution

back to. If the two values do not match, then the processor will raise a hardware exception

that will cause the program to terminate in the general case. While this modification has

not been fabricated into a CPU, it has been implemented on an architecture simulator.

9The authors are members of the SmashGuard project.
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Performance of applications degraded by 0.02% which is two orders of magnitude better

than StackGuard, and four orders better than StackShield. Additionally, issues such as

context switches, setjmp()/longjmp(), and CPU stack spillage are properly handled.

Another hardware modification that has been proposed is known as Split Stack and

SRAS [12]. This is a two prong approach. First, programs will be compiled to utilize two

software stacks – one for program data and one for control information. This should make

it more difficult for an overflow of a data variable to affect the stored control information.

Performance costs for this approach varied from 0.01% to 23.77% depending upon the

application tested.

A variation is a secure return address stack or SRAS stored on the processor. The

SRAS will store all return addresses after a CALL instruction and use it for the next RET

instruction. Theoretically, this should prevent a buffer overflow from changing the return

address (possibly decreasing the effects), but would not actually detect or prevent any

buffer overflow from occurring. Based on the discussion in their paper, there are still a

number of issues to be worked out with the implementation of SRAS.

Conclusions

Despite the diverse nature of possible solutions, there is no “silver bullet” that can solve the

problem of attacks against stored return addresses. No one technique can detect all possible

instances, and attackers have a long history of learning how to circumvent prevention and
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detection mechanisms. Some of the more effective techniques involve training and review,

but even the best-trained individuals can make a mistake. Dynamic protection techniques

can be costly in terms of overhead, but there is hope to move that functionality into

faster, hardware-based protection schemes. As these detection and prevention techniques

move out of the academic realm into mainstream software releases, it is important that

computer users and professionals are aware of the techniques and limitations. We have

collected links to the projects discussed here and many more at our project website http:

//www.smashguard.org/.
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