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Abstract Two options for the lowest-level on-chip cache in CMPs are:
) ) ) . . shared or private caches. A shared cache has a single copy for each
Chip multiprocessors (CMPs) substantially increase capacity,che plock and allows the cores to share the cache capacity. How-
pressure on the on-chip memory hierarchy while requiring fasty e shared caches are slow because of the wire delays associated
access. Neither private nor shared caches can provide both largg;it, |arge caches. In contrast, private caches are faster because
capacity and fast access in CMPs. We observe that compared ey are smaller and can be located closer to each core. However
symmetric multiprocessors (SMPs), CMPs change the latencysijate caches provide limited capacity to each core. Thus, shared
capacity tradeoff in two significant ways. We propose three novel, oy ate caches can provide either capacity or fast access but not
ideas to exploit the changes: (1) Though placing copies close tg 1,
requestors allows fast access for reaq-only sharl_ng, the copies | g paper we explore the possibility of achieving both goals.
also reduce the alread_y-ll_mlted on-chip capa_cr[y in CMPs. WeSymmetric multiprocessors (SMPs) and distributed shared-mem-
propose controlled replication to reduce capacity pressure by no[)ry machines (DSMs) also target these goals. We make the key
m:?\kilng extra cppies in somg casgs, and obtainiqg the data from hservation that CMPs, however, change the latency-capacity
existing on-chip copy. This option is not suitable for SMPSyaqeoff in two significant ways. We propose three novel ideas to
because obtaining data from another processor is expensive angd ot the changes: (1) Though placing copies close to requestors
capacity is not limited to on-chip storage. (2) Unlike SMPs, CMPSyi,\s fast access faead-only sharingthe copies also reduce the
allpw fast _on-chlp commumcatm_n between processors for re_adéffective on-chip capacity in CMPs. We propasantrolled repli-
write sharing. Instead of incurring slow access to read-write .a4ion which avoids extra copies in some cases, and obtains the
shared data through coherence misses as do SMPs, we propose s> from an already-existing on-chip copy at the cost of some
situ communication to provide fast access without making copieg, 4 latency. Because the copy is on-chip, the latency penalty is
or incurring coherence misses. (3) Accessing neighbors’ caches igm || and is offset easily by the reduction in off-chip misses due to
not as expensive in CMPs as it is in SMPs. \We propose capacipyyced capacity pressure. In SMPs and DSMs, obtaining data
stealmg n Wh_'Ch pn_vate data that exceeds a_ core’s capacity 'Srom another processor is expensive and capacity is not limited to
placeql ina nelghborlng cache with less CaPaCIW dgmand. on-chip storage due to off-chip caching. Therefore, on-chip capac-
To incorporate our ideas, we use a hybrid of private, per-pro-j i 5 lesser concern in SMPs and DSMs, and trading off latency
cessor tag arrays and a shared data array. Because the.sharefgr on-chip capacity is inappropriate. (2) Inter-processor commu-
data array is slow, we employ non-uniform access and distancgi.ation induced byead-write sharingis on-chip in CMPs and
assogiativity from previous proposals to hold frequently-acgessegﬁ_chip in SMPs and DSMs. Because on-chip communication is
data in regions close to the requestor. We extend the previouslyz gser than off-chip communication, there is a new opportunity to
propose_duongmform_ac_:c_ess witlReplacemenand Placement optimize read-write sharing in CMPs. Rather than incur slow
usng Distance associativity (NURAPID) to CMPs, and call our 5cess to read-write shared data through coherence misses as do
cache CMP-NURAPID. Our results show that for a 4-core CMPgpips and DSMs, we propoge-situ communicationvhich pro-
with 8 MB cache, CMP-NURAPID improves performance by 13%;;qes fast access to the data without making copies (via controlled
over a shared cache and 8% over private caches for three COMygjication) or incurring coherence misses. (3) SMPs and DSMs

mercial multithreaded workloads. migrate private data (in the case ob sharing close to the
1] ducti requesting cores to allow fast access. While such migration is use-
ntroduction ful for CMPs as well, it may result in inefficient use of the on-chip

capacity. For example, if one core exceeds the capacity of its pri-

CMOS scaling trends are leading to greater numbers of smaller o .
vate cache, migrating new blocks closer to the core will cause

transistors on a chip but a relative increase in wire delays. Ch'%victions even if there is unused on-chip capacity in a neighbor's

multiprocessors (CMPs) are an increasingly common architecture

o . ; . rivate cache. We proposapacity stealingvhich enables a core
for utilizing the numerous transistors to achieve high performance, . . .
. : - fo migrate its less-frequently-accessed data to unused frames in
CMP substantially increases capacity pressure on the on-ch

II‘i)eighboring caches with less capacity demand. Thus, capacity

memory hierarchy, which must now support multiple cores. At thestealing dynamically customizes allocation of on-chip capacity.

same time, CMP also requires its processors to have fast accessjg . - o . ;
. ..~ "Because neighboring cores are on-chip in a CMP, accessing neigh-
data. The lowest-level on-chip cache not only needs to utilize it

_ . . . . ors’ caches is not expensive as is the case in SMPs and DSMs.
limited capacity effectively but also has to mitigate the increase ; .

. . Neither pure private nor pure shared cache can accommodate
latencies due to wire delays.

our above ideas. Controlling replication in a pure private cache



would result in slow accesses through the bus, if the block is ofteblindly migrate private data, CMP-NURAPID enables better utili-
reused. A pure shared cache as used in several previous desigragion of the shared capacity.

(e.g., [19,26124, 25]) has latency problems. A recent paper [6] To summarize, the contributions of CMP-NuRAPID are:
proposes to alleviate shared cache’s latency by employing nor* its hybrid private tag and shared data organization;

uniform access. Non-uniform cache architecture (NUCA) [14]® its controlled replication, in-situ communication, and capacity
reduces latency in large uniprocessor caches by allowing fast stealing;

access to the regions of the cache close to the processor and slew the results that for a 4-core CMP with 8 MB on-chip cache,
access to farther regions. To reduce latency, NUCA aims to place  CMP-NuRAPID improves performance by 13% over a shared
frequently-accessed cache blocks in the regions closest to the pro- cache and 8% over private caches for three commercial multi-
cessor. Applying NUCA to CMPs, [6] allows migration of blocks threaded workloads.

close to the requestor. Otherwise, [6]'s design is still a pure shared The rest of this paper is organized as follows. Section 2
cache which does not allow replication or exploit our ideas. [6]describes CMP-NURAPID’s organization. Section 3 explains con-
concludes that NUCA's migration is ineffective in the presence oftrolled replication, in-situ communication, and capacity stealing.
sharing because each sharer pulls the block toward it, leaving theection 4 describes methodology and Section 5 presents results.
block in the middle, far away from all the sharers. Section 6 discusses related work. We conclude in Section 7.

Because neither pure shared nor pure private cache accommo-
date our ideas, we propose a hybrid of private, per-processor tag Organization
arrays and a shared data array. Because the shared data array is
slow, we employ non-uniform access to hold frequently-accessed Because CMP-NURAPID relies on non-uniform cache access,
data in regions close to the requestor. We extenddiireuniform  we provide a brief background on previous non-uniform caches.
access wittReplacemenfnd Placement usg Distance associa- Then we describe the changes for CMP-NURAPID.
tivity (NURAPID) [8], which improves upon NUCA, from unipro-
cessors to CMPs. We call our cache CMP-NURAPID. To provide?-1 NUCA and NURAPID
fast access to the tag, CM_P-NuRAPID provides each core With_its The key concept of Non-uniform cache architecture (NUCA)
own private tag array, which snoops on a bus for coherence likg) 41 s to place frequently-accessed information in the region clos-
SMPs. Though CMP-NURAPID uses non-uniform access like [6lest 1o the core to allow fast access. NUCA distributes the tag and
there is one key difference: CMP-NURAPID employs replicationyata arrays throughout the cache and couples tag placement with
in the shared data array to allow fast access for shared data, agds placement. Because NU@Aplicitly couplesa cache block’s
customizes its replication via controlled replication and in-sitUget_associative way number to its distance from the processor,
communication to exploit CMP’s latency and capacity characterisyyca can place only one or two ways in each set close to the
tics. In contrast,_ [6] inflexibly ths _for disallowing replication alto- processor. However, if a “hot” set has more frequently-accessed
gether and relying only on migration. ways, the accesses are not all fast even though the fastest region is

Exploiting its hybrid structure, CMP-NuRAPID employs con- large enough to hold all the ways of the set.
trolled replication for read-only sharing and in-situ communica- Non-uniform access wittReplacemenfnd Placement usg
tion for read-write sharing. For controll_ed replication, CMP_— Distance associativity (NURAPIDB] improves upon NUCA by
NURAPID forces multiple tag arrays to point to the same copy iNgecoupling the set-associative way number from data placement,
the data array. In contrast, controlled replication in a pure private,q proposed byl This decoupling allows any number of cache
cache would imply that the processor that does not have a copyjgcks within a set to be placed close to the processor. Ui [
has to incur cache miss overhead to locate the block. CMPRyRAPID achieves this decoupling by leveraging sequential tag-
NURAPID avoids the overhead by allowing the sharers to keep tagata access, a common technique to reduce energy and wiring
copies without making data copies. . . complexity in large cached D,29. In sequential tag-data access,

For in-situ communication in read-write sharing, CMP- yhe taq array is probegrior to the data array, pinpointing the loca-
NURAPID uses controlled replication to force only one data copYsion of the matching set-associative way and avoiding parallel
The writer and the readers have tag copies which point to the sinyccess of all the set-associative ways. Therefore, the exact location
gle data copy. To prevent the writer from invalidating the readersiy the data array can be determined even if there is no implicit cou-
tag copies (like a pure private cache), CMP-NURAPID employs &|ing hetween tag and data locations. NURAPID exploits this level
new state, called the communication state, in its invalidation-basegs indirection provided by sequential tag-data access to implement
protocol. In this state, the writer can write to the data copy and th@jistance associativitwhere pointers kept in the tag and data array
readers can read the copy without incurring coherence missegjioy blocks to be placed anywhere in the data array. NURAPID
Though an update-based protocol could provide fast read-writgpioys policies which promote frequently-accessed data closer
sharing, it incurs not only the overhead of the updates goingg the processor without being restricted like NUCA only to one or
through the bus but also the capacity pressure of extra copies. o set-associative ways per set.

For capacity stealing of private data, CMP-NURAPID exploits  NyRAPID divides the cache data array into several large (hun-
non-uniform access and modifies NURAPID’s promotion anddreds of KB to a few MB) distance groups, or d-groups. Each d-
demotion policies to migrate frequently-accessed blocks close tgyoyp has a single uniform access latency. Using distance associa-
the core. These policies are especially beneficial for multipro-[ivity' NURAPID places data blocks in the appropriate d-groups.
grammed workloads which have non-uniform capacity demands. NyRAPID uses pointers in tag and data array entries to imple-
The cores with more capacity demand can demote their less-freqen; gistance associativity. The forward pointer is located in the
quently-used data to unused frames in data arrays closer t0 thgy array and points to the specific frame in the data array where
cores with less capacity demands. Whereas pure private cachgg, piock is located. The reverse pointer is located in the data array
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with CMP-NURAPID 2.2.2 Tag Arrays and Pointers
and points back to the tag entry. The reverse pointer is used for \while distance-associativity in the data array brings the fre-
replacement, which we will discuss in detail in Section 3.3. quently-accessed data closer to the core, the tag also has to be
The forward pointer does not significantly increase latencygjgse to reduce latency. Consequently, CMP-NURAPID replaces
because conventional large caches already use sequential tag-dgi#RAPID’s single shared tag array with private per-core tag
access. The reverse pointer’s latency overhead is minimal becaugprays, placed close to each core. Figure2 shows CMP-
the reverse pointer is much smaller than the block. The pointers dQurAPID’s organization. Like private caches, CMP-NURAPID’s
add some overhead to the cache capacity. For example, in a 8-MBq arrays snoop on a bus to maintain coherence (discussed in
cache with 128-B blocks, 16-bit forward and reverse pointers consection 3). The bus has separate wires for addresses and pointers.
stitute a 256-KB, or 3%, overhead][ [8] proposes ways t0 The tag arrays access the d-groups through a crossbar (which is
reduce the overhead at the cost of some flexibility. This overheagd|sg used in conventional banked caches and is acceptable due to
is offset by the fact that CMP-NURAPID leverages the pointers tqhe small number of d-groups) or other interconnect.
enable better capacity utilization and faster communication. In contrast, [6] uses NUCA's tag arrays which are distributed
throughout the cache. Whereas [6] does not use any replication,
2.2 CMP-NURAPID CMP-gNuRAPID does; and using[d?stributed tag arrays ir?tercon-
Like NURAPID, CMP-NURAPID (1) uses sequential tag-datanected by a switch network would require a directory-like scheme
access; (2) divides the data array into several distance groups (8 Maintain coherence. Unfortunately, directory schemes are
groups) and employs distance associativity; and (3) uses forwardarder to build than snoopy bus schemes. In addition to [6], sev-
and reverse pointers. Next, we describe how CMP-NuRAPID dif-eral commercial CMPs (e.g., [262,4, 25]) employing private L1s

fers from NuRAPID. and shared L2 use a directory scheme to keep the L1s coherent.
These CMPs accept the complexity of the directory because using
2.2.1 Data Array a snoopy bus for the L1s would overwhelm the bus due to the high

Unlike NURAPID which specifies distances in terms of only cache miss rates of the small L1s. The CMPs do not have the
one core, CMP-NuRAPID must specify distances for all the corespption of using private L2s and snooping on the L2s instead of the
Each data d-group has a different access latency for each core, lass to avoid the high miss rates because of lack of transistors. In
shown in Figure 1 for a four-core CMP. The number of d-groupscontrast, CMP-NURAPID uses a hybrid organization which both
need not equal the number of cores, but bandwidth consideratioris within the transistor budget and allows the bus to snoop on the
make it preferable to have at least one d-group per core. large L2 whose lower miss rate can be supported by the bus. Thus,

To exploit non-uniform access, each core must rank the dCMP-NURAPID enables the use of the simpler snoopy scheme.
groups in terms of preference to place frequently-accessed blocks. CMP-NURAPID leverages the forward and reverse pointers for
Obviously, the d-groups closest and farthest to a core have theontrolled replication. Multiple tag arrays can share a single copy
highest and lowest preference for that core. But the other rankinggf a data block by pointing to the same block in the data array.
are not obvious as multiple d-groups may have the same distanéeonsequently, CMP-NURAPID’s tag arrays contain more entries
from a core, such as d-groupsandc from PO in Figure 1. The than (e.g., twice as many as) the data arrays. We will describe our
rankings must avoid unnecessary contention among the cores. Fpelicy for controlled replication in Section 3.1.
example, ifPO and P1 use each other's first preference as their In the extreme case, every data block could be shared by all the
second preference (d-groupsanda), the cores will compete in  cores requiring that each private tag array be as large as the com-
these d-groups even if other d-groups (ecgandd) at the same  plete tag array in a shared cache. However, the disadvantages of
distance have space. Therefore, we stagger the rankings for eatlis solution are the increased latency of the larger tag arrays and
d-group across the cores, as shown in Figure 1. This ranking i8n unacceptably large capacity overhead. For an 8-MB cache with
important for capacity stealing discussed later in Section 3.3.  128B blocks in a 4-core CMP, this solution would amount to qua-

Like private caches, CMP-NURAPID employs replication of drupling the tag capacity for each of the core resulting in a 23%
shared data in the data array to allow fast access. Each core ciierease in total cache size.
keep its own copy in its closest d-group. Thus, there may be multi- We propose a compromise by doubling each core’s tag capac-
ple copies of the same block in different d-groups. We will discussty, resulting in a 6% increase in total cache size. (We double the
the policies to control the replication in Section.3.1 number of sets while maintaining the same set associativity.) We

found that doubling the tag capacity performs almost as well as
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quadrupling. Note that the shared caches used in several previoast d-group to avoid slow accesses for future reuses. Because the
designs [26,4, 19] also incur a capacity overhead due to storing Libllock is already present in the tag array, the second use does not
tag copies at the L2 to keep L1 caches coherent. [4] showed thatcur a coherence miss. Also, because the already existing copy is
the L1 tag copies in Piranha incur a 4% overhead in total on-chimn-chip, the latency penalty for second use is small and is offset
cache capacity. CMP-NURAPID’s tag overhead is offset by theeasily by the reduction in off-chip misses due to reduced capacity
fact that it allows the data array capacity to be utilized more effi-pressure.

ciently, reducing both capacity and coherence misses. We illustrate CR in CMP-NuRAPID by an example in
o Figure 3.POhas a copy of the data bloekin its closest d-group
3 CMP-NuRAPID Optimizations (Figure 3a). The tag entry for block in POs tag array points to

the data blockP1 tries to accesX and misses in its tag arraiyl

In this section, we discuss the CMP-NURAPID optimizationssends a read request on the bus. Bec@iskas a data copyp0
for shared and private data. CMP-NURAPID extends the invalidaresponds by sending the forward pointer in its tag entry on the
tion-based 4-state MESI cache coherence protocol [21]. We firg§ointer wires. This pointer return is unlike conventional cache-to-
describe the extensions needed in the cache coherence protocoldgche transfers where the actual datamwich pointer is returned.
implement controlled replication for read-only sharing, and in-situp1 does not create a copy Xfin its closest d-group. Instead, the
communication for read-write sharing. Then we explain the CMP+ag entry forX in P1 now points to the already-existing copy X%f
NURAPID policies to implement capacity stealing for private data.in d-groupa (Figure 3b).P1's tag then accesses the d-groap
through the crossbar (this access is direct and does not go through
PQ0). The reverse pointer of continues to point t&0s tag array.

The main goal of replication is to achieve fast access to shareG€verse pointers are used for replacements and because our
data by keeping separate copies of the shared block close to ealgPlacement policy allows onl°0 to replaceX, the reverse
processor. Private caches attempt to achieve this goal by keepicr%‘,j)'nter need not change. Note that we do not need any new state in
as many copies of a shared block as readers sharing the blodk'® coherence prot.ocol to identify the tag entries which are point-
Though always copying the block provides fast access on reuséd 0 & data copy in some other processor's closest d-group. The
such uncontrolled replication wastes precious on-chip capacitﬁhared state suffices bgcause the forward pointer already identifies
Private caches could save capacity by disallowing a reader frorf?€ d-group that contains the data copy. I there is another access
copying a block to its private cache, if an on-chip copy already© X by P1, this access hits in the tag arré@l checks the forward
exists in another processor's private cache. However when thointer and finds that the block is in the farther d-graugoy
block is re-read, the reader will incur cache miss overhead t§*a@mining the forward pointer, the tag array can determine
locate the block. The savings in capacity by controlling replicationVhether the d-group is close or far). Théti, makes a copy oK
in private caches may not offset the latency increases caused Wy itS closest d-groujp and updates the forward pointer in its tag
the overhead on reuse. entry forXto point to the newly-created copy (Figure 3c).

CMP-NURAPID exploits the hybrid structure to perform con-  1"€ replacement of shared blocks in CMP-NURAPID may
trolled replication (CR) without incurring cache misses on reuseCaUse a correctness problem. When a processor decides to replace
Because CMP-NuRAPID uses private tag arrays and shared dafydata block which is present in the shared state in its tag array,
array, tag entries in multiple private tag arrays can point to thdnen due to CR, there is a chance that tag array entries in other
same block in the data array. When a reader misses on a blo@0CessOr(s) may be pointing to the data block being replaced. If
which is already present in the shared data array, the readdiese sharers are not informed about the replacement of data
obtains the data from the already-existing on-chip copy. Theblock, their tag entries will contain daqgllng pointers to incorrect
reader makes a tag copy but not a data copy. We observe that mafijt@ after replacement. To solve this problem, the processor
blocks brought to the cache are not reused in commercial workiePlacing the data block sends a speBiasReptransaction on the
loads. Not copying the block in data array on the first use saveBUS before replacing the block. The sharers that observBube
capacity for blocks which are never reused. However we observBePltransaction will invalidate any tag array entry pointing to the
that most of the blocks that are reused have two or more reuseSata block being replaced. Note that if a sharer has its own copy of
Therefore, on second use, a data copy is made in the reader’s cId§€ data block in its closest d-group, the sharer does not need to

3.1 Controlled Replication



invalidate its tag array entry. Thus, unlike private caches, CMP- PR, PrWr/-- PIRd/-

NURAPID sends an invalidation on the bus every time a shared C"

block is replaced. It is possible to avoid sending invalidations for % Pt @
those data blocks which are not pointed to by multiple tag arrays. M <

However, the information about multiple tag copies of read-shared

blocks is not available unless a new state is added to the coherence Prwi/BusUpg : N %@\ﬁ\/ . : B
protocol. Because of CMP-NURAPID’s shared data array capac-  pgyr-. AN > | PrRa/BusRd ('S)
ity, replacements are not that frequent. Consequently, such invali-  BusRd/Flush’ : > OXBusRdX/Flush !
dations are infrequent. Instead of adding a new state, we try to *BUSRd/F'“Sh />\&(/s4>d '
minimize the number of the invalidations even further by decreas- I N f/f/%/}
ing the pOSSIbIlIty of a shared block be_mg_replacm_ad. We will dis- f PRUBusRAS) A
cuss the details of our replacement policy in Section 3.3 BusrdxFuush_ >
Due to rare timing issues, simply invalidating the tag copies of
the data block being replaced does not solve the problem entirely. (a) Base Cache Coherence Protocol
Because readers do not advertise that they are in the process of
reading (which would defeat the purpose of having the tag entry),
a replacement invalidation may occur in the middle of a read. That S
is, there is a chance that one of the cores having a tag copy may : AN \%/z,%
start to read the block before the invalidation and end reading after | "
the invalidation. Such a timing will result in a read hit in the tag i Qer/--
array followed by an access to a farther d-group. If the invalidation | - PAWrWIThru+BusUpg
is done and even the replacement finisbeforethe read com- X e
pletes, then the reader may read incorrect data of an unrelated ‘o A 2, \
block that replaced the original block. We solve this problem by "r/%j%%
requiring the tag for the block being read from a farther d-group %ﬁpgfl
be marked busy, implying that a read is under progress. (As men- "
tioned before, our replacement policy allows only the core closest (b) Modifications
to a d-group to replace blocks from that d-group. Therefore, for FIGURE 4: Cache Coherence Protocol

reads to the closest d-group there are no problems with replac

ol invalidate the copy of the block in the reader’s cache on ever
ment because the reader and the replacer are the same). If Ry y

o ; L ite. On a subsequent read, the reader incurs the penalty of a
rep_lacement invalidations appear on the b_us, they wil .be inhibite oherence miss to obtain the data from the writer and makes a new
until the read has completed. The busy bits are he_ld in the CaChceopy in its private cache. Thus, private caches incur slow access to
controller as part of the controller state and not in the 1ags ap. ;g \yrite shared data through coherence misses, and waste
_coherence stat_e. Such state in <_:ache controllers is common. F8 acity due to multiple copies. This approach is not suitable for
instance, transient states used in cache coherence protocols %{él)Ps where on-chip communication is fast but on-chip capacity
implemented in the controller. is limited
Marking the block busy solve_s th'.a pr_oblemmly i the “?ad, CMP-NURAPID uses in-situ communication (ISC) which pro-

starts before the replacement invalidation. If the |nvaI|dat|onVioles fast access to read-write shared data without making copies
occurs before the read, there is another problem in that the inval'-r incurring coherence misses. To perform ISC, CMP-NURAPID
dation is not applied instantaneously. For instance, in multi-leve tilizes the hybrid structure of the cache and em’ploys CR to force
cache hierarchies, it may take several cycles for the invalidation t8nly one data copy for a read-write shared block. The writer and

reach all Fhe way up o the L1 cache. Even though the read .Star[ﬁe readers have their private tag copies which point to the single
after the invalidation appeared on the bus, the read may still Y8ata copy. Because we observe that each write is usually read

ahead and get incorrect data. Delayed application of invalidation;hore than once by each reader in commercial workloads, CMP-
also causes consistency-related problems for SMPs. SMPs URRIRAPID places the data copy close to (one of) the reader(s). To

queues in the cache hierarchy to hold the order of the bus trans revent the writer from invalidating the readers’ tag copies (like a

tions until the transactions are applied to the caches. We solve o lire private cache), CMP-NURAPID employs a new state, called

. L e same capacity advantages that we discussed for read-only
the entry for the read, the tag for the data block being read is 'nvaléharing in Section 3.1

idated before the read data is returned. Accordingly, we require It may seem that private caches can avoid coherence misses in

that the tag array be probed once more before returning the rquad-write sharing by using an update protocol, making the com-
data, so that the data is discarded if the tag has been inva"date%unication state unnecessary. However unli’ke ISC in CMP-

NUuRAPID, an update protocol requires the updates to go through
the bus for copying the data to the reader’s caches, incurring an
Read-write sharing in multithreaded workloads involves com-overhead on every write. Furthermore, update protocols keep mul-
munication of data between the writers and the readers. For a reatiple copies of the read-write shared block giving rise to capacity
write-shared block, private caches using invalidation-based protgroblems similar to the ones caused by uncontrolled replication in

3.2 In-situ Communication



read-only sharing. replacements for CR in read-only sharing. When a processor

Next we discuss the changes in coherence protocol for ISQdecides to replace a data block which is present iCtktate in its
Figure 4a shows the state transition diagram for a 4-state MEShg array, the processor sends BusReptransaction on the bus.
protocol. (We do not include the transitions for replacements inThe sharers that observe tBeisRepltransaction invalidate their
Figure 4.) The solid arcs represent the state transitions in the tagg copies. The timing issues that we discussed regarding replace-
arrays of the initiating processor, while the dotted arcs show thenents in Section 3.1 also exist here. We use the solutions men-
transitions in the tag arrays which respond to observed bus transioned in Section 3.1 to solve these problems.
actions. Figure 4b shows the changes in MESI for ISC. CMP- There are no transitions out @& other than those due to
NUuRAPID adds one more state to the MESI protocol, the commureplacements. Consequently, a read-write shared block may get
nication state (represented Byin Figure 4b) to obtain the 5-state stuck in the d-group closest to a processor that never reuses the
MESICprotocol. TheC state allows multiple processors to share ablock. In that case the other sharers will experience slow hits to
dirty block. The M state in MESI does not suffice for ISC, becausethe block. However, we note that most of the read-write shared
M indicates a dirty block with only one tag copy, whierepre-  blocks in commercial workloads are frequently read after being
sents a dirty block with multiple tag copies. Any transitions which written, thus decreasing the possibility ofZablock getting stuck
appear in Figure 4a for MESI but are not shown in Figure 4b als@lose to a processor that never reuses it. Therefore, we adopt the
take place in MESIC. The arc labelled x in Figure 4b shows thesimple solution of having no exits out &. We leave addressing
transition in MESI which does not exist in MESIC. All the other other workloads, where this issue may be a problem, to future
arcs represent the new transitions added to MESI for ISC. We diswork.
cuss the added and deleted transitions next.

When a read miss occurs and a dirty copy (eitheor ¢) 3.3 Capacity Stealing
already exists, the reader makes a new copy of the block in its
closest d-group, and the previous data copy is invalidated. All th
sharers enter (or remain i€)and their tag entries point to the new
data copy. The transition frorl to S does not exist in MESIC

The main goal of capacity stealing (CS) is to bring frequently-
Bccessed data blocks close to the core. Private caches blindly
migrate data by bringing a new block to the cache at the cost of
- ; . evicting another block. This approach does not utilize the on-chip
protocol, because aW block transits teC, instead of going tc, cache capacity efficiently. For example, if one core needs more

upon seeing a read request on the bus. . . . : N .
. . L capacity than provided by its private cache, it will incur capacit
When a writer does not find the block in its tag array and the pacty P y 1S P pacity

. g . misses even if there is unused capacity in another core’s private
block is present i€ in other tag arrays, the writer does not make 8ache
copy of the data block. I.ns'tead, the Writerent@rpqinting its tag CMP-NURAPID exploits non-uniform access and modifies
entry o the already-existing data copy, and writes to the COPYNURAPID's promotion and demotion policies to bring frequently-
Thus, the copy stays close to the reader.

Thet ition from t0 C diwrite mi ires that th accessed blocks close to the core. Unlike private caches, the
€ transition fromi to & on a readiwrite miss requires thal € ¢ o4 gatq array in CMP-NURAPID enables better utilization of
reader/writer knows whether a dirty copy of the block exists or

. . -~ on-chip cache capacity. The cores with more capacity demand can
not. We add alirty signal to detect the presence of another OIIrtydemotetheir less-frequently-used data to unused frames in the d-
copy (similar to thesharedsignal used in MESI protocol to detect roups closer to the cores with less capacity demands. Thus
a clean copy). The tag arrays carrying a dirty copy assert the dirt apacity stealing dynamically customizes allocation of on-chip ’
signal to inform the reader/writer about the existence of a dirtycapacity. This strategy enables CMP-NURAPID to incur fewer off-
copy so that the reader/writer can decide whether to trar@it to

A read/write to a block irC does not generate any state transi- chip capamty MISses than private gaches.
. . CS is less important for multithreaded workloads because
tion. However the writer to & block sends @usRdXrequest on cores usually have uniform capacity demands. Due to similar
the bys. Whgneyer a sharermlsta'Fe opserves BusRdXransac- working set sizes for different threads, it is unlikely that a core
tion, it remains in theC state but invalidates the L1 copy of the

. . S . having no unused data blocks in its closest d-group may find
blpck, if one exists. This invalidation is necessary because Otheﬁnused blocks in other cores’ closest d-groups. However, CS is
wise a sharer may read a stale value from the L1 cache. In a pr_EspeciaIIy beneficial for multiprogrammed workloads which usu-
Qlly have non-uniform capacity demands. Multiprogrammed
workloads are important for multiprocessors [23].

Because distance associativity allows data to be placed in and
?grated (promoted or demoted) to any d-group, we need place-
ment, promotion, demotion, and replacement policies. Next, we

Yliscuss how blocks are placed initially in the cache and how they

blqck, pure write-back L1 caches.cause cqherence_ problems. Ifz?re promoted to closer d-groups. Then we discuss replacement and
writer writes to an L1 cache block i@ state without writing to the demotion to farther d-groups

L2 block, a reader reading the shared L2 copy may read the incor-
rect value. Therefore we use write-through for all @élocks in 3 3 1 placement and Promotion Policies

the L1 cache. Write through is not needed toror M blocks The placement and promotion policies are different for private

because no other tag copy exists. Many existing CMPS use Writ§;qentified by the E state) and shared blocks. We discuss private
through L1 caches [26,4, 19] to avoid large coherence traffic from s first.

their small L1 caches. Therefore, write through @blocks is not CMP-NURAPID initially places all private blocks in the data d-

likely to cause bandwidth problems. - L group closest to the initiating core. Space for cache misses is
The replacements for ISC work in a similar manner as the|eared through replacement policies discussed in the next subsec-

repeated invalidations as long as the block remaind.iiln CMP-
NUuRAPID, however, the block remains @and repeated invalida-
tions are needed. Nonetheless the reduction in coherence missig|
due toC outweighs the increase in the number of invalidations.
Because ISC allows multiple cores to share the same dirt



tion. Because each tag array is highly set-associative and place- Taple 1: 8 MB Cache and Bus Latencies
ment within the d-group is not restricted by set mapping, this
policy flexibly allows a large number of frequently-accessed
blocks to be placed in the closest d-group. If a tag hit occurs for a
private data block that is not present in the closest d-group, then | Tad (includes wire delay of central taj) 26

Cache and Component | Latency (cycfs)
Shared 8 MB 32-way, 4 ports (latency of 8-way, 1-poft)

we “promote” that block to a closer d-group. After promotion, we | Data 33
update the forward-pointer in the tag array to point to the new |Total 59
frame. Private 2 MB 8-way, 1 port
We examine two policies for promotion. The firagxt-fastest Tag 4
promotes the block to the next closest d-group from its current Data 5
location (Section 2.2.1). The secordstest,promotes the block Total 10

directly to the closest d-group for the core. [8] foumekt fastesto i
be most effective for uniprocessors. However, the environment in CMP-NURAPID with four 2 MB d-groups

a CMP is different because one coreisxt-fastestd-group is Tag w/ extra tag space 5
another core'$astestd-group, and it may be undesirable to pollute | Data d-groups (a,b,c,d) 6,20,20,33
another core’s fastest d-group during the promotion process. We | Pipelined split-transaction bus (all designs with bus):|32

foundfastesto be more effective in CMPs thaext fastest. . . .

Shared blocks are placed as per CR or ISC, depending up tHock is chosen to be demoted. This choice is at random as well
whether the block is read-only shared or read-write shared. Shari)r;‘?:(f?n:iy fizxjége?niq];rggjgzrﬁ)S:)t(r:(;k nafrlal\TE? Z zcg;gi\r/ih
blocks do not need promotion because they are never demote i ) N )

P I u y v 28B entries has 8192 frames). The reverse pointers of the chosen

(We discuss the reasons for disallowing demotions of share locks locate their t i h ¢ d point dated
blocks in next subsection.) Thus, shared blocks do not mov ocks focate their tag entries whose forward pointers are update
point to the new, demoted location of the block.

around in the cache, and we avoid the problems of sharers gettir¥8 If the chosen block is private then the demotions proceed as

incorrect data due to data movement. . o . S
mentioned, but if it is a shared block, we simply evict it instead of
3.3.2 Demotion and Replacement Policies demoting it, as we alluded to in Section 3.3.1. We do not demote
Distance-associative caches such as NURAPID and cmpshared blocks due to the following possible scenario: suppose that

NURAPID must address two forms of replacement: data replace=C N Figure 1 demotes a block from its closest d-group to its
ment and distance replacement. Data replacement is similar {&¢Xt closest d-group. When PO accesseX next time, the tag
conventional caches, occurs upon cache misses, and evicts a biggRlrY indicates thak is a shared block present in a farther d-
from the cache. Distance replacement is unique to distance ass3rouP- Due to the CR policy explained in Section R0 makes a
ciative caches, occurs upon demotion, and evicts a block from a OPY Of X in its closest d-groum and the tag entry foX now
group but demotes it to another d-group instead of evicting it fromP©iNts to the new copy. The old copy in d-grobpow contains a
the cache. We discuss data replacement first. dangling reverse pointer. To avoid this problem, we evict shared

In data replacement, CMP-NURAPID replaces a block from the?!0Cks upon replacement. _
same set as the cache miss. We prefer to replace in the order of Finally, we note that the demotions are not frequent enough to

invalid, private, and shared because eviction of shared block&dUSe @ bandwidth problem in the tag arrays or data d-groups. To

requires invalidations that we discussed in Section 3.1. We us¢dlidate this claim, all our experiments assume that each private
LRU within each category. Replacing an invalid block or a valid @9 array and data d-group is single-ported and not pipelined (the

(private and shared) block that points to a farther d-group creatdd0ssbar in Figure 2 is for pgrallgl accessedlfterentld-groups). .
space only for tag but not for data within the closest d-group. If it hus, our aggregate bandwidth is the same as a single-ported pri-
is a private block then the data block is evicted, but that create¥dt® cache and an n-banked shared cache in an n-CPU CMP.
space in a farther d-group. Some block in the closest d-group i

then distance-replaced to that specific farther d-group. If it is aZ Meth0d0|ogy
shared block then the data block is not evicted and it is left for the . . .

other sharers. Therefore, space needs to be created by distanée;]' Simulation Environment

replacing some block in the closest d-group to a non-specific far- \we use Simics [16] to perform a full-system simulation of a 4-
ther d-group. The same needs to be done for an invalid blockzore CMP with x86 cores. Each CPU uses in-order issue, has 64
Replacing a valid (private and shared) block that points to thEKB’ 2-way L1 | and D caches with 64-byte blocks, 3-cycle
closest d-group creates space for both tag and data. Upon evictingtency, and allows 1 outstanding miss. We assume 4 GB memory
such a shared block, the other tag copies are invalidated. with a 300-cycle latency.

In distance replacement to a non-specific d-group, if we keep Our simulated system runs the Debian GNU/Linux O/S “test-
demoting from one d-group to its next neighbor then this procesgg” version 3.1 with SMP-enabled Linux kernel version 2.4.27
will go into a cycle because eventually the demotions will loop custom-compiled to interface with Simics. We compile the kernel
back to the first d-group. We break this cycle by choosing a dand other applications using gcc 3.3.4.
group at random to stop the demotions. In distance replacement to
a specific d-group, we stop the demotions at that d-group. From.2 On-chip Latencies
the originating d-group to the d-group where demotions stop, dis-
tance replacement simply performs repeated demotions goin
from one d-group to the next-fastest d-group. In each d-group,

We perform our simulations for 70 nm technology, with a 5
Hz clock frequency. with an 8 MB on-chip L2 cache. We main-
tain inclusion between L1 and L2 caches. Our L2 cache configura-



Table 2: Multiprogrammed Workloads Table 3: Multithreaded Workloads

Workload Benchmarks Online Transaction Processing (OLTP):We use the Open
MIX1 apsi, art, equake, mesa Source Development Labs Database Test 2 v0.23 (OSDH}-
MIX2 ammp, Swim, mesa, vortex DBT-2) [20, 29, 30] which is derived from the TPC-C spegifi-

cation revision 5.0. This test models many users performifig 5
_ i types of transactions with a wholesale supplier. We run tije

MiX4 ammp, gzip, vortex, wupwise PostgreSQL database server version 7.4.5 compiled fro
source as specified for the DBT-2. We simulate 128 user
with all keying and thinking times set to 0, accessing a 1.p
GB, 10-warehouse database. We simulate 100 transactigns

MIX3 apsi, mcf, gzip, mesa

tion is substantially more aggressive than existing CMP proposals,
such as Sun Gemini and IBM Power5, which have 1 MB and 1.9
MB capacity respectively for 2-core CMH25,12] Because 2 after a 300-transaction warm-up.
MB prlv_ate caches are adequate for m.OSt SPECZK benchmarks Static Web Server: ApacheWe run the Debian distributio
comparing CMP-NURAPID to that configuration actually makes of apache 1.3.31. We use SURGE [3] to generate web reqlests
our results conservative for multiprogrammed workloads. from a 30,000-file, 700MB repository. We simulate 128 ugers
Our base configuration is a 4-core CMP with 8-MB, 32-way |and 500 requests after a 2000-request warm-up.
conventional shared L2 cache (hereafter referred to as “uniform-
shared_ cache")_wnh 128-B blocks, a_nd 4 ports to p_rowde equal load focusing on online transaction processing in middlewgre.
bandwidth to private caches. To provide a conservative base case,\ye simulate 4-warehouses with a 30-second (simulated §me)
however, the latency of the uniform-shared cache is based on g warm-up and a 10-second sample. We use the Blackdow
faster 8-way cache with only 1 port. For private caches, we use| jyM for Linux version 1.3.1.
four 2-MB, 8-Way_caches each with a single port. For CMP- S5 2535 We use wo applications from SPLASH-2 [31
NURAPID Pjvalua.tlon, we assume an 8 MB, 8-way CMP- oceanandbarnes-hut, as representative scientific workloags.
NuRAPID with 4 single-ported d-groups. We also show results for | these applications are compiled with a p-threads implempnta-
CMP-SNUCA from [6] (hereafter referred to as “non-uniform-  |iion of the PARMACS macros provide by [2]. We run barrfes-
shared cache”). CMP-SNUCA is similar to Piranha's banked |hyt (16K bodies) and ocean (514 x 514) to completion.
cache [4]. We obtain the latencies for CMP-SNUCA frofd]
and [6]. We do not evaluate CMP-DNUCA from [6], because [6] 4.3 Workloads
shows realistic CMP-DNUCA to perfornworse than CMP-
SNUCA. We model both the bandwidth and latency of on-chip  Details of our commercial and scientific workloads are shown
caches carefully. in Table 3. We account for the variability in multithreaded work-
We modify Cacti P2] version 3.2 to derive the access times loads [1] by doing multiple simulation runs for each benchmark in
and wire delays for our conventional caches and for each d-grougach configuration and injecting random perturbations in memory
in CMP-NURAPID. Because Cacti is not generally used for mono-system timing for each run. We construct multiprogrammed work-
lithic large caches (e.g., greater than 4 MB), we make the follow{oads from 10 SPEC2K applications [27] as shown in Table 2. The
ing modifications based on those proposed in [8]: 1) Treat each afpplications are compiled with the default options provided with
our d-groups (1 to 2 MB) as independent (although tagless) cachése SPEC tools. We found these workloads to be representative
and optimize for subarray geometry and access time; 2) Accourtmong a broader set of simulations. For each workload, we run
for the wire delay to reach each d-group based on the distance tntil at least one core completes 1 billion instructions.
route around any closer d-groups using the RC wire-delay models
in Cacti; and 3) Separately optimize our split tag arrays (or unifiedd Results
for the shared and private caches) for access time. We used our
modified Cacti to verify CMP-SNUCA latencies frofv6]. In Section 5.1, we present the results for controlled replication
The computed latencies for our caches are shown in Table ICR) and in-situ communication (ISC) using our multithreaded
from the perspective of cof0in Figure 1. (The results are sym- Wworkloads. In Section 5.2 we evaluate the effectiveness of capac-
metric for the other cores.) Note that the tag latency of the sharetly stealing (CS) using our multiprogrammed workloads.
cache is particularly high because of RC wire delay to reach the .
shared tag, which must be placed centrally in the chip to minimize>-1 Multithreaded Workloads
latency among the cores. We aggressively assume the data from | this section, we first analyze the sharing characteristics of
the shared cache can be routed directly to the cores instead gfir workloads and the opportunity for performance improvement.
through a central controller (such as the tag), hence the comparfgext, we discuss the results for CR and ISC separately. Finally, we

tively low latency for the data arrays. show performance results for the two together.
We model an on-chip split transaction bus. We assume that the

bus latency is the latency that would be required for a core t&%.1.1 Workload Characteristics and Opportunity

access the farthest tag array, which involves a large, long, global |n this section, we first characterize the cache access distribu-

RC-wire delay. We ignore other overheads which may increas@on in shared and private caches. Next, we quantify the opportu-

bus latency. Because private caches have more frequent bus trapsy for performance improvement.

actions due to coherence misses than CMP-NURAPID, ignoring  Figure 5 shows the distribution of L2 cache accesses. The bars

overheads in bus latency helps private caches. from left to right represent the different types of cache accesses as
fractions of overall cache accesses for shared and private caches
respectively. Note that the y-axis scale starts from 0.5 to show the

Java Server: SPECjbb2000SPECjbb is a java-server W(\),$-

=)
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FIGURE 6: Performance Opportunity
The performance improvement for non-uniform-shared does
not change significantly as we move from commercial to scientific
FIGURE 5: Distribution of Cache Accesses workloads. Because non-uniform-shared only improves upon the
latency of uniform-shared, differences in sharing do not impact

0.5

ab
oltp apache specjbb Average ocean barnes
Commercial Scientific

distributions clearly. We show workloads on the X-axis in a ‘ . 0 f it hared
decreasing order of sharing. Because commercial workloads ha&QePp‘?f (t)rmanie |mpr(?vemebn ttor non-uni ;)_fr_m-s aﬁa ld than i
more sharing, they appear before scientific workloads. This order- rivate caches periorm better in scientiic workioads than in

ing makes it easier to show the effects of sharing trends. We als%qmmermal hworkl_oaltzj_s du% to more frequent ROS and RWS
show average across commercial workloads. We categorize {{B!SSes as shown in Figure 5.

((:sghse rr?li Cseeijez)"r]ntgs?s Z'Lse’ ti)r;nﬁ\?v?itgusi;?ir:eaztlj?_\?vnslyrr;sizgerzls -1.2 Controlled Replication and In-situ Communication
y 9 ’ In this section, we analyze the effectiveness of CR and ISC.

and 4) capacity misses. We count a miss as a ROS miss wh §rst, we discuss the block reuse patterns for ROS and RWS data

another copy of the block exists in shared state, and as a R to verify the decisions made for CR and ISC in Section 3.1 and

miss when a dirty copy of the block already exists. Shared cach%ection 3.2. Next, we analyze the tag and data arrays’ access dis-
has only hits and capacity misses, while private caches have atributions.fo.r the t,vvo optimizations

four types of accesses. . . Figure 7 shows the block reuse patterns for different types of

Private caches incur more capacity misses than shared caches_ . .
. . : . sharing. The left bars represent the fraction of all replacements
in all workloads. As mentioned in Section 3.1, the uncontrolled

where the replaced block was brought into the private cache on an

replication of data in private caches decreases effective capaci%OS miss and the block was reusetimes before being replaced:

causing more capacity misses than a shared cache. On average, .oc 250 1. 2 to 5. and more than 5. The right bars represent
across all commercial workloads, shared and private caches have . "~ o L ' 2

. . . similar information for invalidations where the invalidated block
3% and 5% capacity misses, respectively.

was brought in on an RWS miss.

Private caches experience more ROS and RWS misses in com- .
. . S . For ROS data, private caches replace many blocks before reus-
mercial workloads than in scientific workloads. The reason for this

trend is that ial Kloads h tensive data shand them even once. On average, across commercial workloads
rend s fnat commercial workioads have more extensive aata Shajyo, ks are replaced without reuse. Thus, controlling replica-

ing. Among commercial workloads, misses in OLTP are doml-g?n by not copying the data on the first use (Section 3.1) saves

nmai‘;i(i:y;vcvi?:é;s’avlzglllesip?;rh(;? ré%sspz(;‘ljgbRT/{a/\ée ?rlllgypcisuf@pacity. Figure 7 also shows that 50% of the blocks are reused at
) . 9 » they east twice. This result confirms CMP-NuRAPID’s approach of
reduce these misses a lot.

. . .copying the data on second use (Section 3.1).
Figure 6 shows the performance of non-uniform-shared, pri- . . .
. . . . For RWS data, most of the blocks are invalidated before five or
vate, and ideal caches normalized with respect to the conventional
. . ) ., fewer reuses. On average, only 8% of the RWS blocks are reused
uniform-shared cache. The ideal cache is a shared cache with the o L : .
. : ore than five times before being invalidated by a writer. These
same latency as that of each private cache. Thus the ideal cache
has the capacity advantages of shared and latency advantages of  a: Replaced ROS Blocks b: Invalidated RWS Blocks
private caches. The ideal cache results represent the upper bound ] 0 reuse B lreuse  [Z4 2-5reuses HH > 5reuses

on performance improvement achievable by CMP-NuRAPID. As

=
o

mentioned in Section 4, the non-uniform-shared cache is like thegg
SNUCA design from [6]. % g 0.8

There is significant performance improvement opportunity in & § 06
all the workloads. Commercial workloads exhibit more perfor- @g
mance improvement opportunity than scientific workloads. On = 2 0.4
average, the ideal cache performs 17% better than the uniform-i‘%

. . . 5 02

shared cache in commercial workloads. The corresponding perfor-5=
mance improvements for non-uniform-shared and private cachest £ 0.0

are 4% and 5% respectively. Compared to the uniform-shared
cache, both non-uniform-shared and private caches have latency
advantage. However, they fail to close the gap between the uni-
form-shared and ideal caches significantly.

ab
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Commercial Scientific
FIGURE 7: Reuse Patterns



a: Shared b: Private c¢:CR d: ISC I Non-uniform-Shared FA Private I ldeal 1 CMP-NuRAPID
[J Hits M ROS Misses FZIRWS Misses Il Capacity Misses

1.0
o v g 12
209 ] =
3 £
Q o
g 0.8 E E 11
L 0 7 [<5}
B i =
5 3
i oltp apache specjbb Average ocean barnes

abcd Commercial Scientific
oltp apache specjbb Average ocean barnes FIGURE 10: Performance
Commercial Scientific On average, CR and ISC have 83% and 76% hits to closest d-
FIGURE 8: Distribution of Tag Array Accesses group for commercial workloads. In comparison, private caches

invalidations cause frequent RWS misses as shown in Figure 5. Gtave 84% hits in the data array as shown in Figure 8. The reason
average, 69% of the blocks are reused between 2 and 5 timef®r more farther d-group accesses in ISC is that the writer needs to
CMP-NuURAPID’s policy of keeping the read-write-shared block access the block in a farther d-group on every write to RWS data.
close to the reader (Section 3.2) allows fast access to these block@wever, this strategy results in reduced RWS misses in the tag

Figure 8 shows the distribution of tag array accesses. The bag@ray, as we showed in Figure 8.
from left to right represent the access distribution as a fraction of In the interest of space, we do not show the tag and data array
overall accesses for shared, private, CMP-NURAPID with CR, andccess distributions for CMP-NURAPID with both the optimiza-
CMP-NuRAPID with ISC respectively. Note that the y-axis scaletions used together. We found that, when both the optimizations
starts from 0.5 to show the distributions clearly. The numbers foare used together, ROS misses and capacity misses are almost
shared and private caches are the same as the ones already sh@@Hal to those for CR in Figure 8, while RWS misses are equal to
in Figure 5. those for ISC in Figure 8. The data array access distribution is the

CR decreases both capacity misses and ROS misses. Averagifgme as that for ISC in Figure 9.
across commercial workloads, CR results in 3% capacity misses
as compared to 5% capacity misses in private caches (a 40%1.3 Performance
reduction), and 2% ROS misses as compared to 4% ROS misses in In this section, we evaluate the performance of CMP-
private caches (a 50% reduction). Better capacity utilizatioNURAPID with both CR and ISC. We expect CMP-NURAPID to
allows CR to have almost the same number of capacity misses sitperform shared and private caches because of less latency and
in the shared cache. better capacity utilization respectively.

ISC significantly decreases RWS misses. On average across all Figure 10 shows the performance of non-uniform-shared, pri-
commercial workloads, private caches have 10% RWS misse¥ate, ideal, and CMP-NURAPID normalized with respect to the
while CMP-NURAPID with ISC has only 2%; a reduction of 80%. performance of uniform-shared cache. We use number of transac-
Because the RWS misses dominate ROS misses in most of tions per second as our performance metric. We already discussed
workloads, and ISC targets RWS misses, ISC results in more hi§€ results for non-uniform-shared, private and ideal in
in the tag array than CR. Section 5.1.1. We only focus on CMP-NuRAPID in this section.

Figure 9 shows the distribution of data array accesses. as a CMP-NURAPID outperforms both non-uniform-shared and
fraction of overall cache accesses for CR and ISC respectiveI)F?”Vate caches in all the workloads. For commercial workloads,
The data array access distribution for private and shared cachéMP-NURAPID performs 13% better than uniform-shared on
are the same as the tag array access distributions already showr@¥grage. In comparison, the corresponding performance improve-
Figure 5 and Figure 8, and are not repeated in Figure 9. ments for non-uniform-shared and private caches are 4% and 5%

CR results in more accesses to the closest d-group than 1S¢espectively. Non-uniform-shared does not work well because
there is no replication or migration (as mentioned before, [6]

a: CR b: In-situ Communication shows that migration does not improve performance). In contrast
I:IlT)lts in Closest D-grp. - [Z3 Hits in Farther D-grps. Il Misses CMP-NuRAPID employs CR. Indeed, [6]'s negative result on
“ % 7 migration is not surprising because replication is much more
@ 09 4 important than migration for these workloads with heavy sharing.
8 08 Private caches do not perform well due to limited capacity.

% ' ) The maximum performance improvement for CMP-NuRAPID

S 07 | is in OLTP, where CMP-NuURAPID outperforms uniform-shared

E by 16%. Non-uniform-shared and private caches perform 6% and

% 0.6 iy 7% better than uniform-shared respectively.

2 o5 The performance advantage of CMP-NuRAPID relative to the
ab . private caches decreases as we move from commercial to scientific
oltp apache specjob Average ocean bames workloads. Due to less sharing in scientific workloads as shown in

Commercial Scientific Figure 5, private caches have less ROS and RWS misses, decreas-

FIGURE 9: Distribution of Data Array Accesses ing the opportunity for CMP-NuRAPID. For example, in barnes,



B Non-uniform-Shared 72 Private 1 CMP-NURAPID caches. CMP-NuRAPID has slightly higher miss rates than shared
15 cache due to less tag capacity available to each core and the ran-

— dom choice of d-group for distance replacement (Section 3.3).
8 141 . We found that, on average, across all the multiprogrammed
s 13 workloads, 85% of accesses (93% of all hits) in CMP-NuRAPID
sl ) hit in the closest data d-group. We do not discuss these results in
& 12] J detail in interest of space. However, these results demonstrate the
2 effectiveness of CS in keeping frequently-accessed data close to
s 11 H H Ia ] the processor.
% 10 o) o/
' MIX1 MIX2 MIX3 MIX4  Average 5.2.2 Performance
FIGURE 12: Performance Figure 12 shows the performance for different designs in terms

both CMP-NURAPID and private caches perform 10% better tha/! instructions per cycle (IPC). The bars from left to right repre-
non-uniform-shared cache. sent the IPC for non-uniform-shared, private, and CMP-NuRAPID
On average, CMP-NURAPID performs within 3% of the ideal caches with respec.t to the uniform-shared cache respectivgly.
cache performance across the commercial workloads. The maxi- CMP-NURAPID is clearly the best. On average, non-uniform-
mum performance gap between CMP-NURAPID and ideal is irohared. private, and CMP-NuRAPID caches perform 7%, 19%,

OLTP where CMP-NURAPID performs 8% worse than ideal. The@d 28% better than the uniform-shared cache. .
main reason for this performance gap is the high percentage of CMP-NURAPID outperforms non-uniform-shared by 20% on

remote d-group accesses in OLTP, as was shown in Figure gverage across all the workloads. As shown in Figure 11, the miss

Despite the gap between CMP-NURAPID's and ideal’s perfor-’é‘tes for CMP-NURAPID are only slightly higher than shared

mance, CMP-NURAPID significantly outperforms both non-uni- ca@ches. But CMP-NURAPID has significantly lower latency than a
form-shared and private caches in OLTP. non-uniform-shared cache. This lower latency allows CMP-

NuRAPID to outperform non-uniform-shared cache.
5.2 Multiprogrammed Workloads CMP-NuURAPID shows 8% performance improvement as com-
pared to private caches. Comparing Figure 10 and Figure 12, it is
In this section, we analyze CMP-NURAPID for multipro- worth noting that private caches have more performance advan-
gl’ammed workloads. FirSt, we evaluate CMP-NuRAPID’s Capactage over shared caches in mu|tiprogrammed than in multi-
ity utilization. Then, we compare the performance of CMP-threaded workloads. The reason for this trend is that negligible
NUuRAPID with other designs. We expect CMP-NURAPID to havesharing in multiprogrammed workloads allows private caches to
performance advantage over shared caches (both uniform argoid ROS and RWS misses. However, CMP-NuRAPID still out-

non-uniform) due to less latency and over private caches due tgerforms private caches in multiprogrammed workloads due to
CS. In the interest of space, we do not show results for the individpetter capacity utilization.

ual benchmarks in the workloads and only show overall results for
complete workloads. 6 Related Work

5.2.1 Distribution of Cache Accesses We previously discussed [6], which analyzes non-uniform
Figure 11 shows the distribution of cache accesses for shareghared cache designs. [19] is the first proposal of a CMP design
private, and CMP-NURAPID caches respectively. The right mosising a shared, on-chip L2 cache. Many commercial CMPs
bars show the averages across all the workloads. We do not sefja6,12,4, 25) use a shared L2 cache. Several papers have also
rate ROS and RWS misses (We found such misses to be insignifexamined large caches in production uniprocessors. The Itanium
cant in multiprogrammed workloads due to negligible sharing). || uses a large, low-bandwidth L3 cache that is optimized for size
CMP-NURAPID incurs slightly more misses then sharedand layout efficiency [28, 18].
cache, but significantly less misses than private caches. On aver- Many papers have proposed cache coherence protocols and
age, shared cache, private caches, and CMP-NURAPID hawsptimizations for SMPs (see [9] for details). Node capaaityt(
8.9%, 14%, and 9.7% miss rates respectively. CS and extra tag1_chip Capacity) versus |atency tradeoff for DSMs has been
space enable CMP-NURAPID to utilize the cache capacity mor@xploited by COMA[24] and R-NUMA[11].
efficiently, resulting in less miss rates as compared to the private Three recent proposals have examined uniform-access caches
a: Shared b: Private ¢: CMP-NuRAPID in CMPs. [15] compares shared caches, private caches, and a soft-
10 [ Cache Hits Il Cache Misses ware-managed technique for partitioning capacity in a shared
cache. However, the paper does not address shared cache’s long
latency and uses coarse-grain partitions managed by the compiler
or OS. In contrast, CMP-NuURAPID uses fine-grain cache-block
granularity to allow flexible sharing transparent to software. [17]
evaluates migrating execution (as opposed to data) across cores to
improve throughput but assumes only one program running on a
4-core CMP with private caches (i.e. 3 cores are idle). [7] pro-
poses a conflict-predictor for multiprogrammed workloads run-
abc ning on a shared cache. Their technique does not address the

MIX1 _MIX_Z . MIX3 MiX4 ~ Average capacity-latency tradeoff that CMP-NuRAPID exploits.
FIGURE 11: Distribution of Cache Accesses
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