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Abstract achieve high throughput. Because of its high instruction

In th t th h b | denial-of . _throughput and low implementation cost, SMT is being
n the past, theré have been several denial-o 'Serv'ceadopted by the microprocessor industry. Because multiple

(?]OS.) ?ttaCkS which eXha?Sgl SO][.TIIe (jshargdt reso$g:§ (e'g'threads share resources in SMT, there are opportunities for a
physical memory, process table, file descriptors, CON alicious thread to launch a DOS attack by abusing the

nections) of the target_e d machlne. Though these.attagksshared resources. Consequently, it is important to address
have been addressed, it is important to continue to identify

d add ttacks b DOS i ¢ ¢ DOS in the context of SMT. For example, [7] describes a
and address new attacks because IS On€ 0T MOSL proMig, ., 4t oS attack in which a malicious process repeatedly

nent methods used to cause significant financial 1oss. Agspes the trace cache of an SMT by executing self-modify-
recent paper shows how to prevent attacks that exploit theing code. Because the trace cache is shared among all the

sharing of pipeline resources (e.g., shared trace cache) ?n processes, the flushing degrades the performance of all
SMT to degrade the performance of normal threads. In this threads

paper, we show that power density can be exploited in SMT In this paper we show that power density can be

to launch a novel DOS attack, called heat stroke. Heat exploited to launch a novel DOS attack, calleeit stroke
stroke repeatedly accesses a shared resource to create a h SMT. Power density in high-performance microproces-

spo_t at the resource. Current golu_tions to hot spots inevita- sors is the problem of high power dissipation in a small area
bly involve slowing down the pipeline to let the hotspc_>t cool ausing local hot spots in the chip. In heat stroke, a mali-
d.ow?' Conzequentlly, Qeat sdtroke slowlstgowr(; thsvennre S'\f cious thread repeatedly accesses a resource to create a hot
PIPElNe and severely degrades normay threads. YWe presen aSpot at the resource. If the resource is not shared then the hot
solution to heat stroke by identifying the thread that causesspot affects only the malicious thread and it is easy to trace

the hot Spot 3”9' selectlvely slowing down the mahmousthe hot spot to the malicious thread and to stop fetching
thread while minimally affecting normal threads. from the thread. However, if the resource is shared then the
hot spot affects all the threads and it is harder to pinpoint the
source of the problem.

When a number of users share a resource in a system, Today'’s systems effectively protect themselves against
some arbitration scheme must ensure fairness among th&nown DOS attacks. Heat stroke, however, is a new attack
users. While it may be straight forward to arbitrate an @nd current systems are unprotected against it. If unad-
explicitly shared resource, system design may overlook sub-dressed, heat stroke can be used by attackers to launch suc-
tle forms of resource sharing. A malicious user can launch acessful DOS attacks. Therefore, we must address the heat
denial of service (DOS) by exploiting such subtle forms of Stroke threat. _ . o
sharing in order to harm other users [4]. Some well-known _ Solving power density using only packaging is hard.
DOS attacks are: (1) A process forks a large number of child Power density continues to increase with technology gener-
processes, exhausting the available entries in the proces8tions as scaling of current, clock speed, and device density
table and preventing new processes from being spawned [5]0UtPaces downscaling of supply voltages and the thermal
(2) A remote machine initiates a large number of TCP con- @bility of packages to dissipate heat [10]. A localized hot
nections with a server, exhausting the available entries in theSpot can reach emergency temperatures regardlegs of aver-
server's TCB table and preventing any other machines to@de or peak external package temperature or chip power;
establish TCP connections [6]. therefore techniques designed to reduce those parameters

Because a DOS attack can render a system practicallyaré ineffective at alleviating hot spots. Exotic technologies
inoperative, DOS attacks can be detrimental to businessesuch as liquid cooling and immersion can improve pack-
that serve a large number of users (e.g., e-commerce data@9€s, but are expensive and do not scale with technology
bases and webservers). Due to the scale of possible financidfL6]- ) ] . ) _
loss, it is important to identify and address these attacks. Previous architectural solutions to power density allevi-

In Simultaneous Multithreading (SMT) [15] multiple ate hot spots by slowing down activity until the temperature
threads share pipeline resources at the same time in order t§70PS t0 an acceptable level. The schemes slow down the

1 Introduction



clock and lower the supply voltage as done in [12], com- monitoring can be slow and designed to be power- and
pletely stop the processor as done in [1] and in commercialspace-efficient. By such selective throttling we avoid slow-
processors [8], or stop activity at the hot spot and migrateing down the entire pipeline and prevent one thread from
and restrict activity to cooler components [9]. The schemeshindering the other threads, as per our second observation.
are based on the premise that normal programs cause only Two important features of our solution are: (1) We do
transient and not prolonged hot spots, and that the packag&ot attempt to solve the general problem of power density.
can keep the temperature at an acceptable level for most ofnstead, we only prevent a thread with a power-density
the execution time of normal programs. Accordingly, the problem from degrading the performance of other threads
schemes temporarily slow down activity to allow the hot which do not have power-density problem. (2) Regardless
spot to cool down and then resume to full-speed operation.of whether a thread is malicious or not, if the thread has a
Consequently, the performance degradation incurred by thepower-density problem, it must be prevented from causing
schemes is acceptable. Heat stroke, however, does nobot-spots and degrading the performance of other threads.
behave like normal programs and causes severe and proTherefore, it isunnecessario determine if a thread is actu-
longed hot spots. Because the hot spots occur at the sharedlly malicious or not. Accordingly, our solution avoids
resources of SMT, applying the schemes to alleviate the hotmaking this determination and still prevents hot-spot-creat-
spots forces thentire processor into a repeated cycle of ing threads from affecting other threads. Note that, we are
heating and cooling periods. Because heat stroke can createot unfair to non-malicious threads because any power-
hot spots fairly quickly (e.g., within 5-10 million cycles at density schemeuststall such a thread if it has power-den-
4 GHz) and cooling takes much longer (e.g., 50 million sity problem.
cycles), the heat-cool cycle results in severe performance Using SMT simulations, we show that (1) running a
degradation in all the threads. SPEC2K program with a heat-stroke thread degrades the
The degradation caused by heat strokendésther by performance of SPEC2K programs by a factor of four in a
monopolizing shared resources in SMibr by exploiting processor with realistic packaging; (2) our solution restores
SMT's ICOUNT fetch policy [14]. ICOUNT attempts to  performance virtually entirely even in the presence of a
maximize throughput by choosing the thread that has theseverely malicious heat-stroke thread; and (3) our solution
fewest instructions in flight assuming that fewer instruc- does not affect the performance of normal threads in the
tions in flight implies less stalls and higher utilization. Con- absence of heat stroke.
sequently, if an extremely high-IPC thread is run with The rest of the paper is organized as follows. In
normal threads, the high-IPC thread gets a larger share ofSection 2 we describe the related work and background
the pipeline than the other threads under ICOUNT. We cal- material. In Section 3 we describe heat stroke and our solu-
ibrate heat stroke to cause virtually no degradation with tion in detail. In Section 4 we describe our experimental
perfect packaging that can remove any amount of heatmethodology and in Section 5 we present the results from
instantaneously, and severe degradation with realistic pack-our experimental evaluations. Finally in Section 6 we con-
aging, showing that heat stroke is a general and novelclude.
attack that does not monopolize SMT's shared resources
nor exploit ICOUNT in any way. Moreover, SMT-aware 2 Background and Related Work
OS schedulers [13] cannot alleviate heat-stroke. Such
schedulers addressoincidental incompatibilities among
simultaneously executing threads leading to performance
degradation. However, heat-stroke idediberatemalicious
behavior for which the scheduler does not look out.

To address heat stroke, we propassective sedation The conduction of heat can be modelled via equivalent
based on two key observations: (1) There is a large differ- heat circuits in which the voltage indicates the tempera-
ence in the rates of access of the heated resource by hotyre the flow of current represents the flow of heat, and
spot-creating threads and normal threads. (2) Previous hotyarious components have their respective thermal resis-
spot solutions slow down thentire pipeline degrading all  tances and capacitances. The more readily a component
the threads whereas it @nly the hot-spot-creating thread  conducts heat the smaller is its thermal resistance, and the
that needs to be slowed down. The first observation implies ore heat a component can absorb, per unit change in tem-
that it is easy to differentiate between the two types of perature, the higher is its thermal capacitance. Analogous
threads on the basis of resource usage. Accordingly, Weys glectrical circuits, heat circuits also have RC time con-
monitor the per-thread usage of potential-hot-spot stants which determine how rapidly a component may be
resources. When a resource reaches a threshold just beloygated up or cooled down.
the emergency temperature (similar to [1]), we identify the  \when a component in a processor is accessed at a high
thread with thehighestresource usage as the culprit thread rate the repeated switching of transistors generates a large
and slow the thread down. When the resource’s temperazmount of heat. Because the thermal capacitance of a typi-

ture drops to normal, the thread resumes full-speed operacg| component tends to be small, this heat raises the tem-
tion. Because the heating and cooling times are long, our

We now provide some background details on the power
density problem, and DOS attacks in the context of SMT.

2.1 Power Density



perature of the component considerably, creating a local L$1:

hot spot. The heat may propagate from the hot spot in two addl $1, $2, $3
different directions. It may travel laterally across the die to br L$1
neighboring components raising their temperature, or it

. X . FIGURE 1: Example code of a malicious thread
may travel vertically out of the die to the heat sink. Much that causes heat stroke

like an electrical circuit, more of the heat will flow through

the path of less thermal resistance. Unfortunately the ther-problem and briefly described some previous solutions. We

mal resistances are such that the flow of heat in the lateralnow describe how a malicious thread in SMT can leverage

direction is not appreciable. The motivation for thermal power density to carry outa DOS attack. We then propose a

greases and fans is to reduce the thermal resistance of theolution that addresses such DOS attacks.

path to the heat sink, drawing the heat through that path. o

Nonetheless, the rate at which heat can flow out to the 3-1 Inflicting Heat Stroke

heat sink is limited by the thermal resistance of that path. . . .
. Recall that when a resource is accessed at a high rate, it

When a component generates heat at a rate that is larger L

than the rate which the path to the sink can accommodategenerates a large amount of heat. The rate of heat dissipa-

. L tion towards the heat sink is limited by the thermal resis-
the temperature of the component will steadily increase.
: o . . ~“tance of that path. Because a resource may generate heat at
One obvious solution is to slow down the generation while

maintaining a steady extraction. To that end various soly-2rate higher than the capacity of that path, the temperature

. ) oo of the resource may steadily increase until it reaches an
tions for the power density problem temporarily either slow
L : unacceptable level.
down or completely suspend the activity at that particular o N
. S . A malicious thread can exploit this fact to repeatedly
component. [8] simply halts the processor’s pipeline, while . ; .
access a resource at a high-rate over a long period of time,
[12] scale down the clock cycle and voltage, to slow down . .
o . causing such a hot spot. In Figure 1 we show the example
the pipeline until the hot spot has cooled down. The RC o
. . . code for such a malicious thread. The thread has a large
time constant of the path to the heat sink determines how : . :
. . . number of independent instructions so that all of them may
much time the component will require to cool down. For a : . . L
: ; o execute rapidly without stalls. Because each instruction in
typical heat sink the cooling time is in the order of 10 ms.

. N L the code accesses the register file, the thread effectively
Once this cooling time has elapsed, activity at the compo-. . ' .
issues accesses to the register file at a high-rate. Prolonged
nent can be resumed to full speed.

execution of such code will lead to a hot spot at the register
file. A pipeline will generally have a number of tempera-
ture sensors, one at each potential-hot-spot location. Once
A typical program thread executing on a superscalar the temperature sensor at the register file is triggered, the
generally underutilizes the available pipeline resources forpipeline must invoke some mechanism to attend to this
most of the execution time. Simultaneous multithreading power-density problem. Known techniques for controlling
(SMT) can boost the net throughput of the pipeline by power density either slow down or completely stall the
allowing other threads to use the resources which wouldentire SMT pipeline until the hot-spot cools down.
otherwise go unutilized. Because of its high instruction =~ Because the time constants involved in cooling are of
throughput and low implementation cost, SMT is being the order of 10 ms, a large number of cycles are lost in this
adopted by the microprocessor industry. However, becausecooling-down phase. During the cooling-down phase, the
multiple threads share pipeline resources in SMT there performance of all threads on the SMT suffers. If the mali-
exists opportunity for malicious threads to launch DOS cious thread can causes hot spots repeatedly, then repeated
attacks by abusing the shared resources. time-outs for cooling will be required. We observe that it
For example, [7] describes a form of DOS attack in takes a mildly malicious thread about 1.2 ms to heat up the
SMT, in which a malicious thread may repeatedly execute register file to the emergency temperature, and each time
self-modifying code, causing the trace cache to be flushedthat happens the pipeline needs 12.5 ms to cool down.
repeatedly. Because all threads in SMT share the samel'hus, with hot-spots generated back-to-back, the duty
trace cache, this repeated flushing degrades the perforcycle of the entire pipeline degrades to 1.2/(1.2+12) = 0.009.
mance of all threads. We show in results that such a small duty cycle can degrade
Because multiple threads share resources in SMT, athe IPC of normal threads by 88%. We call this severe deg-
power-density hot-spot at a shared resource can affect alfadation via repeated hot-spots a case of heat stroke.
threads. In the next section we explain how a malicious Because an SMT pipeline may fetch instructions from
thread can exploit power density to launch a DOS attack multiple threads at any cycle, SMT needs some arbitration

2.2 DOS attacks in Simultaneous Multithreading

against other threads. mechanism to divide the fetch bandwidth per cycle.
ICOUNT, the commonly used fetch policy for SMT,
3 Heat Stroke and Selective Sedation attempts to maximize the net IPC throughput of an SMT

_ . _ pipeline. ICOUNT fetches from that thread which has the
We have provided details on the general power density fewest number of instructions in flight, assuming that fewer



L$1: slowing down, preventing a malicious thread from degrad-

addl $1, $2, $3 ing the performance of other threads. However, underneath
br L$1 our solution, we still retain a global stop-and-go as a
safety-net. By this safety-net we ensure that if, under any

L$2: circumstance, the pipeline does reach an emergency tem-

Idg $4, addrl perature, we can shut it down to avoid permanent damage.

Idg $4, addr2 We now describe selective sedation, our solution to heat

............ stroke.

Idq $4, addr9 3.2.1 Identifying problematic threads

br L$2 If a non-malicious thread causes hot-spots then it too

will cause the pipeline to slow down, degrading the perfor-

mance all other threads. Thus we do not need to distinguish
between malicious and non-malicious threads. Instead, if
any thread causes power density problems, we must iden-

FIGURE 2: A moderately malicious thread

instructions means fewer stalls and higher utilization.

While ICOUNT inherently prevents starvation of threads, a tifv it and Citf q v affect ther thread
high-IPC thread can monopolize the fetch bandwidth and ify it and prevent it from adversely affecting other threads.

degrade the performance of other threads. Observing thd\ote that we do not try to solve the general power-density

code shown in Figure 1, we may suspect that the maIicious.prOblem' By addressing heat stroke, we are simply prevent-

thread degrades other threads by monopolizing the fetchlﬂg a th;ead with a ]E)ov;/ﬁr dfﬁsitydprobrl:'emh fcrjom dt;:gr:ading
bandwidth via its high IPC, and not via any power-density N pegormf\nce; other threads which do not have a
problems. To isolate the role of power-density in a DOS power density problem.

attack from any fetch-policy side-effects, we use the mod- We maintain per-thread counters that track the access-
erately malicious code shown in Figure’2 The code con- rates of different resources. We need to track the access

sists of two phases, the first phase is similar to the Codebehawor of threads over a long period of time (e.g., 1 ms).

shown in Figure 1, and attempts to generate a hot-spot vias'mply cogntlng the total number of accesses over a long
eriod of time does not work. A hon-malicious thread may

high rate accesses of the register-file. The second phasg :
consists of a number of L2 cache misses (by choosingmai.(e accesses at a small but §teady rate over the enlt|re
addr1 through addr9 such that they map to the same set irperlod, achieving a total count higher than that of a mali-
an 8-way cache). By adjusting the duration of each phasecious thread which carries out a relatively short burst of
we can fine tune the IPC of this malicious thread to an aggressive-raj[e accesses. .\.Ne found that the 'malic!ous
acceptable level. Thus we ensure that any degradation thread from Figure 1 may critically heat up the register-file

the other threads is caused by power-density problems and” Just abopt 5 million cycles (at 4GHZ)Z we mu;t cpntlnu-
not by fetch-bandwidth monopolization. ously monitor the threads over long periods of time in order

to detect suspicious behavior. Because the time constants
3.2 Selective Sedation involved in hot-spot generation are large this tracking need
not be done at a fine granularity, instead we may sample the
Having explained how and why heat stroke occurs, we access-rates infrequently, say by counting the number of
now propose a solution for heat stroke. Before proposing accesses in every 1000 cycles. Obviously, it would be both
the actual solution we make a few key observations thatspace-inefficient and cumbersome for analysis if we were
will help us understand the required structure of the solu- to store all the access-rate values periodically measured
tion. over a long duration of time. Instead, we compute a run-
We make the first key observation that the access-ratening weighted average on all the access-rate values by
behavior of threads which cause hot-spots is distinctly dif- weighting each sample inversely proportionally to its age.
ferent from that of normal threads. This observation At every sampling instant the average is computed as:
implies that the access-rate behavior of various threads at
each resource clearly divides the threads into potential hot- Wt. Avg= (1x) * Wt. Avg+ X * access-rate
spot creators and normal threads. We can monitor the
access-rate behavior of the threads at each resource and use Every time the access-rate is sampled, a hew weighted
that information to identify the threads causing any power average is computed, and the weight of each of the previous
density problems. access-rate values gets diminished by a factor of (The
The underlying reason for heat stroke is that a thread parameterx can be tuned to adjust the memory of the
with a power density problem causes the entire pipeline toweighted average. We empirically know that the time to
be slowed down. Our second key observation is that it is generate a hot-spot is in the order of a million cycles (at 4
not necessary to slow down entire pipeline for cooling, Ghz). Given that we sample the access-rate after every
rather it is only the problematic thread that really needs to 1000 cycles, we need to retain memory for effectively 1000
be slowed down. We identify that the solution needs to sample points. We find that x = 1/128 suffices for such pur-
implement a per-thread slowing down instead of a global poses.



Because the computation of the weighted averageproblem because, upon temperature emergencies, the adap-
involves two multiplication operations, one may think that tation would stall theentire pipeline, essentially degenerat-
this computation is expensive. However, if we chorge ing to stop-and-go.
be a power of 2, then the multiplication operations are
reduced to shift operations. We can assigo a value of 1/  3.2.2 Sedating Problematic Threads
128, replacing the multiplication by an 7-bit shift opera- Once we have identified the culprit thread as described
tion. Because the remainder of the operations are simpleabove, wesedateits execution by ceasing to fetch instruc-
additions and subtractions, the computation of the weightedtions from that thread. We observe, from the behavior of
average becomes inexpensive. The infrastructure requirecaverage programs such as the SPEC2K suite, that a non-
to monitor access-rate behavior consists of one counter, onenalicious thread may also cause an occasional upper-
register and some peripheral arithmetic logic, per resourcethreshold trigger. Recall that we do not attempt to distin-
per thread. Each counter records the access-rate for onguish between malicious and non-malicious threads. While
thread at a particular resource, and it is incremented everythe sedation of such a non-malicious thread is needed
time the thread accesses that resource. The register holdéecause any power-density scheme must slow down at
the weighted average of access-rate for that thread at thaleast that thread if not the entire pipeline), it would be detri-
particular resource, and we recompute the weighted avermental to the performance of the thread if its execution
age at every sampling interval using its current value andwere sedated indefinitely. To that end, we sedate an offend-
the value in the access-rate counter. After we read the valuéng thread only for a period long enough to allow the
in the access-rate counter, we reset the counter to zero imesource to cool down. Once the culprit thread is sedated,
order to begin measuring the next sample. we expect that the resource will not be accessed aggres-

Because the weighted average tracks the access-ratsively and will begin to cool down. We detect sufficient
behavior over a reasonable period of time, it is an effective completion of cooling by another threshold which is set to
metric for identifying the culprit thread when a hot-spot a temperature just above that of normal operation for that
occurs. We see that the weighted average for threads with aesource (e.g., 355K for the integer register file, where nor-
power-density problem tends to be distinctly higher than mal operating temperature is 354K). We call this tempera-
that of other threads. However we also observe that typicalture threshold the lower-threshold. Thus, for the purposes
programs, such as the SPEC2K suite, occasionally exhibitof selective sedation, we associate two temperature triggers
short bursts of a high weighted-average without causingwith each resource, one for the upper-threshold and one for
any power-density problems. Hence, policing the threadsthe lower-threshold. When the sensor triggers at the lower-
via an absolute weighted-average threshold would degradehreshold we restore the sedated thread to normal execu-
performance significantly due to false positives (i.e., tion. Note that during sedation, the access-rate and the
threads with no power-density problems are penalized).weighted average of the culprit thread are not computed at
Furthermore, raising the weighted-average threshold inall. Thus, we ensure that the period of inactivity will not
order to reduce the performance degradation would enableartificially lower the weighted average for that thread.

a malicious thread to inflict heat stroke without being So far we have assumed that there is only one thread
detected. Instead, we use a temperature-based threshold twith a power-density problem, which may not necessarily
detect suspicious behavior. When the temperature of abe true. If there are multiple threads with power density
resource rises to near the emergency temperature we caproblems, then sedating the first culprit thread does not
expect that the weighted average for the culprit thread will guarantee that the heated-up resource will actually cool
be distinctly higher than that of the other threads. In order down. Therefore, after the upper-threshold triggers, we
to avoid emergencies, we borrow from [1] and adjust the wait for a duration that is twice the expected cooling time
temperature sensors to trigger at a temperature slightlyof the resource, and then reexamine the temperature of the
below the emergency temperature (e.g, 356K when theresource. We choose twice the duration because the cooling
actual emergency temperature is 358.5K). We call this tem-time inherently assumes no heat generation, whereas for
perature threshold the upper-threshold. In the event of anour purposes a thread may still be running, generating
upper-threshold trigger at any resource, we identify the cul- some heat. After this duration if the temperature is still
prit thread as the one with tHéghestweighted average at above the lower-threshold, we conclude that there is
that resource. A temperature-based threshold rarely causeanother thread with a power-density problem which is still
false positives because the upper-threshold is set close tmperative. As before, we identify and sedate the thread with
the emergency temperature. the highest weighted-average. When the resource cools

Upper-threshold triggering is similar to the idea of down to the lower-threshold, we resume normal execution
emergency-temperature triggers first proposed in [1]. This of all threads that were sedated for that resource. As long as
paper uses emergency temperature triggers to prevent théhe resource does not cool down to the lower-threshold and
chip-wide temperature from reaching a damaging level, there are un-sedated threads still operative, we must con-
and not to address local hot-spot problems. We could imag-tinue periodic reexamination. The only exception is that
ine adapting the paper to address the problem of local hot-when there is only one un-sedated thread left, that thread
spots. However, this adaptation in itself would not solve the cannot degrade the performance of any other thread. We



allow the last unsedated thread to continue to operate evervent a DOS attack by guaranteeing fair CPU usage to all
above the upper-threshold. In the event that the thread heatthreads even in the event of a heat stroke, a malicious
up the resource to the emergency temperature, the safetythread can defeat the scheduler by exploiting the internal
net stop-and-go mechanism intervenes. Stop-and-go stallgletails of the scheduler. (1) If a malicious thread deliber-
the entire pipeline until the resource cools down to normal ately degrades the performance of other threads, such an
operating temperature, restoring all sedated threads to norOS scheduler assumes that the degradation is due to coinci-
mal execution. dental incompatibility for SMT execution. The scheduler
In addition to alleviating heat-stroke in hardware, we continues to execute the malicious thread, and continues to
also report the offending threads to the operating system.team it up with other threads in search of non-existent SMT
This reporting facilitates the identification of offensive compatibility. In contrast, selective sedation actually identi-
threads and their users. fies such malicious threads and notifies the OS, so that the
We show in our experimental evaluation that selective scheduler may mark such threads ineligible for execution.
sedation successfully alleviates heat-stroke without causing(2) While the OS scheduler guarantees fair, priority-based

performance loss due to false-positives. CPU sharing, it may do so at the cost of low CPU utiliza-
_ tion. By launching repeated heat strokes during the evalua-
3.3 Generality of Heat Stroke tion phase, a malicious thread may force the scheduler to

schedule other threads for solo execution (i.e., only one
thread in the pipeline) on the CPU for long periods of time.
Alternately, a malicious thread may assume a high priority
‘and exhibit an artificially low IPC during specific parts of
he evaluation phase, forcing the scheduler to schedule the
malicious thread for solo execution over long durations.
Long periods of solo execution degenerate the SMT
machine to a non-SMT machine, degrading overall system
utilization. (3) If the duration of the monitored and non-
monitored periods are fixed then a malicious thread may
easily behave as a normal thread during the monitoring
eriods and launch repeated heat-stroke attacks during the
on-monitored periods. Whereas, if the duration of the
4monitored and non-monitored periods are randomized, then
malicious thread can alternate between normal and mali-
cious behavior to achieve probabilistic DOS. Using more
than one malicious thread, the probabilistic DOS attack can
be turned into an effective DOS attack. Such attacks not
only degrade system utilization but also defeat the primary

ior-bqsed detecti(_)n,_ we exploit power density while [7] task of the scheduler, preventing fair priority-based CPU
exploits self-modifying code. Furthermore, we actually sharing

prevent heat-stroke attacks via selective sedation, whereas
[7] only detects and reports culprit threads to the OS. 4 Experimental Methodology

In SMT machines, multiple threads may occupy the
CPU during a single quantum, yet they may make different  In this section, we describe the simulation methodology,
amounts of progress during that quantum. Thus, simply hardware parameters and benchmarks that we use in our
keeping an account of the number of quanta that eachexperiments. We demonstrate heat stroke and selective
thread runs for, does not guarantee fair, priority-based CPUsedation using execution driven simulations of an SMT. We
usage in SMT. [13] proposes an OS scheduler that monitorspuild our SMT simulator on SimpleScalar 3.0b [3]. Our
the individual progress across threads within one quantumsimulator uses the ICOUNT fetch policy and can fetch
to provide this guarantee. The OS scheduler uses this inforfrom two threads every cycle. The architectural configura-
mation to guarantee progress proportional to priority by tion parameters are shown in Table 1. Our SMT simulator
allocating quantums to groups of threads (to be run simul-implements common optimizations techniques such as
taneously) and to individual threads (to be run alone). squashing a thread on an L2 miss to avoid filling up the
Because the monitoring poses an overhead in systenissue queue. All the architectural techniques which we use
throughput, [13] first runs a monitoring phase and then in our SMT simulator are commonly used in commercially
allocates CPU quantums for a longer non-monitored available SMT processors.
period. [13] does not consider the possibility of malicious ~ To model the power consumption, we integrated Wattch
programs, and is designed under the premise that all pro{2] with our base SMT simulator. We extend the Wattch
grams behave in a non-malicious manner. model to include HotSpot [12] in order to model the power

While it may seem that such an OS scheduler can pre-density in the SMT simulator. The processor runs at 4GHz

A number of previous proposals address the issue of
fairness in the context of SMT execution. [7] addresses
DOS attacks based on trace-cache flushing, and [13] pro
poses an OS scheduler that ensures fair, priority-base
CPU utilization across all the threads in an SMT machine.
We argue that heat stroke is a general DOS attack which
may not be alleviated by the techniques proposed in [7] and
[13].

[7] addresses a specific DOS attack which is character-
ized by repeated execution of self-modifying code, result-
ing in repeated flushing of the trace-cache. A malicious
thread may degrade the performance of other threads in arﬁ
SMT by flushing the trace-cache repeatedly. [7] proposes
scheme that detects such behavior and notifies the O
about the offending thread. [7] detects culprit threads base
on the observation that, the cache-flush pattern of normal
threads is noticeably distinct from that of self-modifying
code. While our scheme is similar to [7] in terms of behav-



Table 1: System parameters. cannot handle large increases in temperature, which may

Architectural Parameters damage the chip. _ . N '
Instruction issue 6. outof-order . V\/tg run each sgnulatlﬁn for 5t00 mllclllotn gyclles. Tht|§
. uration corresponds to the quantum of a typical operatin
L1 64KB 4-wayi&d, 2-cycle system. To ShO\E)V the effect 01? Heat-Stroke ir)1/ 21 2-waF;/ SMT,g
L2 2M 8way shared 12-cycle we run each individual SPEC2K benchmark with a mali-
RUU/LSQ 128/32 entries cious thread similar to the one shown in Figure 2.
Memory ports 2 In the implementation of selective sedation we maintain
Off-chip memory latency| 300 cycles per-thread access-rate counters corresponding to each
SMT 2 contexts resource..We sample the access-r'a.te every 1000 cycles.
Because it takes in the order of a million cycles to create a
Power Density Parameters S .
hot-spot, we maintain a weighted average that captures a
Vdd 11V window of 0.5 million cycles by choosing the valuexofin
Base Frequency 4 Ghz Section 3.2.1) to be 1/128.
Convection resistance 0.8 KIW
Heat-sink thickness 6.9 mm 5 Results
Thermal RC cooling timg 10 ms To demonstrate heat stroke and selective sedation, we

present a number of experimental results. In all experi-

frequency and senses the temperature every 20,000 cycleggnts, except where stated otherwise, we run one program
(this sensing frequency is well under_the. thermal RC time- from the SPEC2K suite and one malicious program, on a 2-
constant of any resource). The circuit and packagingyay SMT. Except for Section 5.5, we use a convection
parameters are shown in Table 1. For the core of the pro-yegjstance of 0.8 K/W [12] for the realistic heat. In all
cessor we use the floorplan provided in [12]. We use a Ch'p'experiments we assume stop-and-go as the base-case tech-
wide Vdd of 1.1 V. The parameters correspond to next- ique for addressing power-density problems. We used 358
generation of hlgh—performance processors acc_ordlng ok as the highest allowable operating temperature [12].
[1_1]. Our thermal packaging corresponds to an air-cooled, Except for Section 5.6, we use 356 K as the upper-thresh-
high performance system. . old and 355 K as the lower-threshold for selective sedation.

While there are a number of proposed techniques for | oyr experimental evaluations we demonstrate the fol-
addressing hots-spots [12], in our power-density SMT sim- 5ying results: (1) We show the number of times that the
ulator, we usestop-and-goas the base-case technique for gyt pipeline heats up to the emergency temperature, with
preventing hot-spots. From Figure 6 in [12], we see that for 5nq \ithout selective sedation. (2) We contrast the average
realistic configurationsstop-and-go(called global clock  5ccess-rate behavior of SPEC programs against the behav-
gating in [12]) has nearly the same throughput as DVS. jor of malicious programs. (3) We demonstrate the actual
Further, DVS is not expected to scale with teqhnology. performance degradation of SPEC programs due to heat
DVS reduces Vdd to reduce the power consumption which syroke, and the effectiveness of selective sedation in restor-
may not be pos§|ble in future for scaled, low-voltage tech- ing their performance. (4) We show the breakdown of exe-
nologies. Transistor threshold voltage scales more slowly - tion times for benchmark programs to illustrate how
than the supply voltage [11] and as the gap between thegglective sedation prevents heat-stroke. (5) In order to
supply voltage (e.g., 1.1V) and the threshold voltage (€.., estaplish the robustness of temperature-based thresholds,
0.25 V).closes, there is a substanua_lly less flexibility for \q vary the thresholds and show that the effectiveness of
DVS. Finally, supply voltage reduction may cause soft se|ective sedation is not critically sensitive to the thresholds
errors or prevent transistors from switching even at reduced,ye choose. (6) We show that both the damage from heat-
clock frequencies. Because stop-and-go performs comparagiroke and the effectiveness of selective sedation remain
bly to other schemes for our purposes, and is already nchanged qualitatively with improvements in heat-sinks
implemented in commercially available processors today, 544 packaging technologies. (7) To show that selective
we use stop-and-go as the base-case method for hot-spQieqation does not adversely affect the execution of non-

prevention. . malicious program, we execute pairs of only SPEC pro-
We do not compare against a number of other teCh'grams without any malicious threads.

niques which are either not generally applicable or create™ |, order to isolate the effects of the ICOUNT policy and

implementatipn difficulties. Temperatu_re—Tracking Fre- 1o establish the effectiveness of the weighted-average
quency Scaling (TTDFS), as proposed in [12], allows the reqqrce-usage metric (Section 3.2.1), we use three varia-
processor to heat above its “maximum” temperature by tions of the malicious codd/ariantlis an aggressive pro-
slowing the clock and relaxing timing constraints. As stated gram which accesses the register-file at a high rate and also
in [12] TTDFS is effective only if the sole limitation on 155 5 high IPC (same as Figure Variant2 is also an

power density is circuit timing. TTDFS does not reduce 4gqressive program with a high register-file access-rate but
maximum temperature or prevent physical overheating andy 55 4 relatively lower IPC (same as Figure\jriant3is a
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FIGURE 3: Average access-rates of integer register-file for SPEC programs and the three variants
moderately malicious program that accesses the registesidervariant2 to be representative of malicious programs
file at a rate chosen to evade selective sedation (variation oimeant for heat-stroke attacks. In all those experiments
Figure 2). where, for lack of space, we can show only one variant, we
choose to show results feariant2

5.1 Average Access-Rates

, ) ) 5.2 Number of Temperature Emergencies
In Section 3.2.1 we introduced the weighted average

metric, and argued that the flat access-rate averaged over a For a reasonable heat-sink, we expect that non-mali-
period of time is not a viable metric for identifying prob- cious programs will rarely heat an SMT processor up to the
lematic threads. We now show this flat average access-rat@mergency temperature. However, in the presence of mali-
of the integer register-file for SPEC benchmarks againstcious programs we expect the number of temperature emer-
those for the three malicious variants. gencies to be significantly high. Because selective sedation
We execute each program alone, periodically sampling alleviates heat stroke, we expect selective sedation to suc-
the access-rate and averaging the samples over a duratiocessfully reduce the number of temperature emergencies
of one OS quantum, to effectively obtain the accesses pertback to a normal level.
cycle for that program. In Figure 3 we show the average In Figure 4 we show the number of times the processor
access-rate of the integer register-file for all SPEC bench-heats up to the emergency temperature, within one OS
marks and for the three malicious variants. We observe thatquantum, for various benchmarks. For each benchmark we
the average access-rate stays below 6 for all SPEC benchshow three bars corresponding to, from left to right: (1) The
marks. Fowvariantlthe average access-rate is 10, which is SPEC benchmark executes alone. (2) The SPEC bench-
widely separated from the access-rates of SPEC programsmark executes along witkariant2 while supervised by
However, the average access-rates fariant2 and stop-and-go. (3) The SPEC benchmark executes along with
variant3 are 4 and 1.5 respectively, which are not distin- variant2 while supervised by selective sedation. We see
guishable from that of SPEC programs. We show in that with the exception of bzip, crafty, equake, sixtrack and
Section 5.3, thavariant2 successfully inflicts heat-stroke vortex, all benchmarks cause none or a few temperature
whereas the low access-ratevafriant3 limits its ability to emergencies when executing aloné!{ar). In the pres-
inflict heat-stroke. We further show in Section 5.3 that the ence of variant2 (2”d bar), the number of temperature
weighted average metric successfully detects and containemergencies increases to at least 8 for all benchmarks,
attacks byvariant2 We also show in Section 5.3 that amounting to more than a four fold increase in temperature
variantl monopolizes fetch and significantly affects SPEC emergencies averaged across all benchmarks. After deploy-
programs due both to ICOUNT and power-density prob- ing selective sedation i‘ébar), we see that, with the excep-
lems. Becauseariant2does not monopolize fetch, we con- tion of bzip, crafty, gzip, mcf and wupwise, the number of
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FIGURE 4: Number of temperature emergencies in one OS Quantum
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FIGURE 5: IPC Performance with Heat-Stroke and Selective Sedation

temperature emergencies for all benchmarks is restored taealistic heat-sink (i.e., one that has a finite and reasonable
exactly the same number as for solo execution. bzip, crafty,heat removal rate). If the realistic heat-sink is effective, we
gzip and mcf are benchmarks which already have power-expect that most benchmarks will not exhibit performance
density problems. The sedated execution of a maliciousdegradation compared to the case of an ideal heat-sink. We
thread slightly increments their power-density problem then run each SPEC benchmark in simultaneous execution
converting a few near-emergency instances into actual temwith each of the three malicious invariants (Section 5), one
perature emergencies. by one. In Figure 5, for every benchmark-variant pair we
show three bars, one for each of the following configura-
5.3 Effects of Heat Stroke and Selective Sedation  tions: (1) An ideal heat-sink. (2) A realistic heat-sink,
supervised by stop-and-go. (3) A realistic heat sink, super-
We now show the effect of heat stroke on the _perfor— vised by selective-sedation. In all configurations we mea-
mance of Fargeted programs, and show that selective Seda’éure the IPC performance of the benchmark program only
tion effectively c_ounters such DQS attacks. To esfcabhsh (the y-axis is the IPC of only the SPEC program). If a mali-
that heat stroke is a real problem in .SMT’ we must |sqlate cious monopolizes fetch, we expect the first configuration
any effects of the ICOUNT fetch-policy, and of heat-sink - xrd gth 24 ¢ bar) to show a noticeable performance deg-
limitations. For the first two ba_rs in F_|gure 5, we run gach radation compared to the case of ideal-heat-sink, solo
SPEC benchmarllong once with an ideal heat-sink (i.e., benchmark execution $ibar). If the malicious variant is

one that has infinite heat removal rate), and once with Acapable of inflicting heat stroke we expect the second con-
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FIGURE 6: Breakup of execution times

figuration (4“,7”‘, and 16 bar) to show substantial perfor- performance of the benchmark programs to a level compa-
mance degradation compared to the first configuration.rable to that of their solo-execution with a realistic heat-
Because selective sedation successfully counters heasink (Td bar). The IPC averaged over all benchmarks, for
stroke attacks, we expect the third configuratioﬁ‘,&‘, solo execution with a realistic heat sink is 1.28, whereas
and 11 bar) to perform significantly better than the second with variant2 supervised by selective sedatioﬁ“{aar) the
configuration, achieving a performance comparable to thatIPC is 1.24. We conclude that selective sedation success-
of solo-execution with realistic a heat—sim?‘lbar). fully prevents heat-stroke attacks from a variety of mali-

With the exception of bzip, crafty, equake, sixtrack and cious programs.
vortex, we see that the solo-execution performance for all
benchmarks is nearly the same regardless of ideal or realis5.4 Breakdown of Execution Times
tic heat-sinks. We conclude that the realistic heat-sink is
effective in heat-removal rate for typical programs, and that
heat-stroke does not exploit an ineffective heat-sink.

Recall that the first of the simultaneous-execution con-
figurations (8,61, and 9" bar) attempts to isolate any
ICOUNT-policy side-effects. From Figure 5 we see that
variantl (Srd bar) exhibits noticeable performance degrada-
tion across many benchmarks for this first configuration.
Whereasyariant2 (61 bar) andvariant3 (9" bar) perform
comparably to the ideal-heat-sink, solo-execution case
across most benchmarks S{(1bar). We conclude that
variant2 and variant3 are free from any ICOUNT-policy
side-effects, whereagariantl involves such side-effects.
For the remainder of our experiments we do not consider
variantlin the context of heat stroke.

The second of the simultaneous-execution configura-
tions (49,7, and 1" bar) shows the extent of heat stroke
that the malicious variants inflict. Recall thatriant3mod-
erates its access rate in attempt to avoid being detected a
contained by selective sedation. From Figure 5 we see tha

variant3 (10" bar) causes a performance degradation that . . .
is much I(ess pror)munced cor?npared to thamax%antz (7m SPEC programs spend 85% of total execution time in nor-

bar). The performance degradation averaged across ai[nal operation an(_j onIy_ 15% in _stalls for cooIing._Most pro-
benchmarks is 50.8% forariant3 whereas fowvariant2 it grams spend their entire time in norm_al execution, except
is as severe as 88.2%. We see that heat stroke is a real prol;Qr bzip, crafty, equake, gzip, mcf, sixtrack and vortex,

lem, which can severely degrade the performance of SMTWhiCh have _s_light power-density problems. Under heat-
systems. stroke conditions ('id bar), averaged across all bench-

We llustrate the effectiveness of selective sedation maT"S’ SPEC programs spend as much as 87% in cool_mg
using the third configuration of simultaneous execution penod_stalls, re_sultmg in severe performance degradation.
(5th gh and 14" bar). From Figure 5 we see that, for all Selective sedation counters heat-stroke attack$ 1ar),

. o .
three variants, selective sedation successfully restores thgnablmg SPEC programs to spend as much as 83% of their

When executing alone, we expect typical non-malicious
programs to spend most of their execution time in normal
operation. However, when executing along withriant2,
we expect that SPEC benchmarks will spend a major frac-
tion of their execution time in stalls due to stop-and-go
cooling periods. Because selective sedation prevents heat-
stroke, we expect that even in the presencevaiant2
SPEC benchmarks will spend only a small fraction of their
execution time, if at all, in cooling-period stalls. At the
same time, selective sedation should forcwiant2 to
spend a major fraction of its execution time in sedation
stalls.

In Figure 6 we show the breakup of execution times for
SPEC benchmarks under three scenarios: (1) Executing
alone (£' bar). (2) Executing along withariant2, super-
vised by stop-and-go ?ﬁ bar) (3) Executing along with
variant2, supervised by selective sedatiorfd(:bar). We
nalso show the breakup of the execution timevafiant2
[supervised by selective sedatioH“(ldar). We see that when
running solo (® bar), averaged across all benchmarks,
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FIGURE 8: Results for varied thresholds with improved heat sink

execution time in normal operation, averaged across all5.6 Threshold Sensitivity

benchmarks. Under selective sedation, all benchmarks

spend nearly as much time in normal operation as they do e now vary the temperature thresholds to show that the
in solo execution. We also see that, selective sedation sucgﬁectlveness of selective sedation is not Crltlca”y sensitive

Section 5.3, but with the upper- and lower-thresholds set to
5.5 Evaluations with an Improved Heat-Sink 353 K and 352 K respectively. We also evaluated threshold

. . _ sensitivity for the less-aggressive heat-sink and obtained
In all experiments so far, we assumed a convection resis-similar results. Due to lack of space we present evaluations
tance of 0.8 K/W for a realistic heat-sink. We now repeat only for the improved heat-sink and only f@riant2

the evaluations shown in Section 5.3 but with a heat-sink  The results for the modified thresholds, shown in
which has a convection resistance of 0.7 K/W. Due to lack Figure 8 differ from the results presented in Section 5.5

of space we present results only correspondingareant2 only in the 3% bar which corresponds to the benchmarks
In Figure 7 we see that when executing alone, except forexecuting along withvariant2, while supervised by selec-
equake, all other benchmarks’ performance with realistic tive sedation. We see that even for the new set of thresh-
sink (2% bar) is similar to that of the ideal heat-sink case olds, selective sedation successfully prevents heat-stroke.
(15 bar). The #'and 29bars are closer in this figure than The IPC averaged over all benchmarks, for solo execution
in Figure 5 due to the better heat-sink shown here. Whenwith a realistic heat sink is 1.56 1bar), whereas with
executing along witlvariant2, and supervised by stop-and-  variant2 supervised by selective sedation the IPC is 1.47
go (4" bar), all benchmarks suffer substantial performance (39 bar). We conclude that the effectiveness of selective

loss, showing that heat-stroke is just as effective even withsedation is not critically sensitive to the choice of tempera-
an improved heat-sink. The IPC performance of all bench- tyre thresholds.

marks, when executing witkariant2, and supervised by

selective sedation (Bbar), is comparable to their solo-exe- 5.7 Effect on Non-malicious Programs

cution performance with a realistic heat—sim?‘(bar). We

conclude that heat-stroke is a threat to be reckoned with We now investigate whether selective sedation adversely

and that selective sedation remains effective. observe that equake exhibits a greater degree of power-den-

sity problem that all other SPEC benchmarks. Therefore,
we run equake paired with other SPEC programs on the
SMT and observe their combined IPC performance with
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FIGURE 9: Total IPC of two SPEC threads (equake paired with other SPEC benchmarks)

and without selective sedation.

In Figure 9 we show the total IPC of the SMT for pairs
of SPEC benchmarks for (1) with a realistic heat-sink using
stop-and-go ( bar), and (2) with a realistic heat-sink
using selective sedation rlfébar). We see that the IPC for
selective sedation is comparable to the IPC for stop-and-go 3]
In fact for a number of benchmarks (e.g., eon, gzip) selec-
tive sedation improves the performance in comparison to [4]
stop-and-go by preempting emergencies. We conclude thats;
selective sedation has no adverse effect on the performance
of non-malicious programs. (6]

6 Conclusions (7]

In this paper we describe how power-density can be
exploited to launch DOS attacks in SMT. Currently known g
techniques that address the power-density problem slow
down the entire SMT pipeline degrading the performance
of all threads. A malicious thread can inflict heat-stroke, a [
novel DOS attack, by repeatedly creating hot-spots to
adversely affect the performance of other threads in the
system. We made two key observations to address heatfio]
stroke: (1) The average resource access behavior of mali-
cious threads is distinctly different from that of non-mali-
cious threads. (2) When a hot-spot occurs it is not
necessary to stall all the threads in the SMT, rather we need
to stall only that thread which is responsible for the hot- [12]
spot. We proposed to detect power-density problems using
temperature-based thresholds, and to identify culprit
threads using a weighted average of their resource acces%-lsl
rates. We proposed selective sedation, a scheme that selec-
tively penalizes only the culprit thread in the event of a hot-
spot, while allowing other threads to make normal
progress. Through experimental evaluations we showed
that heat-stoke is a real problem which can severely
degrade the performance of the threads in an SMT. We
showed that selective sedation successfully prevents heat-
stroke.

Because SMT is being widely adopted by the micropro- [1°]
cessor industry and because power-density is becoming
increasingly problematic, it is important to understand and
to propose solutions to attacks such as heat-stroke.

(11]

(16]
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