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Rescue: A Microarchitecture for Testability and Defect Tolerance
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Abstract

Scaling feature size improves processor performance but
increases each device’s susceptibility to defects (i.e., hard errors).
As a result, fabrication technology must improve significantly to
maintain yields. Redundancy techniques in memory have been
successful at improving yield in the presence of defects. Apart
from core sparing which disables faulty cores in a chip multipro-
cessor, little has been done to target the core logic. While previous
work has proposed that either inherent or added redundancy in
the core logic can be used to tolerate defects, the key issues of
realistic testing and fault isolation have been ignored. This paper
is the first to consider testability and fault isolation in designing
modern high-performance, defect-tolerant microarchitectures.

We define intra-cycle logic independence (ICI) as the condi-
tion needed for conventional scan test to isolate faults quickly to
the microarchitectural-block granularity. We propose logic trans-
formations to redesign conventional superscalar microarchitec-
ture to comply with ICI. We call our novel, testable, and defect-
tolerant microarchitecture Rescue.

We build a verilog model of Rescue and verify that faults can
be isolated to the required precision using only conventional scan
test. Using performace simulations, we show that ICI transforma-
tions reduce IPC only by 4% on average for SPEC2000 programs.
Taking yield improvement into account, Rescue improves average
yield-adjusted instruction throughput over core sparing by 12%
and 22% at 32nm and 18nm technology nodes, respectively.

1  Introduction

CMOS scaling trends allow for increased performance
through faster devices and innovations in circuits and architec-
tures. Despite the reduction in feature size, added innovations
keep chip area roughly constant. The combination of a scaling
feature size and a constant area results in greater vulnerability to
defectsat fabrication time. Increased vulnerability results in
lower yields and decreased profitability.

To understand how defects affect yield and how yield scales,
we turn to the common yield model: yield = e-faults/chip. Note that
yield is related to the average faults/chip, and not defects/chip. In
yield analysis, faults are considered a subclass of defects. Defects
include all imperfections, both those that cause malfunctions and
those that have no effect on circuit operation. Faults include only
the defects that cause circuit malfunctions [15]. These faults are
hard, persistent faults, not to be confused with transient faults.
The fact that an increase in chip area would increase faults/chip is
partially responsible for the economic limits that keep chip size
from growing.

The average faults/chip in the yield expression is calculat
from a fault density. Because defect density increases under sc
ing, faults/chip increaseseven if chip area remains constant. A
simple model explains this trend: assuming that defects are cir
lar, only defects with diameter greater than the feature size c
cause malfunctions. As feature size decreases, defects that w
not large enough to be faults now become faults, increasing fa
density.

For the most part, process improvements have been respo
ble for controlling fault density and maintaining yield. To main
tain the economically-acceptable, random-defect-limited yield
83% at constant area, the ITRS roadmap requires defect bud
to improve as the square of the scaling factor. It is not clear th
such improvements will be both attainable and economical. B
the 65nm node, there are process passes where manufactu
solutions that can meet the defect budget are not known [2
Microarchitectures for managing faults are worth exploring.

There have been previous attempts to improve yield throu
means other than process control. For memories, Built-in S
Test (BIST) combined with redundancy techniques such as sp
rows, columns, and sub-arrays have significantly improv
DRAM yield. These techniques have moved into on-chip cach
as well, but the processor has been left exposed. Single fault
the processor kill the chip.

Tolerating faults in the processor is hard because the proc
sor is not as highly-regular and redundant as memory. Mo
recently, chip multiprocessors (CMPs) have made it possible
begin considering CPU-core-level redundancy, calledcore spar-
ing. [1] describes features in the Power4 that allow in-the-fie
diagnostic tools to isolate hard faults to single chips (each co
taining two cores) in a multi-chip-module CMP. [20] describe
hardware and testing techniques needed to isolate faults to,
then disable, single cores in a CMP. This strategy makes it re
tively easy for chips to be salvaged by enabling only fault-fre
cores. However, because a single fault kills an entire core a
faults/chip grows with technology scaling, the number of fault
cores per chip increases. Therefore, we advocate a finer-g
approach where we disable individual components of a core
that the core can be used even if some of its components
faulty.

Physical clustering of faults has always resulted in high
yields than if faults were randomly distributed, but has nev
solved the defect problem. With clustering, multiple faults a
more likely to hit the same chip killing only one chip as oppose
to each fault hitting and killing a different chip. It may seem tha
if the clusters are the same size as cores, then exploiting co
level redundancy as done by core sparing would suffice and th
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would be little opportunity for our finer-grained approach. How-
ever, clusters are notexactly the same size as cores and do not
cause faults inevery microarchitectural block eliminating any
chance of salvaging cores. Consequently, despite clustering, core
sparing disables many cores with only a few defects that could be
tolerated with a finer-grain approach, allowing the core to be sal-
vaged. In our results, we include clustering effects by using the
ITRS clustering model [24] and show that our approach signifi-
cantly improves over core sparing.

Previous fine-grain approaches include bit slicing in a non-
pipelined processor [17], using spare functional units to be
mapped-in during a post-fabrication phase [3], and exploiting
inherent redundancy in superscalar processors [23]. Exploiting
fine-grain redundancy adds the following extremely important
testability requirement:It must be possible to detect, isolate, and
map out faults with sufficient precision and speed so that only
faulty resources are disabled. If faulty behavior can be isolated
only to a group of components, theentiregroup must be assumed
faulty and be disabled. Because testing time is so important, cur-
rent testing techniques isolate faults only to the granularity of
cores and not microarchitectural blocks. Unfortunately, the previ-
ous fine-grain approaches do not consider the testability require-
ment in modern processors.

In this paper, we focus on architecting modern processors for
testability and defect tolerance. To propose realistic architectures
that exploit microarchitectural redundancy for defect tolerance we
start with four basic requirements that we place on the architec-
ture and testing processes: 1) any defect-tolerance approach must
be based on realistic and commonly-used testing methodology; 2)
it must be possible to isolate faults to the precision of microarchi-
tectural blocks; 3) testing time required to isolate faults in a core
must be comparable to that needed today to detect faults in a chip;
and 4) because extra logic for isolating and mapping out is added
whether there are faults or not, the extra logic must be as little as
possible to avoid degrading the cycle time and yield.

We satisfy these requirements using the following ideas
which are the main contributions of this paper:

• Because scan chains are the choice testing methodology, our
approach is based on conventional scan chains and Automated
Test Pattern Generation (ATPG) [12].

• The second requirement translates to a new constraint on the
allowed interconnections among microarchitectural blocks. We
define intra-cycle logic independence (ICI)to formalize the
constraint. Some pipeline stages (e.g., decode) already con-
form to the constraint, and we show why; others (e.g., issue) do
not. We propose novel logic transformations, calledICI trans-
formations, to redesign the non-conforming components to sat-
isfy the constraint. The transformed components form our
novel microarchitecture called Rescue, which is the first
microarchitecture to consider testability and fault isolation.
Our transformations incur minimal performance degradation.

• Conventional scan test is fast because each scan chain can test
for thousands of faults at the same time. Because conforming
to ICI allows our microarchitecture to use thesamescan chains
and the standard test flow, our fault-isolation time is similar to
conventional scan test time.

• Adding extra logic to map out individual faulty componen
(e.g., functional unit) in a multi-way-issue pipeline would
incur prohibitive overhead. Instead, we map out at a coars
granularity and disable an entire pipeline way (e.g., faul
functional unit’s backend way, or a faulty issue queue segme
and its associated search/selection logic). Thus we exploit
inherent microarchitectural granularity to avoid overhead.

We build a verilog modelof Rescue, and insert 6000 ran
domly chosen faults all of which can be isolated using just co
ventional scan chains and ATPG. We show that our IC
transformations reduce IPC by only 4% on average for SPEC20
programs. We also evaluate performance and yield toget
through yield-adjusted throughput (YAT) [23], where throughpu
is measured in instructions per cycle. Our simulations show th
Rescue improves average YAT over CPU sparing by 12% a
22% at 32nm and 18nm technology nodes, respectively.

Section 2 gives background on scan chains and scan test
Section 3 defines ICI and describes ICI transformations. Sectio
describes our microarchitecture. Section 5 describes our meth
ology and Section 6 presents results. Section 7 discusses rel
work, and Section 8 concludes.

2 Scan Test

Testing and design for test (DFT) techniques [12] have be
in use for decades to simplify and speed up the complex probl
of determining if a manufactured processor is free of hard faul
One of the most prevalent DFT techniques is scan test wh
allows state to be inserted and collected from devices under
(DUT) with minimal additional external pins [12]. Scan chain
are inserted in a logic circuit before layout. The process of ins
tion replaces memory elements (e.g., latches and registers) w
scan-equivalent elements. There are many scan cell styles u
but we assume the simple and common multiplexed flip-flop va
ety of scan cells. (Because scan techniques can handle both e
triggered flip-flops and level-sensitive latches, we use latches a
flip-flops interchangeably). This scan cell contains two addition
ports, a second data input port and a control signal port for a m
to select between the two input ports. The additional data inp
port is connected to adjacent scan cell output ports so that all s
elements are connected in series and form a shift register. Afte
state is shifted in, the DUT can be taken out of test mode a
cycled for one or more cycles of regular operation, and the
returned to test mode. With every memory element replaced by
scan equivalent (full-scan) which is common today, one cycle
operation between scan-in and scan-out is sufficient for detect
of all detectable stuck-at faults (a net that is either stuck always
1 or always at 0) [12]. We assume full-scan, stuck-at faults a
single cycle tests. After the cycle of operation, the state of t
DUT can be scanned out through the scan-out pin. Figure 1 sho
a circuit during scan-in, after scan-in has completed, and after o
cycle of execution. The scan chain input is all ones and the p
mary inputs are all zeros. A tester can read the output state al
with the chips primary output ports and compare them agains
gold standard output. A mismatch signifies a faulty chip, and t
chip is discarded. We will show that with single cycle scan tes
faults can be isolated quickly to the microarchitectural bloc
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granularity.
Automated Test Pattern Generation (ATPG) [12] software is

responsible for generating the test patterns that are scanned in
during test. ATPG software works by targeting each possible
fault. To test for a stuck-at-1 fault at a particular node, the ATPG
software finds register state and input pin values that cause the cir-
cuit to attempt to drive the node to 0 and propagate the resulting
value to a scan register or output pin. The tester then observes that
the output is incorrect and flags a fault.

Diagnosis [12] is used to improve yield in future lots by pin-
pointing defective tools and steps in the fabrication process.
Because diagnosis pinpoints faults as precisely as possible—usu-
ally at the gate level or lower—it is a time-consuming process (on
the order of hours) that usually requires physical circuit inspec-
tion with scanning electron microscopes [26]. Consequently,
diagnosis is performed only on a small sample of failing chips.
We show this level of precision is not needed for defect tolerance.

3  Intra-cycle Logic Independence

We first describe how ATPG and scan testing can be used to
isolate faults in a simple case. We then generalize and define
intra-cycle logic independenceas the condition required to enable
fault isolation to specific logic components.

3.1  Simple Fault Isolation

Figure 2a shows four logic components arranged into a larger
logic system. The logic component X (LCX) and Y (LCY) are
both driven by logic component M (LCM) and share one common
input (B). LCX and LCY jointly drive LCN. LCM is driven by
input pins (controlled by the tester), and LCN drives output pins
(observable by a tester). Assume that there are no memory ele-
ments (i.e., flip flops or latches) inside this circuit and also that the
system can still function if one of LCX or LCY is known faulty
and disabled. If logic components were designed well, good
ATPG software should be able to find test patterns that would
detect any faults in any of the logic components simply by driving
the input pins and observing the output pins.

Despite detecting the presence of the error, it would be diffi-
cult to isolate the fault—i.e., pinpoint which logic component
contains the fault—from looking only at the pin inputs and out-
puts. The problem is that an incorrect output observed by the
tester at the output pins could be caused by any of the logic com-
ponents. It is a computationally complex procedure (diagnosis) to
trace back the observed output to the input figuring out all combi-

nations of faults that could have caused the observed outp
Without such a procedure,we can assume only that a fault
occurred somewhere between where the test vector is input
where the output is collected.In this example, a single fault in
LCX would be detected, but the test would only reveal that the
are one or more faults somewhere in LCX, LCY, LCM, and LCN
The tester would not know if disabling LCX would make the sys
tem fault-free and the whole system would have to be discarded
faulty.

We next consider what happens when the circuit is pipelin
and the pipeline latches are integrated into a scan chain to al
scan testing. Figure 2b shows the new circuit broken into 3 stag
Input test data (generated from normal ATPG software) can n
be inserted into and collected from the two scan registers (S
and SRT). That is, test inputs can be applied to points A, B, C,
and outputs can be collected from E and F. In addition, SRS c
lects outputs from LCM, and SRT drives inputs to LCN. With thi
configuration, the granularity of logic between test vector applic
tion and collection is now much finer. A fault detected in SR
must be in LCM and a fault detected in SRT must be in eith
LCX or LCY. Finally, a fault detected in the outputs of LCN mus
be in LCN. Thus, in pipelined circuits, a fault can be quickly iso
lated to a pipeline stage (using only conventional ATPG) b
checking only where the fault is observed!

In our example system, it is not enough to know that a fault
located in either LCX or LCY. We want to know which one is
faulty so that if only one is faulty it can be disabled and the sy
tem can still be used. Notice that in Figure 2b SRT has been b
ken in two to show that some bits of the register collect data on
from LCY and the other bits collect data only from LCX (this is
constant for a design, and determined once when scan cells
inserted). Now, any faulty data in the top part of SRT must ha
been caused by LCY and any faulty data in the bottom part
SRT must have been caused by LCX. By a single lookup, fau
can be mapped from a specific register bit index (scan chain ind
number) and can be isolated to LCM, LCX, LCY, or LCN.

Generalizing these examples gives us theintra-cycle logic
independence (ICI) rulewhich states that any scan detectab
fault can be caused by one and only one element in a set of log
components if and only if there is no communicationwithin a
cycle among the logical components making up the set.

As an example violation of ICI, assume that in Figure 2
LCY reads the output of LCX as an additional input. In this cas
an incorrect output is detected in the top half of SRT after 1 cyc
But it is no longer clear that the incorrect output was caused b
fault in LCY. LCX could be sending faulty output to LCY, causing
LCY to output faulty data despite LCY being fault free (LCX is
faulty), or LCX could be sending correct output to LCY, but LCY
is outputting incorrect data (LCY is faulty). Without complicate
diagnosis, it is not possible to determine precisely which of t
two components is faulty.

An important corollary of ICI is that multiple faults can be
tested and isolated at the same time. In standard scan chain
ing, each scan chain tests for many possible faults at the sa
time. This is necessary so that test time is manageable. With IC
fault in one component can not influence the testing of faults
other components. If there are multiple faults in different comp
nents and all are detectable by one input scan vector, then e
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faulty output scan bit will map to one of the faulty components
and all faulty components will be isolated with only one scan vec-
tor. Consequently, if a design obeys ICI, it takes no additional
scan vectors to isolate faults than would be needed for traditional
fault detection in the same design.

3.2  ICI transformations

While some of the stages in an out-of-order superscalar pipe-
line already conform to ICI, other do not. Those that do not must
be modified to conform to ICI. We conform to ICI by turning
intra-cycle communication into inter-cycle communication. We
make this transformation by a combination of three different
methods: (1)cycle splitting,(2) logic privatization, and (3)depen-
dence rotation.

3.2.1  Cycle Splitting

Cycle splitting splits dependent logic into two cycles sepa-
rated by a pipeline latch. Figure 3a shows an example logic dia-
gram where no ICI is present inside the pipeline stage because
both LCY and LCZ read from LCX. Applying cycle splitting
results in Figure 3b, which now satisfies ICI in both stages. Any
fault can be isolated uniquely to LCX, LCY, or LCZ. Cycle split-
ting comes at the cost of increased latency because one cycle is
split into two, while the clock period remains constant. When
there is not much performance penalty for increased latency, cycle
splitting is the favored technique. For instance, cycle splitting
logic in rename may be acceptable because that would increase
branch misprediction penalty whereas cycle splitting select logic
may not be acceptable because that would prevent back-to-back
issue.

3.2.2  Logic Privatization

Logic privatization replicates logic to avoid two or more
blocks depending on the same block. Figure 3c shows the result
of transforming Figure 3a through logic privatization instead of
cycle splitting. In Figure 3c LCX is duplicated so that LCY and
LCZ each read from a unique copy of LCX. Faulty output from
LCY can be caused by a fault only in LCX or LCY (we can not
know which one), but can not be caused by a fault in LCW or
LCZ. For fault isolation purposes LCX and LCY become one
super-component (shaded ovals), and LCW and LCZ become
another. ICI exists between the two super-components. Logic
privatization may be preferred in some cases because it consumes
extra area instead of the extra latency needed for cycle splitting. If
the duplicated logic block is small, the area penalty may be
acceptable.

It is possible to use partial logic privatization to achieve
larger grain fault isolation at less additional area cost. As an
example of partial logic privatization, assume 4 logic blocks
(LCC, LCD, LCE, LCF) reading from one logic block, LCA. Full

privatization would create 3 additional copies of LCA, one fo
each of LCC through LCF, resulting in 4 super-componen
Instead, partial privatization only creates 1 additional copy
LCA, called LCB. LCC and LCD read from LCA. LCD and LCE
read from LCB. Now there are 2 super-components. LCA, LC
and LCD constitute one. LCB, LCE, and LCF constitute the othe

3.2.3  Dependence Rotation

Privatization through duplication may not be enough t
ensure ICI. Figure 4a and b depict another transformation, dep
dence rotation. In Figure 4a, ICI is violated because LCC rea
from both LCA and LCB. Dependence rotation is particularl
applicable to single-stage pipeline loops (where the outputs o
stage are inputs to the same stage in the next cycle). Althou
cycle splitting could create ICI in Figure 4a, cycle splitting ma
not be favorable if the length of this loop is critical in determinin
system performance (e.g., issue-wakeup loop). Privatizing o
LCC would not help because LCC and its duplicate would st
each read from both LCA and LCB. Additionally, duplicating
LCB and LCA would provide ICI, but only in the trivial sense by
duplicating the entire stage.

Instead we use dependence rotation first which recogniz
that not only are LCA and LCB reading from LCC but also LCC
is reading from LCA and LCB. The placement of the pipelin
latch is somewhat arbitrary in this loop. Dependence rotati
rotates the logic around the pipeline latch so that the pipeline la
is in a more favorable location. Because dependence rotation o
rotates the logic already within the cycle (does not add new logi
the logic complexity and delay within the cycle stays roughly th
same. Dependence rotation transforms Figure 4a into Figure
In Figure 4b, LCC still gets input signals from LCA and LCB, bu
it reads the signals from a pipeline latch instead of directly fro
the logic components (now obeying ICI). Conversely, LCA an
LCB now read directly from LCC (now violating ICI) while
before rotation they read the signals from the pipeline latc
Although dependence rotation has transformed one ICI violati
into another, this new violation is easier to handle. Note th
Figure 4b resembles Figure 3a. Privatization through duplicati
of LCC can now be applied, resulting in Figure 4c. In Figure 4
ICI exists between the 2 super-components shaded in gray.

3.3  Mapping out faults

Once faults are isolated, they have to be mapped out. Ma
out involves three issues: (1) Faulty blocks have to be disab
and not counted as available resources, which is trivia
achieved. (2) Non-faulty blocks should mask out inputs fro
faulty blocks. For example, in Figure 4c, if LCA is faulty then th
LCA input to the bottom copy of LCC should be masked out s
that LCA’s fault does not propagate to the non-faulty LCB. (3) T
allow degraded operation, instructions need to be routed arou
faulty blocks. We explain how we do this routing later.

Figure 3: ICI transformations
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4  Testable & Defect-Tolerant Microarchitecture

Our microarchitecture, Rescue, is based on an out-of-order,
multi-issue superscalar which may be thought of as two in-order
half-pipelines (frontend and backend) connected by issue. As
mentioned in Section 1, adding extra logic to map out individual
faulty components (e.g., functional unit or rename port) in a
multi-issue pipeline would incur prohibitive overhead. Instead,
we map out at a coarser granularity and disablethe entire half-
pipeline waythat is affected by the fault (e.g., faulty functional
unit’s issue/backend way or faulty rename port’s fetch/frontend
way). Figure 5 shows the half pipeline granularity for two proces-
sor ways.

In our approach, an n-way-issue processor can be degraded
due to faults as follows: (1) The frontend supports degraded fetch,
decode and rename of n-1 down to 1 instructions to support faults
in 1 up to n-1 of the frontend ways. (2) The issue queue and the
load/store queue can be degraded to half their original size to sup-
port a fault in the other half of the queue or the selection/search
logic for that half. (3) The backend supports degraded issue of n-1
down to 1 instructions to support faults in 1 up to n-1 backend
ways of register read, execute, memory, or writeback. The proces-
sor in Figure 5 is operational as long as one frontend way, one
backend way, half of the issue queue, and half of the load/store
queue (not shown) are functional.

To route around faulty frontend ways, we insert a shifter
stage after fetch so that the fetched instructions can be shifted
around and directed to the non-faulty ways. In the backend, we
add a shifter stage after issue to route issued instruction to func-
tional ways. We describe both shifter stages later.

Each processor would have a one-hotfault-map registerthat
specifies the faulty components. For an n-wide-issue machine,
there would be 2*n+4 bits to represent the frontend and backend
of each of the n ways (2 bits each) and the two halves of both the
issue and load/store queue (2 bits each). During test, the register is
part of the scan chain. SUN has proposed a similar strategy to
support core sparing in CMP [20]. Because we require only
2*n+4 bits, we assume that after test, inputs to the fault-map reg-
ister can be fixed permanently by fuses as used in [28].

In the rest of the section we proceed as follows. We examine
each pipeline stage starting from the most complex stage for ICI
compliance. For those stages that already conform to ICI we
explain why. To the non-compliant stages, we apply ICI transfor-
mations and redesign the stage to be ICI-compliant. We also
describe fault map-out to allow degraded operation with limited
additional logic.

4.1  Issue

Issue illustrates a complex stage where there is fine-grained
redundancy (at the issue-queue-entry level) but no coarse-grain
redundancy that can be used easily for defect tolerance. Unfortu-
nately, there is no ICI among the entries. A fault in one entry can
propagate to almost any other entry through the selection logic
within one cycle. The overhead to detect faults at this granularity

would be large. Instead, we choose to isolate faults only betwe
halves of the queue and selection logic, and show the neces
modifications to create ICI and allow degraded operation.

4.1.1   Baseline Issue Queue

We choose a compacting queue [19,6] as our basel
because it represents the most common implementation today
a compacting issue queue, instructions are inserted into the
Compaction occurs each cycle, counting free slots and choos
which newer instruction should move into each free slot. In par
lel with compaction is wakeup and select. At the beginning of th
cycle, the previous cycle’s selected instructions broadcast to
entire issue queue, waking up instructions that have all their op
ands ready. After wakeup, instructions are selected for issue
that the maximum amount of issue bandwidth is used wh
observing resource constraints and issue priority.

The compacting issue queue violates ICI making it imposs
ble to isolate faults to either half in our design. Theold half con-
tains the older instructions and thenew halfcontains the newer
instructions. There are three ICI violations that must be cons
ered: (1) Compaction of the new half is dependent on how ma
free slots are available in the old half. (2) Compaction of the o
half is dependent on the state, number and position of instructio
in the new half. (3) Selection in each half is dependent on the ty
and number of (post-wakeup) ready instructions in the other ha

4.1.2  Creating ICI

Handling violations (1) and (2) is best done by cycle splittin
of inter-segment compaction. We still allow compactionwithin
each segment to occur in parallel in a single cycle, but we sp
compactionbetweensegments into more than one cycle. Note th
this does not increase the pipeline depth of the architecture,
consequently, cycle splitting this logic comes with little perfor
mance penalty.

In our ICI compliant inter-segment compaction policy, eac
half does not communicate directly with the other half. All inter
segment communication gets written to a temporary latch at
end of the cycle, and read from the latch in the next cycle. Ea
cycle, the old half compacts its own entries, and if free slots op
up, the old half requests instructions from the new half. In th
next cycle, while the new half compacts its own entries, it mov
its oldest entries to the temporary latch if the old half had made
request. In the last cycle, the content of the temporary latch
moved into the old half. The new half can insert new instructio
from rename in the second cycle of the compaction proce
because it is in this cycle that the new half moves its entries in
the temporary latch. Consequently, we have increased the t
between the entries becoming free and new instructions be
inserted into the issue queue by only one cycle.

Although compaction now obeys ICI, a further modificatio
is necessary for correctness of our extended compaction pol
Instructions are in the temporary latch for only one cycle, but th
must be able to see all wakeup broadcasts. As such, the entrie
the latch must have wakeup logic. Because this new wakeup lo
reads only from the temporary latch and writes only to the o
half, it does not provide a communication pathway between t
two halveswithin a cycleand ICI is not broken. Although instruc-

IQ

Front1

Front2

Back1

Back2
Figure 5: Half-pipeline map out
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tions can be woken up in the temporary latch, they can not be
selected for issue until they reach the old half.

The remaining ICI violation is the inter-segment communica-
tion that occurs during selection. Cycle splitting inter-segment
communication during selection (as we did in compaction), would
prevent back-to-back issue. Instead, we employ dependence rota-
tion and logic privatization to enforce ICI. We now describe how
dependence rotation and logic privatization apply to superscalar
issue.

Superscalar selection is usually implemented with multiple
selection trees. Each selection tree first selects from each half, and
then the root node of the selection tree chooses between the two
halves. Therefore, the root node is dependent on both halves of
the queue. In typical selection logic, the root node selection is the
last step in the cycle, where the instructions are selected and
latched at the end of the cycle. These selected instructions are
then used for broadcast at the beginning of the next cycle.

This data flow is analogous to Figure 4a; LCA corresponds to
the new half of the issue queue combined with the selection logic
that chooses instruction from that half, LCB is similar but for the
old half, and LCC is the roots of the selection trees that choose
among instructions presented from the two halves. Accordingly,
we apply dependence rotation which rotates the root nodes of the
selection tree around the issue queue and sub-trees of the selec-
tion logic, breaking all communication between selection of the
issue queue halves, producing a data flow analogous to Figure 4b.

However, this dependence rotation causes a problem: we
must issue the selected instructions in the cycle immediately fol-
lowing select for back-to-back issue. But the selection process is
incomplete in that we have selected only from each issue queue
half but not combined the selections of the halves (at the selection
tree root). Dependence rotation has eliminated communication
between the halves, and has moved this combining at the root to
the next cycle (LCC in Figure 4b is fed from the latches in the
next cycle).

Breaking communication between the halves causes a signif-
icant departure from typical issue policy. Now, there is no way to
determine how many and which instructions should be selected by
each half to maximize issue bandwidth while not exceeding
resource constraints. Instead of trying to limit conservatively or
predict the number of instructions selected by each half, we allow
each half to select instructions as if the other half will wakeup no
additional instruction. Each half still obeys resource constraints,
though together their sum may not. In the rare case that more
instructions are selected than can be issued, we force a replay of
all instructions from the half that selected fewer instructions (we
replay all instead of some subset for simplicity). Because each
half obeys resource constraints in its selection, the non-replayed
half will conform to resource constraints. This replay is similar to
that on an L1 miss; the issued instructions have not been removed
from the issue queue yet. Replay simply clears the issued bit of all
instructions issued in the last cycle from the replayed half.

The replay signals, along with wakeup broadcasts, are gener-
ated by a logic block that corresponds to LCC in Figure 4b. The
replay signals and the broadcasts go to both halves of the issue
queue. To maintain ICI, this logic must be privatized (one copy
for each issue queue half). The resulting data flow is shown in
Figure 6 and is analogous to Figure 4c. In Figure 6, the lower

select unit and the lower queue segment are analogous to LCB
Figure 4c and the lower broadcast/replay logic unit is analogo
to LCD in Figure 4c.

After issue completes, each issued (not replayed) instruct
needs to be routed to a backend way for execution. We use
extra cycle after issue to do this routing. If there are too ma
selected instructions, there is a replay, and all instruction from t
non-replayed half are chosen and routed in their selection orde
the backend ways. If there is not a replay then each selec
instruction (from both halves) is routed to a backend way.
either case, this routing is simple because there are never m
instructions that need to be routed than backend ways. This ro
ing is done by muxes and each mux controller must be privatiz
to maintain ICI.

4.1.3  Map out and Degraded Operation

Our ICI transformed issue stage easily supports degrad
operation after faults have been isolated. Each half (new and o
has three components, the queue half (including wakeup log
the selection logic for that half, and the wakeup/replay logic f
that half. A fault in any of the components is detected as a fault
that half, and the entire half (all three components) is assum
faulty.

With a faulty old half, the new half simply masks out an
compaction requests from the old half (Section 3.3). With a fau
new half, the old half compacts as normal, but instead of compa
ing from the temporary latch, it compacts from the newl
renamed instructions, bypassing the new half.

Faulty backend ways are accounted for by reduced resou
counts. If only n-1 backend ways are functional, each half’s sele
tion logic selects only up to n-1 instructions. The replay sign
logic similarly adjusts to replay when greater than n-1 instructio
are selected. Furthermore, the routing logic immediately af
issue avoids the faulty way.

4.2  Fetch

Fetch includes the i-cache and logic to select the fetch P
among the outputs of the BTB, return-address-stack, and
increment. The i-cache is covered by BIST with repair. There
no redundancy in the fetch PC logic and therefore no opportun
for defect tolerance. As such, we treat this small logic as chipki

The main modification needed is to route around faulty fro
tend ways. Because fetch simply maps one-to-one the fetc
instructions to the frontend ways, it does not already have t
routing ability. Therefore, we add a routing stage after fetch lik
the routing logic immediately after issue. Normally instruction
are fetched in parallel and passed, in program order, to the dec
stage. If one or more of the frontend ways are faulty, we mu
ensure that the instructions are still decoded and, in particu
renamed in program order. Accordingly, the routing stage has t
functions: (1) Assign the earliest instruction to the first fault-fre
frontend way, the second instruction to the second fault-free w
and so on, until all the non-faulty ways have been given instru
tions. (2) Stall fetch and assign any remaining instructions in t
same manner until all fetched instructions are processed.

The routing stage is composed of muxes (one for each fro
tend way) that choose an instruction for that frontend way. W
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privatize the control for each mux so that there is ICI in the rout-
ing stage and faults can be isolated easily to the way of the shift
stage. A faulty way in the routing stage is equivalent to a fault in
the corresponding frontend way and results in that way being dis-
abled.

4.3   Decode

Decode obeys ICI without any modifications. Multiple
instructions feed into the stage from the fetch-decode latch. Each
instruction is decoded in parallel without any intra-cycle commu-
nication. Output from the stage is collected in the decode-rename
latch.

4.4  Rename

In the rename stage, the single register map table and the free
list break ICI. These structures are read by each renamer and
therefore cause an ICI violation similar to Figure 3a. Fixing the
ICI violation by privatization of the tables is not realistic because
that requires fully replicating the relatively large tables once or
more. After the tables are read, the mappings are fixed to reflect
any hazards. RAW and WAW hazards among the instructions
being renamed require source register maps and previous destina-
tion-register maps to be fixed. Consequently, we use cycle split-
ting to separate the table reads from the rename logic at the cost of
an additional frontend pipeline stage. In one cycle, register map-
pings and free registers are looked up in the tables and latched. In
the next cycle, the mappings are fixed. There may be dependen-
cies between instructions in the two stages of rename that need to
be accounted for. Allowing writes in the second stage to pass
through the tables and be read in the same clock cycle by the first
stage would violate ICI. Instead, we forward back results from the
previous renamed instructions. Since we have separated rename in
to two cycles, there is ample time to perform the forwarding. The
only cost is a small area penalty.

It may seem that the map-fixing logic would violate ICI. If
there is a RAW or WAW hazard between instructions A and B,
then it may seem that B’s map-fixing logic would read the output
of A’s map-fixing logic and violate ICI. However, real designs
avoid making B’s rename depend on A’s because doing so would
totally serialize renaming among the instructions being renamed.
Instead, real designs operate in parallel by redundantly computing
the hazards. For each instruction, the hazards of all its previous
instructions are computed in parallel. If an instruction appears
ahead of three others then the instructions’ hazards are computed
redundantly by each of the three. Therefore, each map-fixing
logic reads all previous instructions’ architectural and physical
register numbers from the cycle-splitting pipeline latch at the end
of rename tables, and does not read anything from the other map-
fixing logic and ICI is maintained.

The above cycle splitting makes rename completely testable
even when there are faults in the rename tables. This ability is
important because then the tables can be tested (using BIST or
any other method) while faults in the rest of the processor are
being isolated with conventional ATPG.

Although we can isolate faults in the rest of the processor
while other faults may exist in the rename tables or the free list,
our processor would not be able to execute with faults in the struc-

tures because there is no redundancy in them (though ther
BIST, there are no spare rows or columns because spares are
for larger structures like caches). To create redundancy, we
partial privatization, but because we already enforced ICI, w
have some freedom in how we make the copies; we can av
wasting ports on redundant reads from the map table and free l

We create two copies of the tables, each of which has half
many read ports as the baseline design (as done in Alpha 21
register file for speed reasons [14]). The first copy does the loo
ups for the first half instructions, and the second copy for the la
half instructions. Data read from the table copies is latched and
potentially used by all renamers in the next cycle. A fault in th
first (second) table copy disables the frontend ways for the fi
(second) half instructions.

Because the rename stage modifies state in the tables at
end of renaming, a few extra precautions are necessary for m
out and degraded operation. First, we must ensure that fau
ways do not affect the state of the free list and rename tables.
require that the all free list and rename table write ports have
ability to be disabled selectively based on the fault-map regist
Second, we must ensure that a fault-free rename way does not
data from a faulty way. To that end, we use a mask on the matc
for RAW and WAW hazards, and ignore matches from faul
ways.

4.5  Register Read

As with rename, we assume that BIST detects faults in t
register file and that there is no redundancy. We therefore use m
tiple copies, each with fewer ports. No additional modification
are necessary as there is no state modification in the stage. E
register file copy is analogous to the logic block in Figure 2. Th
copies obey ICI. Register specifiers come directly from inp
latches and go into the copies. There is no communication amo
the copies, and each copy outputs directly to its output latch.

4.6  Execute

Execute obeys ICI without any modifications. Register fo
warding doesnot violate ICI because forwarded data comes from
pipeline latches (and therefore implies inter-cycle communicati
and not intra-cycle communication). However, for map out an
degraded operation, we need to ensure that fault-free ways
never try to forward from faulty ways. To that end, we mask o
the register dependence match from being signaled if the mat
ing way is specified to be faulty in the fault-map register.

4.7  Memory

We assume that the cache hierarchy uses BIST and row
column sparing, and focus on the load/store queue (LSQ). S
prisingly, searching the LSQ obeys ICI without modification
Insertion requires only minor modifications to support ICI.

We assume search for memory disambiguation is imp
mented in a tree structure similar to select. Like the issue que
we segment the LSQ into halves. Two concurrent accesses to
LSQ requires two trees (each tree has two sub-trees, each sub
searches half of the queue). There aretwo modes of degraded
operation in the LSQ: faults in a half or the sub-tree searching t
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half cause the half to be disabled. Faults in a tree (either of the
sub-trees) cause the tree to be disabled allowing only one access
but use of both halves.

Because the LSQ is a non-compacting structure, there is little
communication between the halves. Because the search can take
as long as L1 access, the search tree is usually pipelined into two
or more cycles. Therefore, the trees are already cycle split.
Figure 7 shows the two LSQ search trees pipelined into two
cycles (note that the pipeline latch can fall in the middle of the
sub-trees, as shown). Tree A is light, Tree B is dark. In the first
cycle, each of the sub-trees searches its half in parallel. Because
there are two sub-trees (one light and one dark) reading from each
half, the half and its two sub-trees make one super-component.
Because there is no communication between these super-compo-
nents, ICI is maintained between these super-components in the
first cycle. In the second cycle, the rest of the trees read from the
pipeline latch to generate final results. Though the root node
causes communication between its two sub-trees, there is no com-
munication between the two search trees (light and dark) in the
second cycle. Consequently, ICI is maintained between the trees
(but not between the sub-trees of a tree) in the second cycle. Thus,
ICI holds for different components in the first and second cycles,
resulting in the two modes of degraded operation, as we show
below.

To enforce ICI for insertion of entries into the LSQ we priva-
tize the insertion logic for that half (ILA and ILB in Figure 7).
Each half must keep redundant copies of the head and tail point-
ers. When the tail pointer lies in a half, that half is responsible for
inserting instructions in the correct position. For ICI, each copy of
the insertion logic gets lumped into the super-component com-
prising the half it is controlling.

Now we explain the modes of degraded operation: A faulty
LSQ half (or search logic in the first cycle) is avoided by the
insertion logic and the search logic in the second cycle of search.
When the faulty half is disabled (specified in the fault-map regis-
ter), the fault-free half uses the reduced LSQ size to calculate
head and tail pointers, and consequently is responsible for all
insertions. Each search tree root ignores (a simple mask based on
the fault-map register) results from its sub-tree that searches a
faulty half.

A fault in one of the sub-trees in the second cycle is avoided
by disabling the corresponding tree entirely (the LSQ remains full
size). The faulty search tree is avoided by disabling the backend
way that uses the tree, as described in Section 4.1.3.

4.8  Writeback

Writeback modifies register state. Because the register file
already uses multiple copies (e.g., 21264), the only additional

requirement is that data from faulty ways not be written to th
register file (a faulty write port can be treated equivalently to
faulty backend way that writes incorrect data). As with renam
tables, we require that the register write ports be disabled se
tively by the fault-map register.

4.9   Commit

Commit consists of writes to the free list and the active lis
Disabling the write ports prevents faulty backend ways from wr
ing to these tables.

5  Methodology

Our methodology quantifies the value of our intra-cycle
independent architecture, Rescue, in three aspects: testab
fault-free performance degradation, and expected (avera
throughput.

To demonstrate the feasibility of fault isolation in Rescue, w
create a verilog model of the processor described above. T
model includes details of fetch, decode, rename, issue, regi
read, execute, memory, writeback and commit and all t
described logical connections and fault propagation pathways.
map the design into a gate-level verilog description and insert o
scan chain using Synopsys Design Compiler. We use Synop
TetraMax Pro, which is an ATPG generator and fault simulator,
simulate faults and we report the results in Section 6.

We next evaluate the performance aspects of Rescue thro
performance (IPC) and yield-adjusted throughput (YAT) [23
where throughput is measured in instructions per cycle (IPC
YAT is the sum of the products of the IPC of a degraded config
ration times the probability of the occurrence of the configuratio
(or the average chip throughput when a large number of chips
fabricated).

To measure performance of Rescue we modify SimpleSca
[4] in the following ways: (1) we separate the issue queues a
active list; (2) we add two cycles to the branch mispredictio
cycle penalty to account for the shift stages in the front and bac
end of the processor (Section 4.1 and Section 4.2); (3) we cyc
split the inter-segment issue queue compaction, using four ent
of each issue queue as the compaction buffers (Section 4.1) (b
line and Rescue issue queues have the same total resources
we hold the issue queue entries for an extra cycle and squash
extra cycle of issued instructions on L1 misses to account for t
additional shift stage between issue and register re
(Section 4.1); (5) we implement the issue/replay policy describ
in Section 4.1.

We use our simulator to model a 4-way-issue supersca
processor with the baseline parameters listed in Table 1. Incre
ing issue width beyond four ways would only increase redu
dancy and improve our results. When we vary technolo
generations, we increase memory latency by 50% and add
cycles to the misprediction penalty each time transistor ar
decreases by a factor of two. We simulate 23 of the SPEC20
benchmarks using SimPoints [21] to determine the executi
sample location and run for 100 million instructions. We leave o
ammp, galgel, andgap because of simulation time.

Estimating each degraded configuration’s probability a

Figure 6: Issue logic flow
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required by YAT is more involved. It is equal to the probability of
a faulty circuit that results in the degraded configuration. The rel-
ative area of a circuit determines the probability of faults in the
circuit, given an average fault density. To compute fault density,
we use ITRS’s Equation 1 which extrapolates allowable particles
per wafer pass (PWP) from faults per mask (F) [24]. S is the criti-
cal defect size equal to half the minimum feature size. This equa-
tion dictates the necessary improvement in fabrication technology
needed to keep yield rates constant. We use this equation in
reverse to compute faults per chip at a technology node but
assume that PWP remains constant after a specific technology
node. We vary the technology node at which PWP rates stop
improving. Preventing PWP from scaling causes faults per mask
to scale as 1/s2 after the technology node, where s is the feature
size scaling factor. This trend is common [15, 27].

The remaining task is to compute the relative areas of the
processor’s circuit blocks. Because area data from die photo-
graphs are available only at a coarse granularity and because we
wish to reduce the number of required simulations by reducing
the number of possible degraded configurations, we divide the
processor components into groups of fault equivalent compo-
nents. A fault in any component in a group causes the entire group
to be disabled. Note that this grouping makes our results conser-
vative.

The groups are defined as follows. The frontend is composed
of two groups. Each group decodes and renames two instructions
(the baseline width is four). A fault in one group halves the fron-
tend bandwidth. A fault in both groups kills the processor. The
integer backend is composed of two groups. Each group has two
integer ALUs, one integer multiplier/divider, and one memory
port. The floating-point backend is modeled similarly, except each
group contains only one floating-point adder and one floating-
point multiplier/divider. The two issue queues and the load/store
queue are independent. A fault in a queue’s segment halves the
queue size.

We estimate the relative area of each group from the area
model provided by HotSpot [25]. Each frontend group area
includes decode logic and a copy of the rename tables with half
the read ports (Section 4.4). Because rename tables are not usu-
ally large enough to justify using copies, and because copies may
incur some overhead, we conservatively assume that two reduced-
ported copies consume 50% more area than the single fully-
ported table. The integer backend group area includes half of the
functional unit area and half the integer register file. Because the
HotSpot area model already has two copies of the integer register
file (from Alpha) [14], we do not increase area estimates for the
integer register file. We similarly estimate the floating-point back-
end group area, but we do assume a 50% increase in floating point
register file size due to implementing it as two reduced-port cop-
ies. For the two issue queues and load/store queues, we divide the
respective areas between the halves of the queues.

We do not address branch prediction or the TLBs, so we add
these to chipkill. We also do not focus on caches because there are
other redundancy techniques available for the cache data arrays.
Cacti 3.2 [22] reports the data array area to be 78% for the cache

configuration given in Table 1. We remove this area from our ar
model, and include only the control/routing area as chipkill.

Because defects in the scan cells make the design untest
we need to count scan cell area as chipkill. To estimate this ar
we compile and map our verilog modelto components in the
CMU standard cell library [11]. We then insert scan chains a
obtain the pre-layout area breakdown of the design (based on
area and number of each gate-level component used). The qu
stage (LSQ and IQ) contain a high proportion (25%) of scan ce
because the queues themselves are included in the scan-c
Among the remaining stages, scan cells account for 12% of
area. Correspondingly, for our fault model we count 25% of th
LSQ and IQ as chipkill and 12% of the frontend, integer backe
and floating point backend as chipkill.

We then scale the frontend and backend components
account for the additional shift stages (including pipeline latche
From our verilog model, we estimate these as a 2% increase
the integer and floating point backends and a 6% increase for
frontend. Finally, we add an additional 5% area overhead to
redundant components to account for any additional area ov
head incurred by our tranformations.

Table 2 shows the resulting relative component area, to
area for Rescue, and total area for the baseline core with o
scan. We do not calculate component areas for the baseline c
because a fault in any part of the core has the same effect and
ables the core.

To extrapolate for future technologies, we acknowledge th
the area of each core will decrease, as technology scales
CMPs become common architectures. However, we assume
there will be microarchitectural innovation which will add hard
ware to the core. Consequently, the area of each core w
decrease each generation but not as fast as s2. We assume core
growth at a steady pace so that a fixed percentage of new fu
tionality is added when the device area shrinks by half. We sh
results for different growth rates. Total area of all cores togeth
(without defect-tolerance modifications, but with L1 cache
remains at 140mm2, as ITRS specifies [24].

Using the above estimates for area and the PWP-based mo
for fault density, we determine random defect-limited yield usin
the negative binomial yield model as used by ITRS for all defe
budgeting through the end of the road map. The negative binom
yield model extends the simple Poisson yield model by accou
ing for yield improvements due to clustering of faults. We exten
this model as described in [15] to calculate the distribution of po

(EQ 1)PW Pn PW Pn 1–

Fn

Fn 1–

Sn 1–

Sn
------------〈 〉

2
----------------------------------×=

Table 1: System Parameters
issue width 4

iq, lsq 36, 36

int alu, mult/div 4, 2

fp alu, mult/div 2, 2

branch pred. 8kB hybrid, 1kB 4
way BTB, 15 cycle
misprediction pen-
alty

L1 caches 64kB, 2 way, 32 B
blocks, 2 cycle, 2
port data cache

L2 cache 2Mb, 8 way, 64 B
blocks, 15 cycle

memory latency 250 cycle

Table 2: Total areas
and component
relative areas
Baseline Total Area 96 mm2

Rescue Total Area 107 mm2

frontend 12%
int IQ 4%
fp IQ 4%
int backend 15%
fp backend 21%
LSQ 4%
Chipkill 40%
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sible chip configurations. For each possible working configura-
tion, the model gives the probability of that configuration
occurring. In the negative binomial models, clustering is
accounted for by averaging the expected yield results across a
mixing function whose parameter, alpha, specifies the amount of
clustering. We set alpha to be 2, as projected by ITRS. Because
we are interested in YAT instead of yield, we average the expected
value of YAT across the mixing function instead of the yield,
resulting in Equation 2 and Equation 3. In these equations,
lambda is the fault density, andgamma is the gamma function.

6  Experimental Results

6.1  ATPG results

We use TetraMax to gen-
erate basic scan patterns for
both the baseline and Rescue.
Table 3 lists the scan chain
length, the number of scan
chains required to test the two
designs, and the number of
cycles to scan in and apply all
scan vectors. There are three
important observations that can be made from these data. (1) The
scan chain for Rescue is longer than the baseline design because
cycle splitting has increased the number of pipeline registers. (2)
ICI compliance has reduced the number of scan test patterns
required because each component can more efficiently be tested
in parallel than without ICI. (3) Fault isolation on Rescue requires
only a 13% increase in testing time (cycles) over traditional defect
detection.

Finally, to verify that the ATPG produced scan chains actu-
ally isolate faults in Rescue, we rename each register component
to reflect the ICI component that writes to it (ICI ensures there is
only one). We randomly insert 1000 faults from each of the fol-
lowing stages: fetch, decode, rename, issue, execute and memory.
We leave out register read, writeback and commit because they do
not contain significant logic other than RAM tables. The fault
simulator, TetraMax, makes each fault active, one at a time, and
simulates the application of all generated test patterns. TetraMax
reports each failing bit position in the scan-out state, and keeps a
table of each cell’s name and position. We access this table and
verify that the register name matches the name of the ICI compo-
nent where the fault was inserted. All 6000 faults were isolated
correctly.

6.2  IPC degradation

Enforcing ICI eliminates some communication pathways,
and delays others across multiple cycles. Consequently, enforcing
ICI comes at some cost to IPC. Figure 8 shows IPC results for a

typical superscalar processor as described in Table 1 (black b
and Rescue (white bars). IPC degradation ranges from 0% (sw
to 10% (bzip) with the average degradation across all benchma
at 4%. It is not necessarily the highest and lowest IPC benchma
that are affected by modifications, but the benchmarks that
particularly sensitive to issue queue size and selection policy.

6.3  YAT improvement over core sparing

In this section, we discuss the average performance impro
ment achieved by adding Rescue on top of simple core spar
(CS) where faulty CPU cores in a CMP are disabled. We assu
that more cores will be added as technology scales. We fi
present throughput improvements due to CS alone. We then sh
how Rescue can significantly improve upon CS.

We evaluate CS and Rescue by calculating yield-adjust
throughput (YAT), where throughput is measured in IPC, for 23
the SPEC2000 benchmarks individually. We normalize the
YATs relative to YAT with 100% yield and no degraded cores, an
report the relative YAT averaged across all the benchmarks fo
technology nodes between 90 and 18 nm and plot them
Figure 9. The hatched bars show YAT of chips with no redu
dancy techniques. The white bars show additional YAT obtain
by adding core sparing. The black bars show additional YA
gained with Rescue. We do not present results for individu
benchmarks because of space limitations and because they ad
tle additional information.

Recall from Section 5 that we assume that economic or ph
ical constraints will prevent PWP from improving, causing defe
density to increase. We show two scenarios: PWP stagnating
90nm (Figure 9a), and scaling until 65nm and then stagnat
(Figure 9b). Also recall that we assume that microarchitectu
innovations will contribute to core growth beyond the usual shrin
due to technology scaling. We assume a 20%, 30%, 40%, a
50% growth starting from one core per chip at the 90nm node, a
from two cores per chip at the 65nm node. The core complex
has grown steadily in the past. We envision that the growth w
continue. We choose 20-50% growth based on the fact that
adding SMT to a superscalar pipeline results in 24% growth [1
and the reasoning that adding SMT is a relatively modest chan
and (2) we use only a 4-wide core while current machines a
already 6-wide and greater. Figure 9 shows four bars for ea
node (labeled a-d), each representing YAT for one growth rate
that node. The number of cores fabricated (maximum number
functional cores) for each growth rate at each node is also given
the table under the bars for each node.

(EQ 2)

(EQ 3)

YAT YATE l( ) αα

λαΓ α( )
------------------- lα 1– e

α–
λ------- l

ld
0

∞
∫=

YATE l( ) Yieldc l( ) IPC• c
c C∈
∑=

where C is all
possible configurations

Table 3: Scan Chain data

Base Rescue

faults 111294 113490

cells 2768 3334

vectors 1911 1787

cycles 5272449 5959645

Figure 8: IPC Degradation
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From this figure, we see three trends in the YAT results for
CS. First, as technology scales, CS’s improvements increase.
With no defect tolerance of any kind, a single fault makes the
entire chip unusable. With CS, each fault disables at most one
core on the chip; the remaining cores still contribute to the chip
throughput. As devices shrink, each core becomes more suscepti-
ble to defects, but the number of cores per chip increases. With a
greater number of cores, the loss of a core leads to a smaller part
of the chip being disabled, and hence greater improvement over
the baseline.

Second, comparing Figure 9 a and b, we see that if process
improvements allow defect densities to stagnate only at as late as
65nm, the opportunity for redundancy techniques such as CS (and
Rescue) are reduced.

Finally, although CS is better than no sparing, average chip
throughput still significantly decreases at each node. Under high
fault densities, disabling entire cores when most of the compo-
nents are still fault-free costs significant throughput.

We next consider improvements when Rescue is applied on
top of core sparing. At near-term technology nodes, low fault den-
sities mean little opportunity for either redundancy technique
(Rescue or CS). As fault density increases, more cores in CS are
disabled. In Rescue, only some of those cores are disabled
because of faults in the non-redundant chipkill area. Most faults
affect redundant components. In these cases, faults may reduce
the per-core IPC, but the core still contributes to chip throughput.
Similar to CS, Rescue also achieves better improvements as tech-
nology scales. PWP stagnating at the 90nm node with high core
growth (50%), by the 32nm node Rescue improves upon CS by
25% while at the 18nm node Rescue improves upon CS by an
average of 40%. With medium core growth (30%), at the 18nm
node Rescue improves an average of 22% over CS, and at low
growth (20%) Rescue still improves upon CS by 13%. With PWP
stagnating at the 65nm node, Rescue is still able to improve upon
CS by 8% for medium core growth (30%), and 14% for high
growth (50%) at the 18nm node.

At each node, Rescue shows greater improvement under
larger core growth. We see this trend because under larger core
growth, the chip has fewer cores at each node. Scaling from 1 core
at the 90nm node we reach 11, 7, 5, 4 cores for core growths of
20%, 30%, 40% and 50%, respectively. With fewer cores, each
disabled core disables a larger portion of the chip. Because Res-
cue avoids disabling entire cores, when there are fewer cores Res-
cue shows better improvement over CS. Thus, Rescue prevents
faults from limiting core growth, and encourages continued

microarchitectural innovation.

7  Related Work

[23] proposed using inherent superscalar redundancy
improve yield, and evaluated results with YAT. The paper assum
advances in logic BIST without describing fault isolation and th
sub-microarchitectural-block-level redundancy can be expos
without discussing microarchitectural modifications or cycle tim
penalties to support the intricate indirection required. We focus
microarchitectural-block-level redundancy which needs less in
rection. We show how current scan test techniques can be used
fault isolation at this granularity.

Goldstein proposed FPGA-based techniques as a solution
defect tolerance for molecular electronics with high fault densiti
[7,8]. Although FPGAs can provide good defect tolerance [16
current FPGA implementations have significant cycle time a
complexity limitations [9]. We exploit architectural-block granu
larity where the use of gate arrays is not necessary. Teramac
is another FPGA-based approach to achieve defect tolerance.
configurability of Teramac comes from a fat tree interconne
Such high-connectivity interconnect may not scale to nanosc
integration. We exploit the existing redundancy and connectiv
to provide defect tolerance without relying on special interco
nects. Another work [18] evaluates defect-tolerance techniqu
and concludes that reconfiguration combined with redundancy
the order of 103-105 is needed to cope with high defect rates. W
propose to exploit the existing redundancy in processor co
without needing such high redundancy.

[2] proposes self-healing arrays as an alternative to BIS
with repair that detects and avoids defective entries in RA
arrays at run-time. [2] applies their techniques to the BTB a
RUU. Self-healing arrays could be used along with Rescue
augment the coverage of Rescue. Self-healing arrays could p
vide coverage of the BTB and active list structures that we cu
rently do not cover, and allow errors in the entries of a register fi
or rename table copy to be tolerated without disabling the ent
copy as is currently required by Rescue.

There are too many papers to list that address testing a
DFT techniques for modern non-defect-tolerant processo
Instead we refer the reader to [12, 5] for a thorough survey
modern testing and DFT.

8  Conclusions

As defect densities increase with scaling, exploiting cor
level redundancy, as done in core sparing, is not enough to ma
tain yield. There is a need to exploit finer-grain redundancy at t
microarchitectural-block level. To address this need, faults mu
be detected with enough precision to isolate faulty microarchite
tural blocks.

We defined intra-cycle logic independence (ICI) as the cond
tion needed for conventional scan test to isolate faults quickly
the required precision. We showed that some pipeline stages in
out-of-order multi-issue processor are already ICI-compliant. W
proposed logic transformations for the non-compliant stag
resulting in Rescue, the first microarchitecture to consider te
ability and defect isolation. We showed that faulty microarchite

2 6 13
2 5 10
2 4 7
2 4 6

a 20% 1 2 5 11
b 30% 1 1 4 7
c 40% 1 1 3 5
d 50% 1 1 2 4

Figure 9: YAT improvement from redundancy
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tural blocks can be mapped-out without much overhead.
We builta verilog modelof Rescue, and inserted 6000 faults,

all of which were isolated using just conventional scan chains. We
showed that our ICI transformations reduce IPC by only 4% on
average for SPEC2000 programs. We also evaluated performance
and yield together through yield-adjusted throughput (YAT) [23],
where throughput is measured in instructions per cycle. Our simu-
lations showed that Rescue improves average YAT over CPU
sparing by 12% and 22% at 32nm and 18nm, respectively. Our
improvements increase both as technology scales and under larger
core growth, preventing faults from limiting the performance ben-
efits of technology scaling and microarchitectural innovation.
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