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Abstract The average faults/chip in the yield expression is calculated
. . from afault density Because defect density increases under scal-
Scaling feature size improves processor performance but - N -
. e - . hg, faults/chip increasesven if chip area remains constam
increases each device’s susceptibility to defects (i.e., hard errors).. : . i ) .

. . A imple model explains this trend: assuming that defects are circu-
As a result, fabrication technology must improve significantly to

S : . lar, only defects with diameter greater than the feature size can
maintain yields. Redundancy techniques in memory have been - .

) . N ause malfunctions. As feature size decreases, defects that were
successful at improving yield in the presence of defects. Apar

. . . ) - . not large enough to be faults now become faults, increasing fault
from core sparing which disables faulty cores in a chip multipro- densit
cessor, little has been done to target the core logic. While previous Y- . .
For the most part, process improvements have been responsi-

work has proposed that either inherent or added redundancy I%lﬁ for controlling fault density and maintaining yield. To main-

the core logic can be used to tolerate defects, the key issues ain the economically-acceptable, random-defect-limited yield of

realistic testing and fault isolation have been ignored. This pape 83% at tant y th IpTRS ’ d ires def %/b doet

is the first to consider testability and fault isolation in designing -0 at constant area, the roadmap requires detect budgets
to improve as the square of the scaling factor. It is not clear that

modern high-performance, defect-tolerant microarchitectures. . . . .
We define intra-cycle logic independence (ICl) as the condiSuch improvements will be both attainable and economical. By

tion needed for conventional scan test to isolate faults quickly tcghe 65nm node, there are process passes where manufacturable

the microarchitectural-block granularity. We propose logic trans- sqlutlons Fhat can meet the _defect budget are not knpwn [24].
Microarchitectures for managing faults are worth exploring.

formations to redesign conventional superscalar microarchitec- Th h b . . ield th h
ture to comply with ICI. We call our novel, testable, and defect- ere have been previous attempts to IMprove yielc t_ roug
means other than process control. For memories, Built-in Self

tolerant microarchitecture Rescue. bined with redund hni h
We build a verilog model of Rescue and verify that faults can! €St (BIST) combined with redundancy techniques such as spare
ows, columns, and sub-arrays have significantly improved

be isolated to the required precision using only conventional scarl X X : X

test. Using performace simulations, we show that IC| transformaP?RAM yield. These techniques have moved into on-chip caches

tions reduce IPC only by 4% on average for SPEC2000 programés well, but the'process.or has been left exposed. Single faults in

Taking yield improvement into account, Rescue improves averad@€ Processor kill the chip. _

yield-adjusted instruction throughput over core sparing by 12% Tolerat|ng fa_ults in the processor is hard because the proces-

and 22% at 32nm and 18nm technology nodes, respectively. ~ SO iS not as highly-regular and redundant as memory. More
recently, chip multiprocessors (CMPs) have made it possible to

1 Introduction begin considering CPU-core-level redundancy, catlece spar-
ing. [1] describes features in the Power4 that allow in-the-field

CMOS scaling trends allow for increased performancediagnostic tools to isolate hard faults to single chips (each con-
through faster devices and innovations in circuits and architectaining two cores) in a multi-chip-module CMP. [20] describes
tures. Despite the reduction in feature size, added innovationdardware and testing technigues needed to isolate faults to, and
keep chip area roughly constant. The combination of a scalinghen disable, single cores in a CMP. This strategy makes it rela-
feature size and a constant area results in greater vulnerability tively easy for chips to be salvaged by enabling only fault-free
defectsat fabrication time. Increased vulnerability results in cores. However, because a single fault kills an entire core and
lower yields and decreased profitability. faults/chip grows with technology scaling, the number of faulty

To understand how defects affect yield and how yield scalesgores per chip increases. Therefore, we advocate a finer-grain
we turn to the common yield model: yield S&s/ehiP Note that ~ approach where we disable individual components of a core so
yield is related to the average faults/chip, and not defects/chip. Ithat the core can be used even if some of its components are
yield analysis, faults are considered a subclass of defects. Defed@aulty.
include all imperfections, both those that cause malfunctions and  Physical clustering of faults has always resulted in higher
those that have no effect on circuit operation. Faults include onlyields than if faults were randomly distributed, but has never
the defects that cause circuit malfunctions [15]. These faults areolved the defect problem. With clustering, multiple faults are
hard, persistent faults, not to be confused with transient faultgnore likely to hit the same chip killing only one chip as opposed
The fact that an increase in chip area would increase faults/chip k& each fault hitting and killing a different chip. It may seem that
partially responsible for the economic limits that keep chip sizef the clusters are the same size as cores, then exploiting core-
from growing. level redundancy as done by core sparing would suffice and there



would be little opportunity for our finer-grained approach. How-* Adding extra logic to map out individual faulty component
ever, clusters are na@xactlythe same size as cores and do not (e.g., functional unit) in a multi-way-issue pipeline would
cause faults inevery microarchitectural block eliminating any incur prohibitive overhead. Instead, we map out at a coarser
chance of salvaging cores. Consequently, despite clustering, core granularity and disable an entire pipeline way (e.g., faulty
sparing disables many cores with only a few defects that could be functional unit's backend way, or a faulty issue queue segment
tolerated with a finer-grain approach, allowing the core to be sal- and its associated search/selection logic). Thus we exploit the
vaged. In our results, we include clustering effects by using the inherent microarchitectural granularity to avoid overhead.
ITRS clustering model [24] and show that our approach signifi-  \yve puild a verilog modelof Rescue, and insert 6000 ran-
cantly improves over core sparing. domly chosen faults all of which can be isolated using just con-
Previous fine-grain approaches include bit slicing in a nonyentional scan chains and ATPG. We show that our ICI
pipelined processor [17], using spare functional units t0 bgansformations reduce IPC by only 4% on average for SPEC2000
mapped-in during a post-fabrication phase [3], and exploitingyograms. We also evaluate performance and yield together
inherent redundancy in superscalar processors [23]. _Exploitirmrough yield-adjusted throughput (YAT) [23], where throughput
fine-grain redundancy adds the following extremely importanfs measured in instructions per cycle. Our simulations show that

testability requirementt must be possible to detect, isolate, andrescue improves average YAT over CPU sparing by 12% and
map out faults with sufficient precision and speed so that onlyoos 4t 32nm and 18nm technology nodes, respectively.

faulty resources are disabledf faulty behavior can be isolated Section 2 gives background on scan chains and scan testing.
only to a group of components, teatire group must be assumed gsection 3 defines ICI and describes ICI transformations. Section 4
faulty and be disabled. Because testing time is so important, CUescribes our microarchitecture. Section 5 describes our method-

rent testing techniques isolate faults only to the granularity ofjogy and Section 6 presents results. Section 7 discusses related
cores and not microarchitectural blocks. Unfortunately, the previgork. and Section 8 concludes.

ous fine-grain approaches do not consider the testability require-
ment in modern processors. 2 Scan Test

In this paper, we focus on architecting modern processors for
testability and defect tolerance. To propose realistic architectures Testing and design for test (DFT) techniques [12] have been
that exploit microarchitectural redundancy for defect tolerance win use for decades to simplify and speed up the complex problem
start with four basic requirements that we place on the archite@f determining if a manufactured processor is free of hard faults.
ture and testing processes: 1) any defect-tolerance approach m@ste of the most prevalent DFT techniques is scan test which
be based on realistic and commonly-used testing methodology; allows state to be inserted and collected from devices under test
it must be possible to isolate faults to the precision of microarchitDUT) with minimal additional external pins [12]. Scan chains
tectural blocks; 3) testing time required to isolate faults in a corare inserted in a logic circuit before layout. The process of inser-
must be comparable to that needed today to detect faults in a chijmn replaces memory elements (e.g., latches and registers) with
and 4) because extra logic for isolating and mapping out is addetan-equivalent elements. There are many scan cell styles used,
whether there are faults or not, the extra logic must be as little @sut we assume the simple and common multiplexed flip-flop vari-

possible to avoid degrading the cycle time and yield. ety of scan cells. (Because scan techniques can handle both edge-
We satisfy these requirements using the following ideasriggered flip-flops and level-sensitive latches, we use latches and
which are the main contributions of this paper: flip-flops interchangeably). This scan cell contains two additional

* Because scan chains are the choice testing methodology, d2R"tS: @ sécond data input port and a control signal port for a mux
approach is based on conventional scan chains and Automatisyselect between the two input ports. The additional data input
Test Pattern Generation (ATPG) [12]. port is connected to adjacent scan cell output ports so that all scan

elements are connected in series and form a shift register. After a

* The second requirement translates to a new constraint on tg?ate is shifted in. the DUT can be taken out of test mode and
allowed interconnections among microarchitectural blocks. W '

Bycled for one or more cycles of regular o eration, and then
defineintra-cycle logic independence (ICtp formalize the y Y g P

. el decod read returned to test mode. With every memory element replaced by its
;:onstralrr:t. Some pipe |n§ Stagﬁs (e.r?.,. (;co €) a ready CgQ(':an equivalent (full-scan) which is common today, one cycle of
orm to the constraint, an Wwe show why, others (e.g., issue) 8peration between scan-in and scan-out is sufficient for detection
not. We propose novel logic transformations, callétitrans-

) . . of all detectable stuck-at faults (a net that is either stuck always at
formations to redesign the non-conforming components to sat;

isfv th traint. The t ¢ d s f 1 or always at 0) [12]. We assume full-scan, stuck-at faults and
isfy | € cons rr?'ltn .t € Irlar(;sF({)rme corr]pphoqentf] o]:mtougingle cycle tests. After the cycle of operation, the state of the
novel microarchitecture called escue WRICh 1S the ISt~ ny 1 oa9n pe scanned out through the scan-out pin. Figure 1 shows
microarchitecture to consider testability and fault isolation.

Our transformations incur minimal performance dearadation. & circuit during scan-in, after scan-in has completed, and after one
P 9 "cycle of execution. The scan chain input is all ones and the pri-

* Conventional scan test is fast because each scan chain can i@giry inputs are all zeros. A tester can read the output state along
for thousands of faults at the same time. Because conformingith the chips primary output ports and compare them against a
to ICl allows our microarchitecture to use ts@mescan chains  gold standard output. A mismatch signifies a faulty chip, and the
and the standard test flow, our fault-isolation time is similar tachip is discarded. We will show that with single cycle scan tests,
conventional scan test time. faults can be isolated quickly to the microarchitectural block



nations of faults that could have caused the observed output.

sc sca scan _
Without such a procedureye can assume only that a fault
occurred somewhere between where the test vector is input and
0 where the output is collectedh this example, a single fault in
during scan-in after scan-in after 1 cycle LCX would be detected, but the test would only reveal that there
~ Figure 1: Application of Scan Test are one or more faults somewhere in LCX, LCY, LCM, and LCN.
granularity. The tester would not know if disabling LCX would make the sys-

Automated Test Pattern Generation (ATPG) [12] software igem fault-free and the whole system would have to be discarded as
responsible for generating the test patterns that are scannedsijty.
during test. ATPG software works by targeting each possible e next consider what happens when the circuit is pipelined
fault. To test for a stuck-at-1 fault at a particular node, the ATPGynd the pipeline latches are integrated into a scan chain to allow
software finds register state and input pin values that cause the cifcan testing. Figure 2b shows the new circuit broken into 3 stages.
cuit to attempt to drive the node to 0 and propagate the resultingput test data (generated from normal ATPG software) can now
value to a scan register or output pin. The tester then observes that inserted into and collected from the two scan registers (SRS
the output is incorrect and flags a fault. and SRT). That is, test inputs can be applied to points A, B, C, D,
Diagnosis [12] is used to improve yield in future lots by pin-and outputs can be collected from E and F. In addition, SRS col-
pointing defective tools and steps in the fabrication processects outputs from LCM, and SRT drives inputs to LCN. With this
Because diagnosis pinpoints faults as precisely as possible—usiénfiguration, the granularity of logic between test vector applica-
ally at the gate level or lower—it is a time-consuming process (Ofion and collection is now much finer. A fault detected in SRS
the order of hours) that usually requires physical circuit inspecmyst be in LCM and a fault detected in SRT must be in either
tion with scanning electron microscopes [26]. Consequently,CX or LCY. Finally, a fault detected in the outputs of LCN must
diagnosis is performed only on a small sample of failing chipspe in LCN. Thus, in pipelined circuits, a fault can be quickly iso-
We show this level of precision is not needed for defect tolerancgied to a pipeline stage (using only conventional ATPG) by
. checking only where the fault is observed!
3 Intra-cycle Logic Independence In our example system, it is not enough to know that a fault is
@cated in either LCX or LCY. We want to know which one is
. . ; - . faulty so that if only one is faulty it can be disabled and the sys-
!solate faults na simple case. We the?r-w genera}hze and deﬁqgm can still be used. Notice that in Figure 2b SRT has been bro-
|ntra-_cycle_log|c mdep_e_nden_cas the condition required to enable ken in two to show that some bits of the register collect data only
faultisolation to specific logic components. from LCY and the other bits collect data only from LCX (this is
constant for a design, and determined once when scan cells are
inserted). Now, any faulty data in the top part of SRT must have
Figure 2a shows four logic components arranged into a largdreen caused by LCY and any faulty data in the bottom part of
logic system. The logic component X (LCX) and Y (LCY) are SRT must have been caused by LCX. By a single lookup, faults
both driven by logic component M (LCM) and share one commorcan be mapped from a specific register bit index (scan chain index
input (B). LCX and LCY jointly drive LCN. LCM is driven by number) and can be isolated to LCM, LCX, LCY, or LCN.
input pins (controlled by the tester), and LCN drives output pins  Generalizing these examples gives us ifiiea-cycle logic
(observable by a tester). Assume that there are no memory eladependence (ICI) rulavhich states that any scan detectable
ments (i.e., flip flops or latches) inside this circuit and also that théault can be caused by one and only one element in a set of logical
system can still function if one of LCX or LCY is known faulty components if and only if there is no communicatiaithin a
and disabled. If logic components were designed well, goodycleamong the logical components making up the set.
ATPG software should be able to find test patterns that would As an example violation of ICI, assume that in Figure 2b
detect any faults in any of the logic components simply by drivind-CY reads the output of LCX as an additional input. In this case
the input pins and observing the output pins. an incorrect output is detected in the top half of SRT after 1 cycle.
Despite detecting the presence of the error, it would be diffiBut it is no longer clear that the incorrect output was caused by a
cult to isolate the fault—i.e., pinpoint which logic componentfaultin LCY. LCX could be sending faulty output to LCY, causing
contains the fault—from looking only at the pin inputs and out-LCY to output faulty data despite LCY being fault free (LCX is
puts. The problem is that an incorrect output observed by thiaulty), or LCX could be sending correct output to LCY, but LCY
tester at the output pins could be caused by any of the logic cons outputting incorrect data (LCY is faulty). Without complicated
ponents. It is a computationally complex procedure (diagnosis) tdiagnosis, it is not possible to determine precisely which of the

trace back the observed output to the input figuring out all combitwo components is faulty.
An important corollary of ICI is that multiple faults can be

We first describe how ATPG and scan testing can be used

3.1 Simple Fault Isolation

a) tested and isolated at the same time. In standard scan chain test-
a| ing, each scan chain tests for many possible faults at the same
3 Lem LCM time. This is necessary so that test time is manageable. With ICI, a
= . fault in one component can not influence the testing of faults in
T other components. If there are multiple faults in different compo-

Figure 2: Testin g to isolate faults nents and all are detectable by one input scan vector, then each
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faulty output scan bit will map to one of the faulty Componemsonvatlzatmn would create 3 addlthnal .coples of LCA, one for
and all faulty components will be isolated with only one scan vecgach of LCC through LCF, resulting in 4 super-components.
tor. Consequently, if a design obeys ICI, it takes no additiona'InStead' partial privatization only creates 1 additional copy of

scan vectors to isolate faults than would be needed for traditionxCA: called LCB. LCC and LCD read from LCA. LCD and LCE
fault detection in the same design. read from LCB. Now there are 2 super-components. LCA, LCC,

and LCD constitute one. LCB, LCE, and LCF constitute the other.

3.2 ICl ransformations 3.2.3 Dependence Rotation

While some of the stages in an out-of-order superscalar pipe-

line already conform to ICI, other do not. Those that do not must ~ Privatization through duplication may not be enough to
be modified to conform to ICI. We conform to ICI by turning €NSUre ICI. Figure 4a and b depict another transformation, depen-

intra-cycle communication into inter-cycle communication. Wed€nce rotation. In Figure 4a, ICl is violated because LCC reads
make this transformation by a combination of three differenf’om Poth LCA and LCB. Dependence rotation is particularly
methods: (LEycle splitting,(2) logic privatization and (3)depen- applicable to single-stage pipeline loops (where the outputs of a

dence rotation stage are inputs to the same stage in the next cycle). Although
cycle splitting could create ICI in Figure 4a, cycle splitting may
3.2.1 Cycle Splitting not be favorable if the length of this loop is critical in determining

system performance (e.g., issue-wakeup loop). Privatizing only

Cycle splitting splits dependent logic into two cycles sepai CC would not help because LCC and its duplicate would still
rated by a pipeline latch. Figure 3a shows an example logic digzach read from both LCA and LCB. Additionally, duplicating
gram where no ICI is present inside the pipeline stage becaus€B and LCA would provide ICI, but only in the trivial sense by
both LCY and LCZ read from LCX. Applying cycle splitting duplicating the entire stage.
results in Figure 3b, which now satisfies ICI in both stages. Any  |nstead we use dependence rotation first which recognizes
fault can be isolated uniquely to LCX, LCY, or LCZ. Cycle split- that not only are LCA and LCB reading from LCC but also LCC
ting comes at the cost of increased latency because one cycleidsreading from LCA and LCB. The placement of the pipeline
split into two, while the clock period remains constant. Whenatch is somewhat arbitrary in this loop. Dependence rotation
there is not much performance penalty for increased latency, cycigtates the logic around the pipeline latch so that the pipeline latch
splitting is the favored technique. For instance, cycle splittings in a more favorable location. Because dependence rotation only
logic in rename may be acceptable because that would increaggates the logic already within the cycle (does not add new logic),
branch misprediction penalty whereas cycle splitting select logighe logic complexity and delay within the cycle stays roughly the
may not be acceptable because that would prevent back-to-bagkme. Dependence rotation transforms Figure 4a into Figure 4b.
ISsue. In Figure 4b, LCC still gets input signals from LCA and LCB, but
it reads the signals from a pipeline latch instead of directly from
the logic components (now obeying ICI). Conversely, LCA and

Logic privatization replicates logic to avoid two or more LCB now read directly from LCC (now violating ICI) while
blocks depending on the same block. Figure 3c shows the res@fore rotation they read the signals from the pipeline latch.
of transforming Figure 3a through logic privatization instead of*lthough dependence rotation has transformed one ICI violation
cycle splitting. In Figure 3¢ LCX is duplicated so that LCY andinto another, this new violation is easier to handle. Note that
LCZ each read from a unique copy of LCX. Faulty output fromFigure 4b resembles Flg_ure 3a. Pr_lvat!zatl_on through d_upllcatlon
LCY can be caused by a fault only in LCX or LCY (we can not ©f LCC_: can now be applied, resulting in Figure 4c. Ir_1 Figure 4c,
know which one), but can not be caused by a fault in LCW ofC! €Xists between the 2 super-components shaded in gray.
LCZ. For fault isolation purposes LCX and LCY become one 3 Mapping out faults
super-component (shaded ovals), and LCW and LCZ becomg

another. ICl exists between the two super-components. Logic Once faults are isolated, they have to be mapped out. Map-
privatization may be preferred in some cases because it consumg involves three issues: (1) Faulty blocks have to be disabled
extra area instead of the extra latency needed for cycle splitting. #nd not counted as available resources, which is trivially
the duplicated logic block is small, the area penalty may b@chieved. (2) Non-faulty blocks should mask out inputs from
acceptable. faulty blocks. For example, in Figure 4c, if LCA is faulty then the

It is possible to use partial logic privatization to achieve| CA input to the bottom copy of LCC should be masked out so
larger grain fault isolation at less additional area cost. As athat LCA' fault does not propagate to the non-faulty LCB. (3) To
example of partial logic privatization, assume 4 logic blocksgllow degraded operation, instructions need to be routed around
(LCC, LCD, LCE, LCF) reading from one logic block, LCA. Full faulty blocks. We explain how we do this routing later.

3.2.2 Logic Privatization



4 Testable & Defect-Tolerant Microarchitecture would be large. Instead, we choose to isolate faults only between
halves of the queue and selection logic, and show the necessary
Our microarchitecture, Rescuie based on an out-of-order, modifications to create ICl and allow degraded operation.
multi-issue superscalar which may be thought of as two in-order
half-pipelines (frontend and backend) connected by issue. A4.1.1 Baseline Issue Queue
mentioned in Section 1, adding extra logic to map out individual

faulty components (e.g., functional unit or rename port) in We ghoose a corrr:pactlng queue [19’|6] as our bazellncle
multi-issue pipeline would incur prohibitive overhead. Instead, ecause It represents the most common implementation today. In

we map out at a coarser granularity and disabke entire half- a compacting issue queue, instructions are inserted into the tail.
pipeline waythat is affected by the fault (e.g., faulty functional Compaction occurs each cycle, counting free slots and choosing

unit's issue/backend way or faulty rename port's fetch/fronten hich newer instruction should move into each free slot. In paral-

way). Figure 5 shows the half pipeline granularity for two proces-eI with compac?tlon IS Walfeup and sglect. At.the beginning of the
sor ways. cycle, the previous cycle'’s selected instructions broadcast to the

In our approach, an n-way-issue processor can be degrad%ﬂt're issue queue, waking up instructions that have all their oper-

due to faults as follows: (1) The frontend supports degraded fetc pds ready. After wakeup, instructions are selected for issue so

decode and rename of n-1 down to 1 instructions to support faulfgat th_e maximum amoun'_[ of ISsue band\_/wath is used while
in 1 up to n-1 of the frontend ways. (2) The issue queue and th Serving resource c_onstralnts and_lssue priority. L .
load/store queue can be degraded to half their original size to sup- The compacting ISsue queue violates I.CI making it impossi-
port a fault in the other half of the queue or the selection/sear I? to isolate fal_JIts to e_lther half in our design. Tddd half con-
logic for that half. (3) The backend supports degraded issue of n-_ti“ns the older instructions and timew halfcontains the newer

down to 1 instructions to support faults in 1 up to n-1 backendhstructions. There are three ICl violations that must be consid-

ways of register read, execute, memory, or writeback. The proceEred: (1) Compaction of the new half is dependent on how many
y g Y P See slots are available in the old half. (2) Compaction of the old

sor in Figure 5 is operational as long as one frontend way, 0 )3

backend way, half of the issue queue, and half of the load/sto Ifis dependent on the s_tatg, number ar]d position of instructions
queue (not shown) are functional. in the new half. (3) Selection in each half is dependent on the type

To route around faulty frontend ways, we insert a shifteland number of (post-wakeup) ready instructions in the other half.

stage after fetch so that the fetched instructions can be shiftedq o Creating ICI
around and directed to the non-faulty ways. In the backend, we
add a shifter stage after issue to route issued instruction to func- Handling violations (1) and (2) is best done by cycle splitting
tional ways. We describe both shifter stages later. of inter-segment compaction. We still allow compactiwithin
Each processor would have a one-fanilt-map registethat  each segment to occur in parallel in a single cycle, but we split
specifies the faulty components. For an n-wide-issue machineompactiorbetweersegments into more than one cycle. Note that
there would be 2*n+4 bits to represent the frontend and backen#lis does not increase the pipeline depth of the architecture, and
of each of the n ways (2 bits each) and the two halves of both theonsequently, cycle splitting this logic comes with little perfor-
issue and load/store queue (2 bits each). During test, the registefigince penalty.
part of the scan chain. SUN has proposed a similar strategy to In our ICI compliant inter-segment compaction policy, each
support core sparing in CMP [20]. Because we require onlyalf does not communicate directly with the other half. All inter-
2*n+4 bits, we assume that after test, inputs to the fault-map regegment communication gets written to a temporary latch at the
ister can be fixed permanently by fuses as used in [28]. end of the cycle, and read from the latch in the next cycle. Each
In the rest of the section we proceed as follows. We examingycle, the old half compacts its own entries, and if free slots open
each pipeline stage starting from the most complex stage for IGlp, the old half requests instructions from the new half. In the
compliance. For those stages that already conform to ICI wgext cycle, while the new half compacts its own entries, it moves
explain why. To the non-compliant stages, we apply ICI transforits oldest entries to the temporary latch if the old half had made a
mations and redesign the stage to be ICl-compliant. We als@quest. In the last cycle, the content of the temporary latch is
describe fault map-out to allow degraded operation with limitednoved into the old half. The new half can insert new instructions

additional logic. from rename in the second cycle of the compaction process
because it is in this cycle that the new half moves its entries into
4.1 Issue the temporary latch. Consequently, we have increased the time

Issue illustrates a complex stage where there is fine-grainéﬂ-ﬂ\’\’e(':'n the entries becoming free and new instructions being

redundancy (at the issue-queue-entry level) but no coarse-grdﬁ?e;t\?ﬂ mtohthe ISSue queue bygnly ?2? cy;:le.h dificati
redundancy that can be used easily for defect tolerance. Unfortu- though compaction now obeys ICl, a further mo ! 'Ca“of‘
nately, there is no ICl among the entries. A fault in one entry cafp Necessary for_ correctness of our extended compaction policy.
propagate to almost any other entry through the selection |Og;gstructlons are in the temporary latch for only one cycle, but they

within one cycle. The overhead to detect faults at this granularit?]USt be able to see all wakeuplbroadcasts. A,S such, the entrles. In
he latch must have wakeup logic. Because this new wakeup logic

Fronth =—p—r R E M w C |~Backl reads only from the temporary latch and writes only to the old
Front2« |« Back? half, it does not provide a communication pathway between the
Figure 5: Half-pipeline map out two halveswithin a cycleand ICl is not broken. Although instruc-

IQ




tions can be woken up in the temporary latch, they can not bselect unit and the lower queue segment are analogous to LCB in

selected for issue until they reach the old half. Figure 4c and the lower broadcast/replay logic unit is analogous
The remaining IClI violation is the inter-segment communicato LCD in Figure 4c.

tion that occurs during selection. Cycle splitting inter-segment  After issue completes, each issued (not replayed) instruction

communication during selection (as we did in compaction), woulsheeds to be routed to a backend way for execution. We use an

prevent back-to-back issue. Instead, we employ dependence rogxtra cycle after issue to do this routing. If there are too many

tion and logic privatization to enforce ICI. We now describe howselected instructions, there is a replay, and all instruction from the

dependence rotation and logic privatization apply to superscalaon-replayed half are chosen and routed in their selection order to

issue. the backend ways. If there is not a replay then each selected
Superscalar selection is usually implemented with multiplenstruction (from both halves) is routed to a backend way. In

selection trees. Each selection tree first selects from each half, aeither case, this routing is simple because there are never more

then the root node of the selection tree chooses between the timstructions that need to be routed than backend ways. This rout-

halves. Therefore, the root node is dependent on both halves iofj is done by muxes and each mux controller must be privatized

the queue. In typical selection logic, the root node selection is th® maintain ICI.

last step in the cycle, where the instructions are selected and .

latched at the end of the cycle. These selected instructions aflel-3 Map out and Degraded Operation

then used for broadcast at the beginning of the next cycle. . .
This data flow is analogous to Figure 4a; LCA corresponds to Our ICI transformed issue stage easily supports degraded

the new half of the issue queue combined with the selection Ic)gﬁcperatlon after faults have been isolated. Each half (new and old)

that chooses instruction from that half, LCB is similar but for the as three components, the queue half (including wakeup logic),

: . the selection logic for that half, and the wakeup/replay logic for
old half, and LCC is the roots of the selection trees that Choost(ﬁat half. A fault in any of the components is detected as a fault in

among instructions presented from the two halves. Accordmgl){hat half, and the entire half (all three components) is assumed

we apply dependence rotation which rotates the root nodes of the
selection tree around the issue queue and sub-trees of the seleacu-lty'
q With a faulty old half, the new half simply masks out any

fuon logic, breaking all com_munlcatlon between selecuor_l of the ompaction requests from the old half (Section 3.3). With a faulty
issue queue halves, producing a data flow analogous to Figure 4D, .

. . ~ néew half, the old half compacts as normal, but instead of compact-
However, this dependence rotation causes a problem: we

must issue the selected instructions in the cycle immediately fol9 from _the temporary Iatc_h, it compacts from the newly
renamed instructions, bypassing the new half.

lowing select for back-to-back issue. But the selection process IS
. . . Faulty backend ways are accounted for by reduced resource
incomplete in that we have selected only from each issue queue . ,
) : - counts. If only n-1 backend ways are functional, each half’s selec-
half but not combined the selections of the halves (at the selecthn : . . .
. . .. 1on logic selects only up to n-1 instructions. The replay signal
tree root). Dependence rotation has eliminated commumcathn L2 - : ?
: L %glc similarly adjusts to replay when greater than n-1 instructions
between the halves, and has moved this combining at the root t - S .
I ) : are selected. Furthermore, the routing logic immediately after
the next cycle (LCC in Figure 4b is fed from the latches in the .
issue avoids the faulty way.
next cycle).
Breaking communication between the halves causes a signif- o Fetch
icant departure from typical issue policy. Now, there is no way to
determine how many and which instructions should be selected by Fetch includes the i-cache and logic to select the fetch PC
each half to maximize issue bandwidth while not exceedingmong the outputs of the BTB, return-address-stack, and PC
resource constraints. Instead of trying to limit conservatively omcrement. The i-cache is covered by BIST with repair. There is
predict the number of instructions selected by each half, we allowo redundancy in the fetch PC logic and therefore no opportunity
each half to select instructions as if the other half will wakeup ndor defect tolerance. As such, we treat this small logic as chipkill.
additional instruction. Each half still obeys resource constraints, The main modification needed is to route around faulty fron-
though together their sum may not. In the rare case that motend ways. Because fetch simply maps one-to-one the fetched
instructions are selected than can be issued, we force a replayin$tructions to the frontend ways, it does not already have the
all instructions from the half that selected fewer instructions (weouting ability. Therefore, we add a routing stage after fetch like
replay all instead of some subset for simplicity). Because eadte routing logic immediately after issue. Normally instructions
half obeys resource constraints in its selection, the non-replayede fetched in parallel and passed, in program order, to the decode
half will conform to resource constraints. This replay is similar tostage. If one or more of the frontend ways are faulty, we must
that on an L1 miss; the issued instructions have not been removedsure that the instructions are still decoded and, in particular,
from the issue queue yet. Replay simply clears the issued bit of abnamed in program order. Accordingly, the routing stage has two
instructions issued in the last cycle from the replayed half. functions: (1) Assign the earliest instruction to the first fault-free
The replay signals, along with wakeup broadcasts, are gendrontend way, the second instruction to the second fault-free way,
ated by a logic block that corresponds to LCC in Figure 4b. Thand so on, until all the non-faulty ways have been given instruc-
replay signals and the broadcasts go to both halves of the isstiens. (2) Stall fetch and assign any remaining instructions in the
queue. To maintain ICI, this logic must be privatized (one copysame manner until all fetched instructions are processed.
for each issue queue half). The resulting data flow is shown in  The routing stage is composed of muxes (one for each fron-

Figure 6 and is analogous to Figure 4c. In Figure 6, the lowetend way) that choose an instruction for that frontend way. We



privatize the control for each mux so that there is ICI in the routtures because there is no redundancy in them (though there is
ing stage and faults can be isolated easily to the way of the shilgIST, there are no spare rows or columns because spares are used
stage. A faulty way in the routing stage is equivalent to a fault ifor larger structures like caches). To create redundancy, we use
the corresponding frontend way and results in that way being digartial privatization, but because we already enforced ICI, we

abled. have some freedom in how we make the copies; we can avoid
wasting ports on redundant reads from the map table and free list.
4.3 Decode We create two copies of the tables, each of which has half as

Decode obeys ICI without any modifications. Multiple many rea_td ports as the baseline design (_as done in Alpha 21264
. - : rﬁglster file for speed reasons [14]). The first copy does the look-
instructions feed into the stage from the fetch-decode latch. Eac ) ) .
. L . . . ups for the first half instructions, and the second copy for the last
instruction is decoded in parallel without any intra-cycle commu;_* . . L .
S . g half instructions. Data read from the table copies is latched and is
nication. Output from the stage is collected in the decode-renamg - . .
latch potentially used by all renamers in the next cycle. A fault in the
' first (second) table copy disables the frontend ways for the first
4.4 Rename (second) half instructions.
Because the rename stage modifies state in the tables at the
In the rename stage, the single register map table and the fread of renaming, a few extra precautions are necessary for map
list break ICI. These structures are read by each renamer andt and degraded operation. First, we must ensure that faulty
therefore cause an ICI violation similar to Figure 3a. Fixing thewvays do not affect the state of the free list and rename tables. We
ICI violation by privatization of the tables is not realistic becauseequire that the all free list and rename table write ports have the
that requires fully replicating the relatively large tables once ombility to be disabled selectively based on the fault-map register.
more. After the tables are read, the mappings are fixed to refleBecond, we must ensure that a fault-free rename way does not use
any hazards. RAW and WAW hazards among the instructiondata from a faulty way. To that end, we use a mask on the matches
being renamed require source register maps and previous destifa- RAW and WAW hazards, and ignore matches from faulty
tion-register maps to be fixed. Consequently, we use cycle splitvays.
ting to separate the table reads from the rename logic at the cost of ]
an additional frontend pipeline stage. In one cycle, register maggt.5 Register Read
pings and free registers are Iooked-up in the tables and latched. In As with rename, we assume that BIST detects faults in the
the next cycle, the mappings are fixed. There may be dependen-

cies between instructions in the two stages of rename that needr%JISter file and that there is no redundancy. We therefore use mul-

. . . tiple copies, each with fewer ports. No additional modifications
be accounted for. Allowing writes in the second stage to pas : e
. -are necessary as there is no state modification in the stage. Each
through the tables and be read in the same clock cycle by the first . : : . A
. register file copy is analogous to the logic block in Figure 2. The
stage would violate ICI. Instead, we forward back results from the > . o . .
copies obey ICI. Register specifiers come directly from input

previous renamed instructions. Since we have separated renamein, o ond go into the copies. There is no communication among

to two cycles, there is ample time to perform the forwarding. Tht?he copies, and each copy outputs directly to its output latch
only cost is a small area penalty. ’ )

It may seem that the map-fixing logic would violate ICI. If 4.6 Execute
there is a RAW or WAW hazard between instructions A and B,
then it may seem that B’s map-fixing logic would read the output  Execute obeys ICI without any modifications. Register for-
of A's map-fixing logic and violate ICI. However, real designswarding doesotviolate ICI because forwarded data comes from
avoid making B’s rename depend on A's because doing so woulgipeline latches (and therefore implies inter-cycle communication
totally serialize renaming among the instructions being renamednd not intra-cycle communication). However, for map out and
Instead, real designs operate in parallel by redundantly computintegraded operation, we need to ensure that fault-free ways will
the hazards. For each instruction, the hazards of all its previoumver try to forward from faulty ways. To that end, we mask out
instructions are computed in parallel. If an instruction appearthe register dependence match from being signaled if the match-
ahead of three others then the instructions’ hazards are computed way is specified to be faulty in the fault-map register.
redundantly by each of the three. Therefore, each map-fixing
logic reads all previous instructions’ architectural and physicaft-7 Memory
register numbers from the cycle-splitting pipeline latch at the end

of rename tables, and does not read anything from the other map- n sparing, and focus on the load/store queue (LSQ). Sur-

fixing logic and ICI is ma.m.tamed. risingly, searching the LSQ obeys ICI without modification.
The above cycle splitting makes rename completely testable = * : . A
? X .. |Asertion requires only minor modifications to support ICI.
even when there are faults in the rename tables. This ability is . . S
. . We assume search for memory disambiguation is imple-
important because then the tables can be tested (using BIST or . - . .
mented in a tree structure similar to select. Like the issue queue,

any ot_her methqd) while fqults in the rest of the processor e segment the LSQ into halves. Two concurrent accesses to the
being isolated with conventional ATPG.

Although we can isolate faults in the rest of the rocessolr‘SQ requires two trees (each tree has two sub-trees, each sub-tree
9 P earches half of the queue). There am® modes of degraded

while other faults may exist in the rename taples or the free IISOperation in the LSQ: faults in a half or the sub-tree searching the
our processor would not be able to execute with faults in the struc-

We assume that the cache hierarchy uses BIST and row and



— ~aTree A requirement is that data from faulty ways not be written to the

X ILA | register file (a faulty write port can be treated equivalently to a
@ faulty backend way that writes incorrect data). As with rename
Al — tables, we require that the register write ports be disabled selec-
§- IL[B tively by the fault-map register.
@
= _ . ree i 4.9 Commit

1q segments

Figure 6: Issue logic flow Figure 7: LSQ logic flow o El(?mr?iiwt confists Otf writes tto tfheIIrek? ”T(t ar(;d the e]ltctive "5_:-
half cause the half to be disabled. Faults in a tree (either of thg >avling the write ports prevents faully backend ways from writ-

sub-trees) cause the tree to be disabled allowing only one accd2d to these tables.

but use of both halves.
Because the LSQ is a non-compacting structure, there is Iittlg Meth0d0|ogy
communication between the halves. Because the search can take oyr methodology quantifies the value of our intra-cycle-

as long as L1 access, the search tree is usually pipelined into tWyenendent architecture, Rescue, in three aspects: testability,
or more cycles. Therefore, the trees are already cycle splifayt-free performance degradation, and expected (average)
Figure 7 shows the two LSQ search trees pipelined into t""%roughput.
cycles (note that the pipeline latch can fall in the middle of the ¢ gemonstrate the feasibility of fault isolation in Rescue, we
sub-trees, as shown). Tree A is light, Tree B is dark. In the firstreate a verilog model of the processor described above. The
cycle, each of the sub-trees searches its half in parallel. Becausqe| includes details of fetch, decode, rename, issue, register
there are two sub-trees (one light and one dark) reading from eagh, g execute memory, writeback and commit and all the
half, the half and its two sub-trees make one super-componeRjescribed logical connections and fault propagation pathways. We
Because there is no communication between these super-compoap the design into a gate-level verilog description and insert one
nents, ICI is maintained between these super-components in thg;y chain using Synopsys Design Compiler. We use Synopsys
first cycle. In the second cycle, the rest of the trees read from thisyramax Pro, which is an ATPG generator and fault simulator, to
pipeline latch to generate final results. Though the root nodgjy late faults and we report the results in Section 6.
causes communication between its two sub-trees, there is N0 COM- \re next evaluate the performance aspects of Rescue through
munication between the two search trc'ees.(light and dark) in thﬁerformance (IPC) and yield-adjusted throughput (YAT) [23],
second cycle. Consequently, ICl is maln.talned between the tregs,qore throughput is measured in instructions per cycle (IPC).
(but not between the sub-trees of a tree) in the second cycle. TNy is the sum of the products of the IPC of a degraded configu-
ICI holds for different components in the first and second cyclesation times the probability of the occurrence of the configuration
resulting in the two modes of degraded operation, as we show; the average chip throughput when a large number of chips are
below. _ _ o _ fabricated).
~ Toenforce ICl for insertion of entries into the LSQ we priva- 1o measure performance of Rescue we modify SimpleScalar
tize the insertion logic for that half (ILA and ILB in Flgurg 7).. [4] in the following ways: (1) we separate the issue queues and
Each half must keep redundant copies of the head and tail poin{etive Jist; (2) we add two cycles to the branch misprediction
ers. When the tail pointer lies in a half, that half is responsible fogycle penalty to account for the shift stages in the front and back-
msertmg |.nstruct|.ons in the corregt position. For ICI, each copy ofq of the processor (Section 4.1 and Section 4.2); (3) we cycle-
the insertion logic gets lumped into the super-component comgyit the inter-segment issue queue compaction, using four entries
prising the half it is controlling. - of each issue queue as the compaction buffers (Section 4.1) (base-
Now we explain the modes of degraded operation: A faultyine and Rescue issue queues have the same total resources); (4)
LSQ half (or search logic in the first cycle) is avoided by theye hold the issue queue entries for an extra cycle and squash an
insertion logic and the search logic in the second cycle of searcByra cycle of issued instructions on L1 misses to account for the
When the faulty half is disabled (specified in the fault-map regiszqgitional  shit stage between issue and register read

ter), the fault-free half uses the reduced LSQ size to calculai@&eciion 4.1); (5) we implement the issue/replay policy described
head and tail pointers, and consequently is responsible for a}f section 4.1.

insertions. Each search tree root ignores (a simple mask based on e yse our simulator to model a 4-way-issue superscalar

the fault-map register) results from its sub-tree that searchesfocessor with the baseline parameters listed in Table 1. Increas-
faulty half. ing issue width beyond four ways would only increase redun-
A fault in one of the sub-trees in the second cycle is avoideganCy and improve our results. When we vary technology

by disabling the corresponding tree entirely (the LSQ remains fullanerations, we increase memory latency by 50% and add 2
size). The faulty search tree is avoided by disabling the backengcies to the misprediction penalty each time transistor area
way that uses the tree, as described in Section 4.1.3. decreases by a factor of two. We simulate 23 of the SPEC2000
4.8 Writeback benchmarks_using SimPoints [2_1]_ to_determ_ine the execution
) sample location and run for 100 million instructions. We leave out

Writeback modifies register state. Because the register fiRMMp galgel andgap because of simulation time. -
already uses multiple copies (e.g., 21264), the only additional ~Estimating each degraded configuration's probability as



required by YAT is more involved. Itis equal to the probability of Taple 1: System Parameters

a faulty circuit that results in the degraded configuration. The rel-

Table 2: Total areas

: - , o , issue width a and component
ative area of a circuit determines the probability of faults in the s 3636 relative areas
circuit, given an average fault density. To compute fault density, [ movay 2 Saselne Tom AR 96 Tt
we use ITRS’s Equation 1 which extrapolates allowable particles s mawan [z, 2 Rescue Tol Area |07 mn?
per wafer pass (PWP) from faults per mask (F) [24]. S is the criti- [5ranch prea. BKB hybrid, 1kB 4 e 120
cal defect size equal to half the minimum feature size. This equa- way BTB, 15 cycle o 1%
tion dictates the necessary improvement in fabrication technologyf ;{;pmd'm'on P o %
needed to keep yield rates constant. We use this equation ifiTcaches 64KB, 2 way, 32 B Tt backend 15%
reverse to compute faults per chip at a technology node but blocks, 2 cycle, 2 fp backend 21%
assume that PWP remains constant after a specific technolog port data cache 50 7%

. L2 cache 2Mb, 8 way, 64 B S

node. We vary the technology node at which PWP rates stop blocks, 15 cycle Chipkill 40%
improving. Preventing PWP from scaling causes faults per masKmemory fatency [[250 cycle

to scale as 1fsafter the technology node, where s is the feature — - 3 - )
size scaling factor. This trend is common [15, 27]. configuration given in Table 1. We remove this area from our area

The remaining task is to compute the relative areas of thB'0del. and include only the control/routing area as chipkill.
processor’s circuit blocks. Because area data from die photo- Because defects in the scan cells make the design untestable
graphs are available only at a coarse granularity and because W& need Fo count scan cell area as chipkill. To estlmate.thls area,
wish to reduce the number of required simulations by reduciny® compile and map our verilog modé components in the
the number of possible degraded configurations, we divide tHgMU standard cell library [11]. We then insert scan chains and
processor components into groups of fault equivalent compc?—bta'n the pre-layout area breakdown of the design (based on the
nents. A fault in any component in a group causes the entire gro@@€2 and number of each gate-level component used). The queue

to be disabled. Note that this grouping makes our results consett?9€ (LSQ and Q) contain a high proportion (25%) of scan cells
vative. because the queues themselves are included in the scan-chain.

The groups are defined as follows. The frontend is composéd™ond the remaining stages, scan cells account for 12% of the

of two groups. Each group decodes and renames two instructiof&e@- Correspondingly, for our fault model we count 25% of the

(the baseline width is four). A fault in one group halves the fron-SQ and 1Q as chipkill and 12% of the frontend, integer backend

tend bandwidth. A fault in both groups kills the processor. Thénd floating point backend as chipkill.

integer backend is composed of two groups. Each group has two Ve then scale the frontend and backend components to
integer ALUs, one integer multiplier/divider, and one memoryaccount forthe additional shift st.ages (including p|pellne latches).
port. The floating-point backend is modeled similarly, except each"oM our verilog model, we estimate these as a 2% increase for
group contains only one floating-point adder and one ﬂoatingt-he integer _and floating point bacl_«_ands and a 6% increase for the
point multiplier/divider. The two issue queues and the load/storfontend. Finally, we add an additional 5% area overhead to all
queue are independent. A fault in a queue’s segment halves t undant components to account for any additional area over-
queue size. head incurred by our tranformations.

We estimate the relative area of each group from the area Table 2 shows the resulting relative component area, total

model provided by HotSpot [25]. Each frontend group are&'®2 for Rescue, and total area for the baseline core with only
includes decode logic and a copy of the rename tables with haitan- We do not calculate component areas for the baseline core
the read ports (Section 4.4). Because rename tables are not uB§cause a faultin any part of the core has the same effect and dis-
ally large enough to justify using copies, and because copies m&pIes the core. .
incur some overhead, we conservatively assume that two reduced- 10 extrapolate for future technologies, we acknowledge that
ported copies consume 50% more area than the single fu");lje area of each core will decrease, as technology scales and
ported table. The integer backend group area includes half of tigMPS become common architectures. However, we assume that
functional unit area and half the integer register file. Because tHg€re Will be microarchitectural innovation which will add hard-
HotSpot area model already has two copies of the integer registéf® 0 the core. Consequently, the area of each core wil
file (from Alpha) [14], we do not increase area estimates for thd€crease each generation but not as fast’awe assume core
integer register file. We similarly estimate the floating-point backd"oWth at a steady pace so that a fixed percentage of new func-
end group area, but we do assume a 50% increase in floating polfgnality is added when the device area shrinks by half. We show
register file size due to implementing it as two reduced-port cog&Sults for different growth rates. Total area of all cores together
ies. For the two issue queues and load/store queues, we divide {fdthout defect-tolerance modifications, but with L1 caches)
respective areas between the halves of the queues. remains at 140mfas ITRS specifies [24].

We do not address branch prediction or the TLBs, so we add YSiNg the above estimates for area and the PWP-based model

these to chipkill. We also do not focus on caches because there 49 fault density, we determine random defect-limited yield using

other redundancy techniques available for the cache data arraigi.e negative binomial yield model as used by ITRS for all defect

Cacti 3.2 [22] reports the data array area to be 78% for the cacffe!dgeting through the end of the road map. The negative binomial
yield model extends the simple Poisson yield model by account-

PWPR, = PWR,_; x —gnz (EQ 1) ing for yield improvements due to clustering of faults. We extend
Fo_1 00 this model as described in [15] to calculate the distribution of pos-



sible chip configurations. For each possible working configuratypical superscalar processor as described in Table 1 (black bars)
tion, the model gives the probability of that configurationand Rescue (white bars). IPC degradation ranges from 0% (swim)
occurring. In the negative binomial models, clustering isto 10% (bzip) with the average degradation across all benchmarks
accounted for by averaging the expected yield results acrossaa4%. It is not necessarily the highest and lowest IPC benchmarks
mixing function whose parameter, alpha, specifies the amount ¢fiat are affected by modifications, but the benchmarks that are
clustering. We set alpha to be 2, as projected by ITRS. Becausgarticularly sensitive to issue queue size and selection policy.

we are interested in YAT instead of yield, we average the expected

value of YAT across the mixing function instead of the yield,6.3 YAT improvement over core sparing

resulting in Equation 2 and Equation 3. In these equations,

: - . . In thi ion, we di he aver rformance improve-
lambdais the fault density, anggmmais the gamma function. this section, we discuss the average performance improve

ment achieved by adding Rescue on top of simple core sparing
(CS) where faulty CPU cores in a CMP are disabled. We assume

6 Experimental Results that more cores will be added as technology scales. We first

6.1 ATPG results present throughpu; im_provem(_ants due to CS alone. We then show
how Rescue can significantly improve upon CS.
We use TetraMax to gen-taple 3: Scan Chain data We evaluate CS and Rescue by calculating yield-adjusted
erate basic scan patterns for throughput (YAT), where throughput is measured in IPC, for 23 of

both the baseline and Rescuge Base Rescue the SPEC2000 benchmarks individually. We normalize these

Table 3 lists the scan chain faults 111294 | 113490 YATSs relative to YAT with 100% yield and no degraded cores, and
length, the number of scaf g5 2768 3334 report the relative YAT averaged across all the benchmarks for 4
chains required to test the tw technology nodes between 90 and 18 nm and plot them in
designs, and the number q Figure 9. The hatched bars show YAT of chips with no redun-
cycles to scan in and apply all cycles || 5272449 5959645  dancy techniques. The white bars show additional YAT obtained
scan vectors. There are three by adding core sparing. The black bars show additional YAT
important observations that can be made from these data. (1) Thained with Rescue. We do not present results for individual
scan chain for Rescue is longer than the baseline design becalmsmchmarks because of space limitations and because they add lit-
cycle splitting has increased the number of pipeline registers. (2)e additional information.
ICI compliance has reduced the number of scan test patterns Recall from Section 5 that we assume that economic or phys-
required because each component can more efficiently be testiedl constraints will prevent PWP from improving, causing defect
in parallel than without ICI. (3) Fault isolation on Rescue requireglensity to increase. We show two scenarios: PWP stagnating at
only a 13% increase in testing time (cycles) over traditional defe®@0nm (Figure 9a), and scaling until 65nm and then stagnating
detection. (Figure 9b). Also recall that we assume that microarchitectural
Finally, to verify that the ATPG produced scan chains actuinnovations will contribute to core growth beyond the usual shrink
ally isolate faults in Rescue, we rename each register componedie to technology scaling. We assume a 20%, 30%, 40%, and
to reflect the ICI component that writes to it (ICI ensures there i§0% growth starting from one core per chip at the 90nm node, and
only one). We randomly insert 1000 faults from each of the folfrom two cores per chip at the 65nm node. The core complexity
lowing stages: fetch, decode, rename, issue, execute and memdrgs grown steadily in the past. We envision that the growth will
We leave out register read, writeback and commit because they dontinue. We choose 20-50% growth based on the fact that (1)
not contain significant logic other than RAM tables. The faultadding SMT to a superscalar pipeline results in 24% growth [13]
simulator, TetraMax, makes each fault active, one at a time, arahd the reasoning that adding SMT is a relatively modest change
simulates the application of all generated test patterns. TetraMand (2) we use only a 4-wide core while current machines are
reports each failing bit position in the scan-out state, and keepsafready 6-wide and greater. Figure 9 shows four bars for each
table of each cell's name and position. We access this table amdde (labeled a-d), each representing YAT for one growth rate at
verify that the register name matches the name of the ICI compdhat node. The number of cores fabricated (maximum number of
nent where the fault was inserted. All 6000 faults were isolatefunctional cores) for each growth rate at each node is also given in
correctly. the table under the bars for each node.

g
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6.2 IPC degradation 25

Enforcing ICI eliminates some communication pathways, 2
and delays others across multiple cycles. Consequently, enforcir(lgl 5
ICI comes at some cost to IPC. Figure 8 shows IPC results fora ™

. 1
o’ |“‘1e7u'd| (EQ2)
a 0.5
AT (a)
0

YAT = f: YAE()

YATE() = 3 Yield()« IPC, (EQ3)
cfrc where Cis all _
possible configurations Figure 8: IPC Degradation




From this figure, we see three trends in the YAT results fomicroarchitectural innovation.
CS. First, as technology scales, CS’s improvements increase.
With no defect tolerance of any kind, a single fault makes th& Related Work
entire chip unusable. With CS, each fault disables at most one
core on the chip; the remaining cores still contribute to the chip  [23] proposed using inherent superscalar redundancy to
throughput. As devices shrink, each core becomes more Susce'yﬁ]prove yield, and evaluated results with YAT. The paper assumes
ble to defects, but the number of cores per chip increases. withaglvances in logic BIST without describing fault isolation and that
greater number of cores, the loss of a core leads to a smaller p&ko-microarchitectural-block-level redundancy can be exposed
of the chip being disabled, and hence greater improvement oviithout discussing microarchitectural modifications or cycle time
the baseline. penalties to support the intricate indirection required. We focus on
Second, comparing Figure 9 a and b, we see that if proceg@,icroarchitectural-block-level redundancy which needs less indi-
improvements allow defect densities to stagnate only at as late E&Ction. We show how current scan test techniques can be used for
65nm, the opportunity for redundancy techniques such as CS (aff/lt isolation at this granularity.
Rescue) are reduced. Goldstein proposed FPGA-based techniques as a solution to
Finally, although CS is better than no sparing, average chiFefeCt tolerance for molecular electronics with high fault densities
throughput still significantly decreases at each nadreder high  [7.8]- Although FPGAs can provide good defect tolerance [16],
fault densities, disabling entire cores when most of the compdurrent FPGA implementations have significant cycle time and
nents are still fault-free costs significant throughput. complexity limitations [9]. We exploit architectural-block granu-
We next consider improvements when Rescue is applied darity where the use of gate arrays is not necessary. Teramac [10]
top of core sparing. At near-term technology nodes, low fault deris another FPGA-based approach to achieve defect tolerance. The
sities mean little opportunity for either redundancy techniquéonfigurability of Teramac comes from a fat tree interconnect.
(Rescue or CS). As fault density increases, more cores in CS apdich high-connectivity interconnect may not scale to nanoscale
disabled. In Rescue, only some of those cores are disabl&fegration. We exploit the existing redundancy and connectivity
because of faults in the non-redundant chipkill area. Most fault Provide defect tolerance without relying on special intercon-
affect redundant components. In these cases, faults may redut@ets. Another work [18] evaluates defect-tolerance techniques
the per-core IPC, but the core still contributes to chip throughpuﬁ”d concludes that reconfiguration combined with redundancy of
Similar to CS, Rescue also achieves better improvements as tedhe order of 18-10°is needed to cope with high defect rates. We
nology scales. PWP stagnating at the 90nm node with high coRfOPose to exploit the existing redundancy in processor cores
growth (50%), by the 32nm node Rescue improves upon CS pyithout needing such high redundancy.
25% while at the 18nm node Rescue improves upon CS by an [2] proposes self-healing arrays as an alternative to BIST
average of 40%. With medium core growth (30%), at the 18nn¥ith repair that detects and avoids defective entries in RAM
node Rescue improves an average of 22% over CS, and at I&{ays at run-time. [2] applies their techniques to the BTB and
growth (20%) Rescue still improves upon CS by 13%. With PwpRUU. Self-healing arrays could be used along with Rescue to
stagnating at the 65nm node, Rescue is still able to improve upgtigment the coverage of Rescue. Self-healing arrays could pro-
CS by 8% for medium core growth (30%), and 14% for highvide coverage of the BTB and active list structures that we cur-
growth (50%) at the 18nm node. rently do not cover, and allow errors in the entries of a register file
At each node, Rescue shows greater improvement und@f rename table copy to be tolerated without disabling the entire
larger core growth. We see this trend because under larger cdy@Py as is currently required by Rescue.
growth, the chip has fewer cores at each node. Scaling from 1 core There are too many papers to list that address testing and
at the 90nm node we reach 11, 7, 5, 4 cores for core growths EFT techniques for modern non-defect-tolerant processors.
20%, 30%, 40% and 50%, respectively. With fewer cores, eaclnstead we refer the reader to [12, 5] for a thorough survey of
disabled core disables a larger portion of the chip. Because Regodern testing and DFT.
cue avoids disabling entire cores, when there are fewer cores Res- )
cue shows better improvement over CS. Thus, Rescue preverits Conclusions

faults from limiting core growth, and encourages continued e . . .
9 9 g9 As defect densities increase with scaling, exploiting core-

’\0\10(‘ e D) level redundancy, as done in core sparing, is not enough to main-
5’: 8d ™ NN tain yield. There is a need to exploit finer-grain redundancy at the
< 6 IN kQQ microarchitectural-block level. To address this need, faults must
B HN NN N be detected with enough precision to isolate faulty microarchitec-
N 40 N NN N tural blocks.
E 2( :Q t: ::::Q Q\ R We defined intra-cycle logic independence (ICl) as the condi-
S I N N | NNN \Q i\\ tion needed for conventional scan test to isolate faults quickly to
¢ a%((:) 65 ez‘l’echnb'leo Nogg’ (nm) 32 18 the required precision. We showed that some pipeline stgges inan
T T ~ 5 1lgy > 5 3 out-of-order multl-lssue processor are already ICI-cor_nphant. We
SM30% T T 7z 7 i ) TO proposed logic transformations for the non-compliant stages
S[q40% I T 3 5 2 4 7 resulting in Rescue, the first microarchitecture to consider test-
o{q>0% 1 1 2 4 2 4 6 ability and defect isolation. We showed that faulty microarchitec-

Figure 9: YAT improvement from redundancy



tural blocks can be mapped-out without much overhead. [12] N. Jha and S. Guptdesting of Digital System€ambridge Uni-
We builta verilog modebf Rescue, and inserted 6000 faults,  versity Press, 2003.
all of which were isolated using just conventional scan chains. WE-3] R. Kalla, B. Sinharoy, and J. Tendler. Simultaneous multi-thread-
showed that our ICI transformations reduce IPC by only 4% on  ing implementation in POWERS. lProceedings of Fifteenth
average for SPEC2000 programs. We also evaluated performance Symposium of IEEE Hot Chipugust 2003.
and yield together through yield-adjusted throughput (YAT) [23]’[14] R..E. Kessler, E.J. M_(:Lellan, and DA Webb. The alpha_ 21264
where throughput is measured in instructions per cycle. Our simu- microprocessor architecture. I?roceedlngs of the International
lations showed that Rescue improves average YAT over CP Conference on Computer Desjgbctober 19_98' S
. o o . |-t'?l,s] I. Koren and Z. Koren. Defect tolerance in visi circuits: tech-
sparing by 12% and 22% at 32nm and 18nm, respectively. O niques and yield analysi®roceedings of the IEEB6(9):1819—
improvements increase both as technology scales and under larger 1838 1998 ' '
core growth, preventing faults from limiting the performance ben; ' '

: . . : . ) [16] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. Low-over-
efits of technology scaling and microarchitectural innovation. head fault-tolerant fpga systemeEEE Transactions on Very

Large Scale Integration (VLSI) Systeré212—221, 1998.
ACkn0W|edgmentS [17] R. Leveugle, Z. Koren, I. Koren, G. Saucier, and N. Wehn. The

) . hyeti defect tolerant microprocessor: A practical experiment and
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Hill for their comments. We would also like to thank Purdue Uni-  43(g).880-891, 1994.

versity Rosen Center for Advanced Computing for providing1g] K. Nikolic, A. Sadek, and M. Forshaw. Fault-tolerant techniques
technical support and maintenance of the computation resources  for nanocomputerdlanotechnologyl3:357—362, 2002.
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