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Abstract and in the number of hosts on the Internet. Studies have shown that

A truly scalable IP-lookup scheme must address five challengestld traffic is doubling almost every three months [18] and the num-
scalability, namely: routing-table size, lookup throughput, impleber of hosts is tripling every two years [5]. These trends translate
mentation cost, power dissipation, and routing-table update codfit0 two major problems for IP-lookup mechanisms in core routers.
Though several IP-lookup schemes have been proposed in the p&&gL routers will soon need to look up their routing tables at t_h(_e rate
none of them do well in all the five scalability requirements. PrevRf about 2 ns per packet (for a 160 Gbps line-rate and minimum
ous schemes pipeline tries by mapping trie levels to pipeline stagBacket size of 40 bytes). Second, routers will have to search through
We make the fundamental observation that because this mapping large number of prefixes in their routing tables (e.g., routers today
static and oblivious of the prefix distribution, the schemes do n pld a few hundred thousands of prefixes).

scale well when worst-case prefix distributions are considered. This While the demand has been increasing, the supply has not been
paper is the first to meet all the five requirements in the worst cas®@ling up. The key component in IP-lookup is the routing-table
We propose scalable dynamic pipelining (SDP) which includes thrémory which is used to search through the prefixes to locate the
key innovations: (1) We map trie nodes to pipeline stages based ¥ that_matches the_lncomln_g packet. The IP-lookup scheme ha_s to
the node height. Because the node height is directly determinedSfisfy five key scaling requirements: (1) Because memory size
the prefix distribution, the node height succinctly provides sufficieft€ctly affects system cost, lookup speed and power dissipation, the
information about the distribution. Our mapping enables us to pro@t@l memory required should grow slowly with the number of pre-

a worst-case per-stage memory bound which is significantly tight&¥es- IP-lookup should scale well in memory size and be efficient in
than those of previous schemes. (2) We exploit our mapping to pRiPTing the ever-increasing number of preflxes._ 2) IP-_Iookup must
pose a novel scheme for incremental route-updates. In our schemeegle in throughput, forwarding packets at increasingly higher
route-update requires exactly and only one write dispatched into tRB€€dS to keep up with the ever-increasing line-rates. (3) To keep the
pipeline. This route-update cost is obviously the optimum and ofPmplexity of heat removal and the cost of cooling reasonable,
scheme achieves the optimum in the worst case. (3) We achieve se@yer dissipation of IP-lookup must scale well. The power should
ability in throughput by simultaneously pipelining at the data-struc@"oW slowly with line-rates and number of prefixes, and avoid
ture level and the hardware level. SDP naturally scales in power aRcOming  prohibitive. (4) Because a routing table is typically
implementation cost. We not only present a theoretical analysis piftavailable for lookups during the time that it is being updated,
also evaluate SDP and a number of previous schemes using detaf@@!ying updates should be quick and efficient. Though updates may
hardware simulation. Compared to previous schemes, we show thgtinfrequent, a router with slow updates will require partial or full

SDP is the only scheme that scales well in all the five requiremengé!Plication of routing-table memory in order to avoid dropping an
increasing number of packets as line-rates grow. Therefore, IP-

Categories & Subject Descriptors lookup must allow simple, incremental, and fast updates indepen-
C.2.6 [nternetworking ]: Routers dent of the routing table size. (5) IP-lookup must scale well in
implementation cost and complexity to remain feasible for future
General Terms table sizes and line-rates. Accordingly, the chip area should grow
Algorithms, Design, Performance slowly with line-rates and number of prefixes. Because routerst
provide worst-case guarantees for all the five aspects, meeting these
Keywords requirements is especially hard.

IP-lookup, Scalable, Pipelined, Tries, Longest Prefix Matching We propose an IP-lookup mechanism which meets all the five
scalability requirements in the worst case. The problem of scalable
1 Introduction IP lookup is not new; there have been several papers on the topic
[1][3][4][11][13][14][15][17][19] which may lead one to believe
The pervasive use of the Internet and advances in fiber opti¢t the problem is well-researched, and satisfactorily solved. How-
enabling high line-rates are resulting in an explosion in total traffiever, all previous schemes satisénly two or threeof the require-
ments bunot all five The unsatisfied requirements will likely render
the schemes infeasible in the future. Meeting all the five require-
personal or classroom use is granted without fee provided that copies epts with yvorst-case guarantees for the first time '.S the key 90””"
not made or distributed for profit or commercial advantage and that copié%uuon of this paper. We not only present a theoretical analysis but
bear this notice and the full citation on the first page. To copy otherwise, diISO evaluate our scheme and a number of previous schemes using
republish, to post on servers or to redistribute to lists, requires prior specifdetailed hardware simulation.
permission and/or a fee. Previous IP-lookup schemes can be classified into two catego-
SIGCOMM'05 August 21-26, 2005, Philadelphia, Pennsylvania, USA. ries: TCAMs and trie-based. We list their shortcomings here and
Copyright ACM 1-59593-009-4/05/0008...$5.00. explain the detailed reasons for the shortcomings in Sections 3.1,
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3.2, and 4. TCAMs do not scale well in power and implementatiotme prefix. If a subtree contains only one prefix, every node in the
cost at high line-rates. Tries scale well in power but they do not scadabtree has only one child, and the traversal goes through a string of
well in throughput if they are not pipelined. Two approaches fasuch one-child nodes. Such strings artificially increase the height of
pipelining tries are hardware-level pipelining (HLP) [15], and datathe subtree’s nodes, distorting the correlation. To remove this distor-
structure-level pipelining (DLP) [1]. HLP pipelines the routing-tablgion, we propose a loss-less adaptation of path compression pro-
memory at the hardware level. However, HLP does not scale welljiosed by PATRICIA tries [9]. We collapse each string of one-child
power and implementation cost because it requires extremely deeples into gump node which examines as many bits as the string
pipelines at high line-rates. DLP pipelines the trie at the data strdength. Thus jump nodes restore the node’s true height.

ture level by placing each trie level in a different memory, so that Upon route updates, the nodes whose heights are affected need to
different packets simultaneously probe different levels. Becaube migrated to the correct stage based on their new height. It may
DLP does not require HLP's deep hardware pipelining, DLP scalssem that our dynamic mapping would incur high route-update cost
well in power and implementation cost. due to such migrations. Surprisingly, while our height-to-stage map-

However, DLP has three shortcomings: (1) DLP does not scghéng causes this problem we exploit the very same mapping to solve
well in size due to large worst-case memory. (2) DLP’s route-updatiee problem via a novel scheme for incremental route-updates. In
cost can be mad@®(1) by using Tree Bitmap [4], if memory man- our scheme, a route-update requires exactly and only one write dis-
agement overhead is ignored. However, Tree Bitmap almost doubjegched into the pipeline (at every stage at most one memory write is
the worst-case memory size due to its inability to use leaf-pushindpne). This route-update cost is obviously the optimum for any pipe-
and requires over 100 memory accesses, in the worst case, fdmad scheme, and our scheme achieves the optimum in the worst
route-update if memory management overhead is considered. ¢8pe. In addition, our memory management overhead is exactly one
DLP scales for throughput by partitioning the trie into pipelin@peration. Though Tree Bitmap’s [4] route-update cost including
stages. However, a trie cannot be partitioned into more stages tima@mory management (1), the constant factor is'@9est stride,.
its total height. Hence, DLP’s scalability in throughput is limited byl00; whereas SDP’s cost is exactly 1. SDP employs leaf-pushing
the maximum height of the trie (i.e., the maximum prefix lengthgnd therefore, does not incur the size and throughput penalties of
which is constant. Tree Bitmap. The route-update scheme is our second innovation

DLP pipelines the trie by mapping a specific prefix bit (i.e., ashich addresses DLP’s second shortcoming of scalability in route-
specific trie level), to a specific pipeline stage (e.g., th¥ b is update cost.
mapped to the™® stage). We make the fundamental observation that To attack DLP’s third shortcoming, we make the key observation
DLP incurs its first shortcoming because this mapping is completdlyat each stage of a data-structure pipeline can be hardware-pipe-
static and oblivious of the prefix distribution. For instance, a tridined further (similar to [15]). We hardware-pipeline each SDP stage
node examining the #2bit remains mapped to the same stage irreéinto adifferentnumber of hardware stages as per the desired access
spective of changes to the distribution caused by route updateste (e.g., SDP stage 2 has three hardware stages, SDP stage 3 has
Depending on the distribution, as many nodes as all the prefixes niag hardware stages, and so on). Once we internally pipeline the
fall into the same level (or equivalently, same stage). Unfortunateljata-structure stages at the hardware level, the throughput can con-
providing worst-case guarantees fmy prefix distribution implies tinue to scale irrespective of the maximum height of the trie (i.e., the
that most stages have to be large enough to hold as many nodemagsimum prefix length). By combining hardware-level and data-
all the prefixes. Thus the static mapping’s obliviousness of the preBkucture-level pipelining, we avoid [15]'s high implementation cost
distribution results in large per-stage memory which limits scalabi&nd [1]'s lack of throughput scalability. This combining is our third
ity in size and throughput. innovation.

To solve DLP’s problems, we proposealable dynamic pipelin- Using hardware simulation, we show that for 1 million prefixes
ing (SDP)which takes prefix distribution into consideration. Weat 160 Gbps line-rate, TCAM requires 6 MB, dissipates 174 W, and
map a trie node to its pipeline stage based on the node height (etakes up 8.9 c?n(chip area is a measure of implementation cost);
nodes of height 3 are mapped to tH8 Stage). Because the nodeHLP requires 75 MB, dissipates 146 W, and takes up more than 200
height is directly determined by the prefix distribution, the noden?; DLP requires 88 MB, dissipates 10 W, takes up 27 @nd
height succinctly provides sufficient information about the distribufails to work beyond 40 Gbps; In contrast, SDP requires only 22
tion. Node heights change when the prefix distribution changes upliB, dissipates 22 W, and takes up 14.9%cifhus, SDP achieves the
route updates, causing our mapping tadgeamic In contrast to the four goals of scalability in size, throughput, power and implementa-
node height, the node level provides no information about the disttien cost. SDP’s route-update cost, which is the remaining goal, is
bution. This dichotomy exists because the level is measured from the theoretical minimum of one write.
root whose position remains fixed whereas the height is measuredThe rest of the paper is organized as follows: In Section 2 we
from the leaves whose positions reflect the distribution. For instangepvide some background on IP-lookup mechanisms. We describe
a trie node at height 3 is guaranteed to have at least three prefixethim details of HLP, DLP and SDP in Section 3. In Section 4 we
its subtree as long as the subtree uses path compression to addrésiefly review TCAM-based schemes. We describe our evaluation
peculiar feature of tries. We exploit this guarantee to prove a signifirethodology in Section 5. In Section 6 we present our results, and
cantly tighter bound on the worst-case per-stage memory than tfiaglly, we conclude in Section 7.
of DLP. The height-to-stage mapping is our first innovation which
addresses DLP's first shortcoming of scalability in size. 2 Background

The above-mentioned peculiar feature of tries distorts the corre-
lation between node height and distribution: In general, an internal Because we design our IP-lookup scheme based on tries, we first
trie node examines a few prefix bits (e.g., 4). Depending on thesent some background details on IP-lookup and trie-based
length of a given prefix, many internal nodes are traversed to matg¢hemes.



00* P1
o* P1 01* P1
@ |1x |po (b) 0* | P1 10+ | P2
101*| P3 B | B2 11x | P2
101%] P3 1010*| P3
1011*| P3
Fig. 1. (a) The prefixes in a routing table (b) a trie constructed
from the given prefixes (@) (b)

The IP-lookup mechanism accepts an IP-address, performs Eig. 2. (a) The routing table after controlled prefix expansion (b)
search-and-match through a routing table, and upon a match, returns 1 he 2-bit stride trie constructed from the table in (a)
the appropriate link identifier. The IP-lookup task is complicated by

a number of requirements: (1) To avoid denial-of-service attacks and " Figure 2(a), prefix P1 has a length of only one bit. If we wish
instabilities in the network [7], a routenustsustain a worst-case |P- (© Stride 2 bits at the root, P1 must be expanded into all the 2-bit

lookup throughput that can handle minimum sized packets streaffmpinations implied by the original prefix P1. The process of

ing in at full line-rate. (2) Given the number of prefixes to design fo'(?xpanding prefixes in order to' align th_em with stride boundaries is
the IP-lookup mechanismustprovide enough memory to hold all ¢allédcontrolied prefix expansiofi7]. Figure 2(b) shows the rout-

the prefixes regardless of their distribution. (3) Because of wildcatd@ table of Figure 2(a) after controlled prefix expansion for a 2-bit

bits in prefixes, a given destination IP-address may match with m@tiide at each node. _ _
tiple prefixes. IP routing protocols require that the lookup must JUnfortunately, controlled prefix expansion causes a non-deter-
choose the prefix with the longest match. ministic increase in the routing-table size due to replication of point-

ers and prefixes, and consequently increases the total memory space.
2.1 Trie-Based IP-lookup Schemes The size of the routing-table in Figure 2(b) is twice that of the table
in Figure 2(a) for the same original number of prefixes. If the under-

One of the approaches to matching a destination IP-addrd¥g 1-bit trie is sparse, controlled prefix expansion will inadvert-
against a set of given prefixes is to match it one bit at a time, narro@tly inflate the data structure’s size. Striding multiple bits also
ing the field of search with each successive bitria is a tree-like aggravates the route-update cost in leaf-pushed tries.
data-structure designed specifically for such bit-by-bit searching. In the example we have presented, each internal node has the
For example, given the set of prefixes shown in Figure 1(a) we c&ame stride. However, using the same stride is neither necessary nor
construct the trie shown in Figure 1(b). Each leaf contains the longptimal in terms of storage space or lookup delgriable stride
est matching prefix corresponding to the bits encountered along tHes andLevel Compresse(L.C) tries [11] determine the stride at
path from the root to that leaf. We perform an IP-lookup by startingach node in accordance with whether the trie is sparse or dense at
at the root and traversing down the trie. At any internal node of lev#at particular location. In contrast, compression schemed likea
k (root being level 0), th&!" bit (bit 0 being the most significant) in [3] and Tree Bitmap[4] maintain a fixed stride trie and compress
the destination IP-address determines whether to follow the I&way the redundant replication instead. Tree Bitmap may be addi-
child or the right child. The trie traversal eventually ends at a leaftionally extended to support variable strides. However, for a worst-

Starting from the shaded node in Figure 1(b), any path that cor@ase prefix distribution, variable striding and compression-based
sponds to a mismatch with prefix P3 must be terminated with a le3ghemes do not benefit the total memory size much, as we discuss in
containing prefix P2 (i.e., the longest prefix that has already be&gction 6.
entirely matched). This method of constructing the trie is cdbed . . .
pushing Unfortunately, updating a leaf-pushed trie may be compl@-3 The Need for Pipelined Tries

cated (e.g., if P2 is deleted or modified). , ) . .
It is possible to construct tries without leaf pushing by placin Tomorrow’s routers will have to perform IP-lookups into routing

prefix information inside internal nodes. However, such schemiles of hundreds of thousands of prefixes, at the rate of a few nano-

almost double the trie node size, resulting in considerably larg&#cOnds per lookup. With such a large number of prefixes, trie-based

worst-case memory. The bandwidth demand on the memory is aRghemes require such a large amount of worst-case memory that per-

increased as the lookup process must read both a prefix and poif@6Ming even one memory access may take longer than the packet

at each node. In addition, as we traverse down the trie, we mif&er-arrival time. The problem is aggravated by the fact that trie-

explicitly check for and remember the longest matching prefix @@sed schemes perform multiple memory accesses for one lookup.
each internal node. To meet the demand for high lookup rates under such constraints, we

obviously need to pipeline IP lookup so that performing multiple
2.2 Multiple-bit Stride Tries lookups in parallel delivers a net lookup rate that meets the demand.

When the IP-lookup is not pipelined in any manner, the tota3 Pipelined and Scalable IP-Lookup
delay for one IP-lookup determines the maximum lookup rate. The
worst-case delay for one lookup is proportional to the trie depth. IP- The observation that pipelining can be used to solve the scalabil-
lookup rate can be improved by reducing the trie depth which in tutfy Problem of IP-lookup is not new. Previous proposals [15] [1]
can be reduced bstriding more than one bit at each internal node. if/ave addressed this problem with some form of pipelining. [15] can
the stride is 2 bits at each internal node, the worst case depth of ffsthought of as a hardware-level pipelined (HLP) scheme, whereas

trie is reduced by a factor of 2 (i.e., 16), and so on. [1] can be thought of as a data-structure-level pipelined (DLP)
scheme.
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Fig. 3. The hardware steps involved in a memory access

We describe these schemes to explain why they do not scale well
and then explain our scheme and how it scales.

3.1 Hardware-Level Pipelining Fig. 4. The 1-bit trie corresponding to the worst-case prefix
distribution.N is the number of prefixesy is the length of an IP-

We can view the IP-lookup processlasiemory accesses, where address in bits

kis the number of levels in the multi-bit trie. For a given line-rate Wevel is placed in a separate memory stage, DLP can overlap the
know the required IP-lookup rate, say one lookup evesgconds. |,y ns for multiple packets by accessing different levels (in differ-

For the given number of prefixes we can determine the total memQ@y memories) for different packets at the same time. Thus, DLP dis-
required by the trie, and hena the total delay of one memory o iates the lookup rate from the total delay of one lookup. Because

access. In order. to meet the_ demanded lOOKI_Jp rate, HLP [15] hafﬂ:P does not rely on expensive memory technologies or deep hard-
ware-level pipelines the entire memory holding the trie iktd/t a6 pipelining, it scales well in power and implementation cost.

stag(_as. . ) There are, however, three remaining challenges that must be
Figure 3 shows, at a high level, the hardware steps involved Jyqressed in order to make DLP truly scalable, namely: scalability
accessing a memory. Memory is typically organized as a two-dimeg- e mory size, in route-update cost, and in lookup throughp.
sional array. Thelecodestep uses higher-order bits of the+y-bit
memory address to identify which of th& @ws is being accessed. 3 2 1 DLP’s Scalability Problems in Memory Size
Thememory array accesstep performs the actual access of the cho-  The total memory requirement of DLP is the sum of the memory
sen memory row. And thenultiplex step selects the desired wordsjze of each stage. In order to provide worst-case guarantees, the
from the 2 words in the row and feeds it to the output. To optimizgpace provided at each memory stage should be sufficierrfpr
access times, circuit designers subdivide the memory array idefix distribution. Because DLP assigns each node to a stage based
many subarrays. Using the subarrays reduces memory (sub)ag@Myhich trie level the node belongs to (i.e., which bit each node
access time but increases decode and multiplex times for an ovegglhmines), the worst-case per-stage memory size is determined by
reduction in access time. The decode and multiplex steps essentigdly worst-case node count per level of the trie. It is important to note
look like decision trees and they can be pipelined into smaller stagg the well-known average-case properties of randomly-built trees
by splicing up these trees. The memory-array-access step consisig@f not relevant here because we are concerned with worst-case
reading from (writing to) the memory cells to (from) bitline Wires-guarantees.
Because dgsigning the bitI{ne wirgs to carry multiple values.is hard, In the ensuing analysis of worst-case per-stage memory size for
for all practical purposes this step is atomic and cannot be pipelings\.p, we consider a 1-bit trie for simplicity. Striding multiple bits
Therefore, even if decode and multiplex steps are pipelined ing@ses inflation in memory size due to controlled prefix expansion,
many fast stages, the throughput would be limited by the delay ghq will not lower the worst-case bound. As such, our bound applies
the memory-array-access step. The time taken to perform thismultibit tries as well.
atomic step is proportional to the size of the memory array.  |magine a prefix distribution in which all prefixes have length
_ To reduce the delay of the atomic step, HLP [15] aggressively; (w peing the length of an IP-address), and the fagN bits of
divides the memory array into a larger number of smaller subarrays,ch prefix are unigue (i.e., the prefixes covemilalues that the
Such division does not come for free, however. It makes the decoglgt jog,N bits can take). The 1-bit trie corresponding to this prefix
and multiplex complicated, and does not scale well in terms @fstribution is shown in Figure 4. To establish that this trie, indeed,
power dissipation and implementation cost. As we show in thepresents the worst-case memory requirement at each level, we
experimental evaluation, such aggressive pipelining leads to prohigjake two observations: (1) In a 1-bit trie, each node can have two
tive chip area (implying high implementation cost) and power dissihildren, therefore no prefix distribution can have more th&n 2
pation. Therefore, HLP is not a scalable solution. nodes at thé&" level. (2) There are onli prefixes therefore no level
can have more thahl nodes. Thus we see that the 1-bit trie in
Figure 4 does in fact represent the worst-case memory requirement
per level. Accounting only for the rectangular bottom-half of the trie

; N in Fi 4, hat th I i his trie i
memory, then the bandwidth demanded by that memolytimes in Figure 4, we see that the total memory required by this trie is

. eater tharN * (W-log,N) nodes. It is important to note that the
the lookup rate needed. To solve this problem, DLP [1] places ea_lgehctangular part is not due to leaf-pushing, rather it is a result of the

level of the trie in a different memory, so that each memory i ecific prefix distribution. For a million prefixes DLP’s memory

accessed only once per packet lookup. Therefore, the bandwidth § f%fuirement exceeds 80 MB, in contrast the storage needed for just

?nﬁzpr}?:rmory must individually supply does notincur the faCtd{'Of'the prefixes is only 6 MB, illustrating DLP’s scalability problem in

. . emory size. Note that, though a variable-stride trie may reduce
Because DLP partitions the trie data-structure such that eac y 9 y

3.2 Data-Structure-Level Pipelining

We have seen that if the entikelevel trie resides in one large



total space in the average case, for the prefix distribution shown in [« P1
Figure 4 its worst-case memory size would be no better. (a) |00* P2
000* | P3

3.2.2 DLP’s Scalability Problems in Route-update Cost 1* P4
Because DLP uses a multibit trie with leaf pushing, a single 1010*| P5

route-update may affect an entire subtree which has arbitrarily many
nodes. [1] proposes a number of optimizations for applying fagt)
incremental route-updates in a pipelined fashion. However, all the
optimizations are heuristics which improve only the average-cas
route-update cost. The worst-case route-update cost of DLP remaipg P1
unbounded even with the optimizations.
Techniques like Tree Bitmap [4] can be used to achievei)

bound on the route-update cost. By avoiding leaf-pushing Tree Bit-
map ensures that an update needs to modify only one trie nod]g.

- . ig. 5. (a) A table of prefixes (b) The corresponding 1-bit trie (c)
achieving theO(1) bound. However, because Tree Bitmap cannot’ ~pa 1 it trie with P3 deleted (d) The trie with jump nodes

use leaf-pushing, it almost doubles the size of each trie node (see

Section 2.1). [4] explains an implementation to avoid the doublingqirement. We observe that previous schemes like [1] pipeline the
of the ngde size, where _only the pointers are store_d in the_ nodes g by mapping a specific level of the trie to a specific stage. This
the prefixes are stored in a parallel copy of the trie. Obviously, thgapping is strictlystatic and oblivious to the prefix distribution.
second copy must also be maintained in fast memory (as it must 8gnsjder, for example, the set of prefixes shown in Figure 5 (a), and
accessed at IE-Iookup ra_ltes), aImc_)st doubling the_total memory siges corresponding 1-bit trie in Figure 5 (b). The node labeXéslin
Further, the trie nodes in Tree Bitmap have variable sizes dué i, second level of the trie and hence placed in the second stage of
variation in strides and compressions. Route-updates result gy pipeline. Imagine that we remove prefix P3 from the table, the
repeated allocations and deallocations of such variable sizes, cadgyiting trie is shown in Figure 5 (c). Even though the structure and
ing fragmentation and under-utilization of memory. This fragmentgpo memory requirements of the subtree roote agve changed

tion necessitates a complex memory management scheme dJpfificantly, X remains mapped to the second stage of the pipeline,
compaction [4][14], which must be invoked whenever memory for gyjivious of this change.

new node is allocated. The memory accesses for the compactionye make the key observation that while tlegel of X does not

appear as an overhead in the route-update cost. We four_1d thatéhﬁnge, theheightof X does change in response to the new prefix
worst-case memory management overhead of Tree Bitmap [fkyipution (height of leaves being zero). This dichotomy exists
exceeds 100 memory accesses for a single route-update. ([4] repgHSause the height is measured from the leaves whose positions
1852 memory accesses based on an analysis which is more cong&fact the distribution, whereas the level is measured from the root
vative than ours.) Though a pipelined update scheme such as [}ose position remains fixed. Specifically, the heighd 2 in
could be leveraged to reduce the effective compaction cost, sygfyre 5 (b) and becomes 1 in Figure 5 (c). We see that the height of
reduction would be sensitive to the distribution of the memory js correlated to the number of prefixes in the subtree rooted at
accesses across the pipeline stages. In the worst case there mayigse the node height is directly determined by the prefix distri-
no reduction at all. Hence, we see that previous schemes do not sgigsn it succinctly provides information regarding the distribution
well in worst-case route-update cost. which is sufficient for achieving a tight worst-case bound on mem-

, A ory. However, there is one peculiar feature of tries which can distort
3.2.3 DLP's Non-Scalability in Throughput the correlation between node height and prefix distribution. We first

Because the plpellne’§ throughput_ls I|m|teq by the slt_)vyegt StaQn our attention to this distorting feature before presenting an anal-
DLP proposes a dynamic programming algorithm to minimize the.ic ¢ \vorst-case per-stage memory size for SDP.
size of the largest stage. This algorithm takes as inputs a prefix dis-

tribution and the number of levels in a fixed-stride trie, and retums 3 1 Jump Nodes
the strides for each level such that the size of the largest level is min- 1o way a trie is constructed, an internal node that stridits

imized. The size of the largest stage can be lowered by increasifgst have an array of2ointers, one for each possible child. Often
the number of levels in the trie (i.e., reducing the stride at eagRere may be only one child and the remaining pointers are null (leaf
level). In the limit, even if ea_ch_level strides only one blt', there_c_aﬁushing may eventually insert a longest matching leaf in place of
be only as many levels as bits in an IP-address (32). With 1 milliagych nylis). In Figure 5 (a) and (b) the prefix distribution is such that
prefixes, the 1-bit trie shown in Figure 4, has a largest memory sta@&esyits in a long string of one-child nodes (ignoring the leaf-
of 5 MB which, realistically speaking, may not be accessed _fas_'tﬁ_ﬁshed copies of P4). The height of nodis 3, though the number
than 6 ns or so. When the demanded lookup-rate exceeds this “rBFunique prefixes in the subtree rootedyss just 2. The presence
DLP does not work. For truly scalable throughput the depth of thg e string of one-child nodes artificially increases the height of
pipeline should not be limited by the number of bits in an IP-addreggcause the correlation becomes distorted in such a case, the height
(32). of Y does not faithfully inform us about the underlying prefix distri-
bution.

To address this problem we collapse strings of one-child nodes
into a singlgump nodeWe call it a jump node because it allows the

To address the problems of IP-lookup scalability, we propo§gokup to jump over the string of one-child nodes. Jump nodes are

scalable dynaml_c_ p|pe||r_1|ng (SDPWe begin by taking a closer similar toskip nodesn [4] and can be thought of as an adaptation of
look at why traditional tries have such a large worst-case memory

P4

O
P5 P4 P3 P2 pa

3.3 Scalable Dynamic Pipelining
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Fig. 6. (a) A binary search tree with leaves (b) memory size of a trie with jump-nodes for the worst-case prefix distribution of Figure 4,
compared to size of 1-bit trie (c) The space taken at various levels by a trie with jump-nodes, for various prefix dgstribution

path compression in PATRICIA tries [9]. A jump node collapseslowever, it is important to realize that bounding the total memory
strings usindoss-less compressidiy storing and matching all the does not bound the per-stage memory. Figure 6(b) shows the total
jump bits. In contrast, PATRICIA tries use a formloEsy compres- memory required by amnpipelinedtrie with jump nodes (shaded
sion that examines only the first bit out of the string being comtriangular region) compared to the total memory required for a 1-bit
pressed. trie (the containing boundary), for the worst-case prefix distribution
In addition to pointers, a jump node also storesjtimep bits the  shown in Figure 4. However, as Figure 6(c) illustrates, when the trie
string of bits corresponding to the path collapsed. A jump node neidpipelined by partitioning it across stages, the per-stage memory
store only two pointers, one for the path that matches the jump bitssage varies greatly depending on the prefix distribution. In order to
and the other for a mismatch. Because any node may be a juprmpvide worst-case guarantees, the space provided at each memory
node, the default size for every SDP node must budget for the juragage should be sufficient fany prefix distribution. If we were to
bits in addition to two pointers. Because a string of one-child nodessign a node to a particular memory stage based on which level of
may have any arbitrary length, each SDP node must budget for the trie it belongs to (as DLP does), then even with jump nodes the
maximum number of jump bits possible (i.e., 32). Although thevorst-case per-stage memory requirement remains equal to the
space for jump bits causes an increase in the overall size of evanpractical size derived in Section 3.2.1.
node, we show in Section 6.2 that the drastic reduction in the num- As noted in Section 3.3, the height of nodes is correlated to the
ber of worst-case per-stage nodes (due to dynamic pipelining), dopmefix distribution. If we assign nodes to pipeline stages based on the
inates this increase to result in a much lower worst-case totatight of the nodes, then we expect to obtain a tighter per-stage
memory bound compared to a statically pipelined trie. The increasemory bound. Formally, the heighof an internal node is defined
in trie-node size also increases the bandwidth demanded from tbhebe the length of the longest path from that node to any of the
memory. However, because 1-bit trie nodes are small compareddaves below it. ([14] briefly discusses how tries may be pipelined
multibit trie nodes, the eventual bandwidth demand stays relativedynd suggests mapping levels to stages, but the paper erroneously
small. uses the terrheightwhen it actually meandepth) For example, the
Figure 5(d) shows the trie of Figure 5(b) after the string of ondieight of the shaded node in Figure 7(a) is 4.\\&be the number of
child nodes has been collapsed into a single jump node. lits in an IP addres$Vis both the maximum height of the trie, and
Figure 5(d) the height of has been reduced to 1 which is correlatethe total number of memory stages in the dynamic pipeline. Utiliz-
to the number of prefixes in the subtree rootedvaThus, jump ing the two key properties stated in Section 3.3.1, we now prove a
nodes remove the artificial increase in height due to strings of ort@und on the worst-case per-stage memory size for dynamically
child nodes, and restore the correlation between node height apelined tries with jump nodes.
prefix distribution. On a tangent, note that the jump node aldemma 1:The number of leaves in a subtree rooted at a particular
removes all but one copy of the leaf-pushed node P4. Because jumpde is no less than the height of that node.
nodes remove one-child nodes, in a 1-bit trie they effectively remo®roof: If the height of a node i§, then there is at least one pdth
all the nulls that leaf-pushing would try to fill up. Consequently, &om that node to some leaf, thatlisnodes long including the leaf.
route-update modifiesnly onetrie node and does not propagate-igure 7(b) shows such a path for some arbitrary node. Thete &re
down to entire subtrees. internal nodes alonB. For each of thd-1internal nodes, there is an
The use of jump nodes results in two key properties which waternate path that could be taken insteadPafhen traversing the
will use in Section 3.3.2 to prove a worst-case per-stage memadrie. In Figure 7(b) we indicate, as shaded nodes, the first node along
bound for dynamic pipelining: (1) Because we stride only one bit &very such alternate path. Each shaded node must either be a leaf
trie nodes, there is no controlled-prefix-expansion, and hence no
replication of the same prefix. Jump nodes remove nulls, eliminating
unnecessary copies of leaf-pushed nodes. Thus, the number of
leaves in the data-structure is equal to the number of prefixes. (2) In
SDP every internal node, whether that be a 1-bit trie node or a jump
node, is guaranteed to have two children.

I
3.3.2 Per-Stage Memory Bound i\‘
As observed in [11], before pipelining, the total memory required (b)

by a trie with jump nodes does not exceed the number of nodes in &ig. 7. (a) The height of a node (b) The relation between height
binary search tree (i.e.Nefor N prefixes), as shown in Figure 6(a). and the number of leaves beneath a node.




itself, or must be an internal node that leads to at least one lesSue, we borrow the idea ofshadow triefrom [1]: a copy of the
Because all leaves are unique, the alternate paths must contaitriatcontaining all the required auxiliary information. The shadow
leasth-1leaves in total. Thus the number of leaves in the entire subrie is accessed only during the construction or update of the trie.

tree is at leadt. Because route-updates are orders of magnitude less frequent than
Lemma 2: Given any distribution ofN prefixes, there can be no lookups, not only is it unnecessary to pipeline the shadow trie, but
more tharN/h internal nodes with heiglt we can implement it using slow and cheap memory (DRAM). Today

Proof: In an SDP trie there are as many leaves as there are prefixee. cost of 128 MB of high performance DRAM is so trivial that the
Therefore the total number of leaves in the trie can be no more thaddition of a shadow trie has no effect on total system cost. Mean-
N. From lemma 1 we know that each node of heightcounts for at while, all IP-lookups are performed on the fast, pipelined trie itself.
leasth unique leaves. Assume that the number of nodes with height When the router receives route-updates, we first apply them only
h exceedd$\/h, then there must be more thahleaves in total, con- to the shadow trie, modifying the data-structure in accordance with
tradicting the initial property oN leaves. Therefore, the number ofthe route-updates. Because the modifications access only the shadow
internal nodes with heigli, can be no more thaxh. trie and the IP-lookups access only the SDP trie, they can both pro-
Theorem 1:If we assign all nodes with height in an SDP trie, to ceed concurrently without interrupting each other. Following the
the (\h)™ pipeline stage, then we need to provide space for ontyodification of the shadow trie, we compute the eventual changes
min( N/(WEK) , Zk) nodes at the pipeline stage. that are required in the SDP trie. The required changes are formu-
Proof: We need to prove two bounds N/(W-k) and ¥—inorderto lated into node-writes and are then dispatched to the SDP trie. To
obtain the expression given in Theorem 1. To obtain the first bourapply the changes, we borrow a pipelinedte-bubblescheme from
we observe that if all nodes with heigitire assigned to th@/\‘(h)th [1]. In this scheme, a write operation interrupts the stream of IP-
stage, then from lemma 2 it suffices to providé space at theWt lookups by using up the turn of a single IP-lookup. The write opera-
h)™ pipeline stage. In other words, for thth stage, it is sufficientto tion marches down the pipeline stage-by-stage just like an IP-
provide space foN/(W-k) nodes. To obtain the second bound, wéookup, except that it performs writes instead of reads. Further,
recall that internal nodes in an SDP trie have two children, therefondile the write operation is in a particular stage, IP-lookups can
the total number of nodes at th® levelof the trie cannot exceed2 access the other stages. This observation allows us to dispatch writes
But, we need to establish that the number of nodes akt{hstage into the pipeline, interleaved with lookups. A write operation is sim-
cannot exceed2Each node along a path from the root must lie in @ly equivalent to a “bubble” in the lookup stream. However, the
different stage, therefore an internal node at l&w&f the trie cannot writes must obviously be performed in a manner which ensures that
fall in a stage earlier than the. Equivalently we can also say thatno read operation may encounter the data-structure in an inconsis-
an internal node at leveld of the trie cannot have a height of moretent or erroneous state. We address this concern after we analyze the
thanW-k which means it will not get placed in a stage earlier tkan cost of pipelined incremental route-updates.
Therefore, the space requirement of tﬁéstage is no greater than
space requirement of thé' level of the trie, thus proving the second3.3.4 Optimum Cost Incremental Route-updates
bound. For any value d we need to provide only as much space at The cost of route-updates can be represented by the IP-lookup
thek!" stage as the minimum of the two bounds, which proves Thetiroughput that is lost to write-bubbles. When a route-update is
rem 1. applied to a trie, it generally causes the insertion or removal of
Assigning nodes to stages based on their height is our first innwdes, and can obviously change the height of a number of nodes.
vation. For 1 million prefixes, for instance, the worst-case totadle first apply the route-updates to the shadow trie and recompute
memory required by SDP is just 22 MB, a four-fold reduction ovethe heights of affected nodes. Then, in order to maintain the height-
the latest static pipelining scheme [1]. We now to briefly descride-stage mapping of SDP, we migrate every node whose height has

the overall system architecture for SDP. changed to the stage that corresponds to its new height. In addition
to the node migrations, a route-update also results in the creation
3.3.3 System Architecture (deletion) of a node for the prefix being added (removed). Recall

SDP is implemented using/ stages (wher&V is the number of that because SDP uses a 1-bit trie with jump-nodes, any route-
bits in an IP-address), each consisting of an SRAM memory whitlpdate needs to modify (including insert or remowajy onetrie
is sized in accordance with the results of Section 3.3.2. An IRede (Section 3.3.1). We refer to this node as frefix-node
lookup is provided with the location of the root of the trie, and it iSogether, the migrations and the prefix-node modification account
dispatched into the first stage of the pipeline. The lookup perfornfiar the total cost for a route-update. It may seem such migrations
“NOPs” until it reaches the stage containing the root node. In addiray hurt the worst-case route-update cost. However, we make two
tion, the lookup also performs “NOPs” in the intervening stagdsey observations which enable us to bound the cosiryfroute-
when the heights of a node and its child differ by more than onapdate by the optimum of strictly one write-bubble only.
When the lookup emerges off the end of the pipeline, the IP-lookup Our first key observation is that, by virtue of the very definition
has completed. The pipeline concurrently sustains as many lookugseight, the insertion or deletion of a node can affect the height of
in flight as the number of stages. We will now explain the mechanly its ancestors, anthnnotaffect the height of any descendants.
nism of applying route-updates. A node insertion (deletion) may increase (decrease) the height of

To update the SDP trie upon route changes, we need to maintalhits ancestors. In the worst case the number of affected ancestors
information about the height of the nodes. However, keeping tltan bew-1(i.e. the maximum height of the trie minus one). Our sec-
node heights and other auxiliary information within the trie itselbnd key observation is that the prefix-node itself and all the affected
would increase its size and slow down the lookup rate. Further, v@acestors, each belong in a uniquely different stage, both before and
would require frequent interruption of the IP-lookup stream in ordexfter the migration. Hence, a route-update requires one write to
to examine or modify this auxiliary information. To address thigvery stage of the pipeline in the worst case. Just as an IP-lookup
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can perform a read operation in every stage of the pipeline, a wri@-3.5 Memory Management Overhead
bubble can perform a write in every stage of the pipeline. Therefore, The process of applying route-updates allocates and deallocates
we can send a single write-bubble into the pipeline and migrate theemory for inserting and deleting nodes in the trie. Hence, the abil-
ancestors to their new stages and write to the prefix node. Obviously,to apply incremental route-updates necessitates a memory man-
this single write bubble represents the optimum route-update costigement scheme for the routing-table memory. Because memory
any pipelined IP-lookup scheme. management appears as an overhead in the route-update cost, an IP-
The write-bubble itself does not contain all the data that are to lb@okup scheme must include the worst-case memory management
written to various stages. The write-bubble simply reserves eacoherhead for obtaining its§ue worst-case route-update cost. Previ-
pipeline stage for one cycle, ensuring that no lookup is accessiogs IP-lookup schemes use multibit tries, often with some compres-
that stage. Typically a lookup processor or custom logic perfornsgon mechanism [3][4][11], resulting in nodes that vary in size.
the necessary computation at each memory stage during a lookidppeated allocations and deallocations of such non-uniform sizes
The same processor or logic is responsible for supplying the nésads to fragmentation and underutilization of memory. Tree Bitmap
data through the data bus of each memory stage, when the wri@- and Segmented Hole Compaction [14] use complex memory
bubble reaches that particular stage. management schemes to compact away the memory fragmentation.
Unlike multibit trie nodes, the size of 1-bit trie nodes is small an@hus, even though Tree Bitmap guarant€¥4) route-update cost,
constant, therefore our assumption that a single memory write opgrthe worst case its memory management scheme can add an over-
ation is wide enough to write an entire trie node is justified. In SDPleead of more than 100 memory accesses to any route-update due to
single write-bubble is sufficient for handling the worst-case routesompaction operations.
update. Note that the conclusion of this cost analysis is significant: In contrast, we use only 1-bit trie nodes without compression,
node migrations are literallffree SDP reduces a seeminglyensuring that all nodes have the same size across all levels and all
unbounded factor in route-update cost to the equivalent of a nastages. Hence, all memory allocations and deallocations deal with
existent factor. Thus, we exploit the dynamic height-to-stage mapre size. Consequently, our routing-table memory incurs no frag-
ping to obtain both scalability in total memory size, and optimurmentation whatsoevieand we obviate the need for complex memory
route-update cost. management schemes like Tree Bitmap [4] and Segmented Hole
Figure 8 illustrates an intuitive way to understand this markedompaction [14]. Thus, after accounting for memory management
difference between the update cost of SDP and that of leaf-pustmetrhead, the total worst-case route-update cost of SDP amounts to
trie schemes. In SDP the region that is affected by an update to nadactly and only one write-bubble.
Xis only the highlighted path from nodéto the root. In contrast, in
a leaf-pushed trie scheme an update to nédeust be propagated 3.-3.6 Scalability in Lookup Rate
down into the entire shaded subtree. As we have pointed in Section 3.2.3, the lookup rates for data-
Recall that we mentioned at the end of Section 3.3.3 that whéHucture pipelining cease to scale once the strides have been
write-bubbles interleave with IP-lookups we must never allow theeduced to 1, and the size of the largest stage has been minimized.
IP-lookups to read the SDP trie in an inconsistent state. Specificaf@r 1 million prefixes, the size of the largest memory stage using
each pointer must be valid when dereferenced. We can trivially fuliDP is 3.8 MB, which means that SDP pipelined from only a data-
this requirement by observing that a write-bubble modifies at mosfructure perspective can manage only upto 40 Gbps line-rate.
one node in each stage. Because only one node is re-written in anyThe underlying assumption in data-structure pipelining is that,
given stage, the stage previous to it contains only one pointer thgfore a packet’s lookup can access a particular stage, it must wait
can be potentially invalid. When a write-bubble modifies a pointer ifor the lookup that is currently in that stage to complete its access.
a node in stags, only the lookups that are upstream to the writeHowever, we can internally pipeline, at the hardware level, the mem-
bubble observe the modified pointer. After modifying the pointer thery of each SDP stage so that a packet's lookup can access the mem-
write-bubble arrives into the next stage-{) and writes out the new ory of an SDP stage before the downstream lookups have completed
node being pointed to. By the time an upstream lookup arrives irflaeir access of that memory. The degree to which an SDP stage must
stages+1 and dereferences the pointer in question, the write-bubtk& hardware-pipelined is equal to the ratio of the required lookup-
has already written out the new node. Thus, we guarantee data-stf@ée to its access delay, which depends on its size. Thus, different
ture consistency. The lookups that are downstream to the write-biPP stages may be hardware-pipelined to different number of hard-
ble read and dereference the pointer before it is ever touched by Waye stages. We see from the example in Figure 9 that the early
write-bubble. memory stages are small and may require shallow or no HLP, while
the later stages are larger and may require deeper HLP. This combin-
ing of hardware-level and data-structure-level pipelining for
throughput scalability is our third innovation. The combining makes



throughput independent of the size of the SDP stages, obviating [Ijeet all the five requirements of scalability in routing-table size,

minimization of the largest stage. lookup throughput, implementation cost, power dissipation, and
routing-table update cost. We present evaluations for four of the five
4 Brief Review of TCAM-based Schemes scalability requirements. The remaining requirement is scalability in

throughput which is implicit in the x-axes of the graphs we present

A Content Addressable Memory (CAM) is a type of memoryor the other requirements.
that is designed specifically for search tasks. A CAM simulta- Because HLP places the entire trie in one large memory, it may
neously compares all memory locations against the input key to finde any trie scheme that is not pipelined at the data-structure level.
matching entries. A Ternary Content Addressable Memory (TCAMjor a fair evaluation we must pick the best choice out of the various
is simply a CAM which supports wild card bits in the entries. IPschemes available. Recall from Section 2.2, that multi-bit strides
lookup is performed by supplying the destination IP-address to th&rease the total memory size of a trie due to redundant replication
TCAM, which finds the matching prefixes in one operation. TCAM®f pointers and prefixes in trie nodes. Variable-striding and compres-
must have an arbitration scheme to choose the longest match whgih-based schemes can help reduce total memory size by eliminat-
multiple prefixes match. Most arbitration mechanisms generalisig such redundant replication. However, for the worst-case
require sorting the prefixes by their lengths before placing them dfistribution shown in Figure 4, the top half (triangular region) of the
the TCAM, complicating the process of route-updates. [13] prarie has no redundant replication whatsoever, and the bottom half
poses an efficient way to update TCAMs via incremental and pgfectangular region) uses up space because of the large number of
tial-order sorting. nodes and not because of inflated node sizes. Hence, schemes that

Because a single access activask memory locations, as target average case memory size such as variable stride tries, LC
opposed to just one, a TCAM dissipates a lot more power compangiés [11] (which is essentially a variable stride trie [17]), and Lulea
to RAM. [19] presents a scheme to improve TCAM power by redugcheme [3], will do no better than a fixed stride trie for the worst-
ing the number of memory locations searched. However, [19] neegigse distribution. Though Tree Bitmap [4] may reduce the large
to restructure the layout of prefixes in the TCAM subbanks when tieimber of nodes in the bottom half (rectangular region) of Figure 4,
distribution undergoes non-trivial changes, complicating the routg-would require large strides (e.g., 6 or 8) for any significant
update cost. improvement. Such large strides will adversely affect the worst-case

Even today, TCAM access delays are longer than packet intesute-update cost as explained in Section 6.5. Further, Tree Bitmap
arrival times. Therefore, TCAMs are pipelined at the hardware levelimost doubles the total memory requirement (Section 3.2.2), there-
which further worsens their power dissipation and implementatigore any saving in the number of trie nodes would be offset by a

cost. multiplicative factor of about 2. Hence, in the evaluation of HLP we
choose the fixed-stride multi-bit trie of [17] with strides chosen to
5 Methodology minimize worst-case total memory size.

By varying k, the number of levels in a multi-bit trie, we can
Because the IP-lookup memory in trie-based schemes must pgtain a wide design-space for DLP and HLP. We explore this
vide high bandwidth, SRAM is the choice of memory technologyesign space first in order to choose optimal valuek fufr these
for tries, both today and in the expected future. TCAMs on the othgio schemes. We then evaluate, in detail, the optimal design-points
hand, can be built using CAM-styled memory. To evaluate thgf DLP and HLP, TCAM, and SDP. We first compare the total worst-
implementation cost, power and timing for these two types of merdagse memory requirement of each scheme, and we then compare the
ories we utilize CACTI 3.2 [2]. CACTI is a tool that models accupower dissipation and implementation cost of each scheme. Finally,

rately the area, power, and timing of SRAM and CAM structuresye compare the route-update cost of SDP against that of Tree Bit-
Because the stock version of CACTI cannot handle memories @&p [4], the best previous scheme for route-updates.

large as 75 MB, we modify CACTI according to our needs. Using

the modified versions of CACTI we determine the area, power aigi1 Optimal Design Point for Previous Proposals

timing details for HLP, DLP, TCAM, and SDP. We validated our

evaluation methodology by modelling SRAMs and TCAMs with the As we mentioned in Section 3.2, increasing the number of levels

parameters of commercially available products, and we verified tHatDLP decreases the worst-case size of the largest stage. We expect

our results closely match the power and timings quoted by venddhe largest stage to be minimized when each level strides only one

of such products [8][10]. bit (i.e.,k =W, the number of bits in an IP-address(32)). Figure 10(a)
We evaluate previous schemes and SDP over a wide spectrunslbws the worst-case size of the largest memory-stage plotted

routing-table sizes, and of line-rates. We evaluate each scheawmainstk, for various routing-table sizes. Observe that though the

under worst-case guarantees both for lookup-rates, and for prgfer-stage memory iminimizedwhenk = 32, it does not decrease

distributions. Due to lack of space we present experimental resudgspreciably beyon# = 16. We therefore choode= 16, so that the

only for 200nm CMOS technology. We performed the same expeper-stage memory is effectively minimized, and the total memory is

mental evaluations for a range of CMOS technologies and found thatlved compared to that &f = 32 (because there are only half as

the results are qualitatively the same. many stages). Coincidentalky= 16 represents the optimal design
point for both worst-case per-stage memory size and worst-case total
6 Experimental Results memory size.

Recall that HLP employs one large memory to hold the entire

We now present a detailed experimental evaluation that comparesilti-bit trie, and hardware-pipelines the memory to a depth propor-
SDP against previously proposed IP-lookup schemes — HLP, Dltidnal to k. We are interested in reducing the total memory size,
and TCAM. Recall that a truly scalable IP-lookup scheme musthile keepingk small in order to reduce hardware complexity.
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Increasingk reduces the total memory size by reducing the extent afust also budget for the jump bits. For a routing-table size of one
controlled prefix expansion. Because the opportunity for this redueillion prefixes DLP and HLP require memories as large as 84 MB
tion is small when the trie is dense (as is the case in the worst-casel 75 MB respectively, whereas SDP and TCAM require 22 MB
prefix distribution of Figure 4), we expect only diminishing returngand 6 MB respectively. Across all routing-table sizes, DLP and HLP
askis increased. In Figure 10(b) we show the worst-case total menmequire roughly the same amount of memory, whereas SDP requires
ory size plotted againgt for various routing-table size. Observe thafour times smaller memory on average. The memory requirement of
beyondk = 8, the total memory size does not decrease appreciabCAM is, on average, another factor-of-four smaller than SDP. We
In order to minimize total memory size while keeping hardwarsee that DLP and HLP do not scale well in worst-case total memory
complexity within reason, we choode= 8 as the optimal design size as the number of prefixes increase.
point for HLP.
6.3 Power Dissipation
6.2 Worst-case Total Memory Size
Because the power dissipated in accessing a memory varies with

In Section 3 we presented expressions for obtaining the worsisth the size of the memory and the rate of access, we must vary
case memory sizes for DLP, HLP and SDP. Recall that, due tobath the routing-table size and the line-rate when evaluating the
much tighter bound, we expect the worst-case total memory sizegmwer dissipation of various schemes. Recall that we are evaluating
SDP to be much smaller than that of DLP and HLP. Because the paoerst-case power dissipations. TCAMs activate all memory loca-
bit implementation area of TCAMs is higher than that of SRAMsions in a single access in the worst-case, therefore their power dissi-
(used in HLP, DLP and SDP), comparing raw memory sizes is nofpation is expected to be much higher than that of the trie-based
useful comparison. However, we show the memory requirement fethemes. We expect HLP’s dissipation to be large because it hard-
TCAM because it represents a lower bound on memory size (it is thare-pipelines the memory aggressively. Recall that DLP does not,
size for storing only all the prefixes.) therefore we expect its power dissipation to be small. However, for

Because the total memory requirement is independent of tttee same reasons, DLP cannot achieve high line-rates such as 160
line-rate, we need to vary only the routing-table size while evaluaBbps. We expect the power dissipation of SDP to be slightly smaller
ing the memory requirement of various schemes. Figure 10(c) shotlian that of DLP because of a smaller memory size.
the worst-case total memory size plotted against the routing-table Figure 11 shows the power dissipation plotted against the line-
size, for the various schemes. For a routing table of 1 million preate, for the various schemes. Because we must also vary the mem-
fixes the node sizes for DLP and HLP are 80 bits and 100 bitsy size while evaluating power dissipation, we present three sepa-
respectively, whereas for SDP the size is 72 bits because each n@de graphs for three different routing-tables sizes: (a) 250,000



20 | I /
. oo ' € — - — HLP ' € 60 TR
Casr Tigw | S e ik | ST ==/
= ' © : ©
) g o /
% 10- J < 20- J < 40- '
S < E — g 7
] T T=T T —_— - - o it
F sl " 10 = 20-
___—___4 _______ _—__{_
L L L L L ! L L |_ B I I I
2.5 10 40 160 2.5 10 40 160 2.5 10 40 160
Line-Rate (Gbps) Line-Rate (Gbps) Line-Rate (Gbps)
(a) (b) (©)

Fig. 12. Comparison of chip area versus line-rate for various schemes with table sizes of (a) 250,000 (b) 500,000r(@r&fréko

prefixes (b) 500,000 prefixes, and (c) 1 million prefixes. In the evaltour times lesser area than theirs). For high line-rates, we expect the
ation of hardware-pipelined memories, we ignore the area aacea of HLP to grow in comparison to DLP due to hardware-level
power overhead of pipeline latches, giving an unfair advantage pipelining. We also expect the area of SDP to increase at high line-
HLP. SDP uses hardware-pipelining to a much smaller extent theates, however not by the same trend as HLP because SDP’s hard-
HLP, therefore its advantage is minimal. ware-pipelining is not nearly as aggressive as HLP.

Observe that the results for all routing-table sizes are qualita- Figure 12 shows the chip area plotted against the line-rate, for
tively similar, therefore we comment only on the results corresponthe various schemes. Recall that we ignore the area and power over-
ing to 1 million prefixes (Figure 11(c)). Due to TCAM's brute-forcehead of pipeline latches in HLP, giving it an unfair advantage.
searching it dissipates as much 42 W at 40 Gbps line-rate, and Because we must also vary the memory size while evaluating chip
W at 160 Gbps line-rate. Fér= 8, HLP needs to aggressively pipe-area, we present three separate graphs for three different routing-
line the memory, even more so for high line-rates. When dealirigbles sizes: (a) 250,000 prefixes (b) 500,000 prefixes, and (c) 1 mil-
with 160 Gbps line-rate, HLP must access the memory every 0.R8n prefixes.
ns. We see that pipelining 75 MB of SRAM to such depth dissipates We see that the results for all routing-table sizes are qualitatively
prohibitive amounts of power. HLP dissipates as much as 25 W feimilar, therefore we comment only on the results corresponding to
40 Gbps line-rate, and 146 W for 160 Gbps line-rate. Note thd&00,000 prefixes (Figure 12(b)). For 40 Gbps line-rate HLP takes up
because DLP does not scale to 160 Gbps line-rate, its 160 GIa8s8 cnf, and for 160 Gbps it takes more than 150Pahchip area.
data-point is absent in all graphs. DLP dissipates 10 W at 40 Gbphis drastic increase occurs because HLP must access the memory
line-rate. For 160 Gbps line-rate, SDP hardware-pipelines the in@very 0.25 ns, and in order to achieve such an access rate, the mem-
vidual memory-stages, albeit to a less extent than HLP, and hermg array must be split to an extremely fine extent. The chip area of
incurs some penalty in power dissipation. SDP dissipates 5.5 W DLP stays constant at 13.3 érfor all line-rates except 160 Gbps.

40 Gbps line-rate, and 22 W for 160 Gbps line-rate. The differen&ecause DLP does not scale to 160 Gbps line-rate, its 160 Gbps
in power dissipation between SDP and DLP is primarily due tdata-pointis absentin all graphs. SDP takes up an area of g.atcm
memory size, whereas between DLP and HLP it is primarily due #0 Gbps, whereas at 160 Gbps it takes up an area of 25Wmsee
aggressive hardware-pipelining.We see that HLP and TCAM do nibtat the SDP’s area is larger for high line-rates due to hardware-
scale well in power dissipation as the routing-table sizes and lingipelining. TCAM takes up about 4.1 Grfor all line-rates. We see

rates increase. that the chip area of TCAM, unlike its memory size as evaluated in
) Section 6.2, is not smaller than that of SDP. Note that because we do
6.4 Implementation Cost not model the priority-encoder in TCAM, its evaluated area is a con-

servative result and we expect the actual area to be larger. We see
The cost of implementing chips in silicon is proportional tahat HLP does not scale well in implementation cost.

approximately the fourth power of their area [6]. Hence, we evaluate
the chip area of various schemes to ascertain their scalability 35 Cost of Route-Updates
implementation cost. Although the total memory requirement of
TCAM is fairly small, we do not expect its chip area to be as small TCAMs can be updated efficiently by using techniques like [13].
because, for circuit-level reasons, CAM-styled memories cannot (3§ proposes, for DLP, a number of optimizations for fast, incremen-
designed to have the same high density as RAM. In the absencdadfroute-updates, however all the optimizations are heuristics and
hardware pipelining, the area taken up by a memory is proportioriaiprove only the average-case update-cost. The worst-case route-
to its size in bytes. In the presence of hardware-pipelining the arepdate cost of DLP remains unbounded even with the optimizations.
grows exponentially with the depth of pipelining. Because DLP doé4LP also has an unbounded worst-case route-update cost.
not hardware-pipeline the memory, we expect its chip area to stay However, the route-update scheme of Tree Bitmap [4] can be
constant across line-rates. For small values of line-rates, we do applied to HLP and DLP to reduce the route-update cost. This
expect any of the schemes to incur any significant hardware-pipelscheme, which is the best to date, requires the update of only one trie
ing. Therefore for low line-rates, we expect DLP, HLP and SDP toode in the worst-case. This one node may cont&jpointers in the
take up chip areas in accordance with their memory sizes (i.e., werst-case, wherk is the largest stride in the trie. For small values
expect DLP and HLP to take up similar areas and SDP to take opk (e.g., 2 or 3), a single memory write may be wide enough to suf-



fice, but for larger values & (e.g., 6 or 8) Tree Bitmap may requireto propose a novel scheme for incremental route-updates. In our
multiple memory writes. In addition to writing the trie node upon @acheme a route-update requires exactly and only one write dis-
route-update, Tree Bitmap can incur substantial worst-case mempatched into the pipeline. This route-update cost is obviously the
management overhead as mentioned in Section 3.3.5. Accountomimum and our scheme achieves the optimum in the worst case.
for this overhead, the eventual worst-case route-update cost ¢a8pWe achieve scalability in throughput by simultaneously pipelin-

exceed 100 memory operations. Hence Tree Bitmap does not sdafe at the data-structure level and hardware level. SDP naturally
well in worst-case route-update cost. In addition, it incurs the pegeales in power and implementation cost. Using detailed hardware
alty of almost doubling the size of each trie node due to the absersimulation, we showed that SDP is the only scheme that achieves all
of leaf pushing (Section3.2.2). In our evaluations abovihe five scalability requirements. Our results confirm that schemes
(Section 6.2 through Section 6.4), we do not penalize the total melike SDP will be necessary for future routers to keep up with the

ory size of HLP and DLP. The results presented in those sectiossaling trends of the Internet.

must be viewed with the understanding that HLP and RloPnot

scale in route-update cost. If HLP and DLP incorporate Tree BitmdReferences

to achieve a better worst-case route-update cost, their worst-case
total memory sizes would be almost twice as large than the siZd
shown in Section 6.2. Yet, even with Tree Bitmap their worst-case
route-update cost could exceed 100 memory operations.

In contrast, the worst-case route-update cost in SDP is provaii}‘{
optimum, as it amounts to exactly and only one write-bubble. Owing
to the uniform size of its trie nodes, SDP does not need complex
memory management schemes with compaction and defragmenjg-
tion. Hence, we see that SDP scales well in worst-case route-update
cost.

(5]

(6]

We see that dynamic pipelining is the only IP-lookup scheme
that is truly scalable in routing-table size, lookup throughput, implé]
mentation cost, power dissipation, and routing-table update cost. In
contrast, all other IP-lookup schemes do not scale well in a numjl?i

6.6 Summary of Results

of these requirements. HLP does not scale well in total memory sizg,
power dissipation, route-update cost, and implementation cost. D
does not scale well in total memory size, lookup throughput, and
route-update cost. TCAMs do not scale well in implementation cogio]
and power dissipation. For a routing-table of 1 million prefixes, and1]
a line-rate of 160 Gbps, HLP requires 75 MB, dissipates 146 W, and
takes up more than 200 é&niTCAM requires 6 MB, dissipates 174
W, and takes up 8.9 ¢ DLP requires 88 MB, dissipates 10 W,[12]
takes up 27 crhand fails to work beyond 40 Gbps. In contrast, sppt3l
requires only 22 MB of memory, dissipates 22 W, and takes up 14[.1%]
c?

. [15]
7 Conclusions

A truly scalable IP-lookup scheme must address five challenggs)
of scalability, namely: routing-table size, lookup throughput, imple-
mentation cost, power dissipation, and routing-table update coéf/]
Though several IP-lookup schemes have been proposed in the past,
all of the schemes satisfy only two or three of the requirements but
not all five. Previous schemes pipeline tries by mapping trie levels el
pipeline stages. We made the fundamental observation that becaﬁsia
this mapping is static and oblivious of the prefix distribution, th
schemes do not scale well when worst-case prefix distributions are
considered. This paper is the first to meet all the five requirements in
the worst case. We proposed scalable dynamic pipelining (SDP)
which includes three key innovations: (1) We map trie nodes to pipe-
line stages based on the node height, which succinctly provides suf-
ficient information about the distribution. Our mapping enables us to
prove a worst-case per-stage memory bound which is significantly
tighter than those of previous schemes. (2) We exploit our mapping
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