
Pesticide: Using SMT to Improve Performance of Pointer-Bug Detection

Jin-Yi Wang, Yen-Shiang Shue, T. N. Vijaykumar, and Saurabh Bagchi
School of Electrical and Computer Engineering, Purdue University

{jywang, shue, vijay, sbagchi}@ecn.purdue.edu

se
t as

ry
act
m-
nds
ted
s
bugs

h
s,
se
o-
for
n
ns

16],
r-
).
ned
6]
,

ed
ity:
for

20]
om-
(2)

le
no
s.
,
re-
tion
it

t of
gs
ta-
e-
n’s
ore
nt

en-
ar-
it,
Abstract—Pointer bugs associated with dynamically-allocated
objects resulting in out-of-bounds memory access are an important
class of software bugs. Because such bugs cannot be detected easily via
static-checking techniques, dynamic monitoring schemes have been
proposed. However, the key challenge with dynamic monitoring
schemes is the runtime overhead (slowdowns of the order of 10x are
common). Previous approaches have used thread-level speculation
(TLS) to reduce the overhead. However, the approaches still incur
substantial slowdowns while requiring complex TLS hardware. We
make the key observation that because the monitor code and user code
are largely and unambiguously independent, TLS hardware with all
its complexity to handle speculative parallelism is unnecessary. We
explicitly multithread the monitor code in which a thread checks one
access and use SMT to exploit the parallelism in the monitor code.

Despite multithreading the monitor code on SMT, dynamic moni-
toring slows down the user thread due to two problems: instruction
overhead and insufficient overlap among the monitor threads. To
address instruction overhead, we exploit the natural locality in the
user thread addresses and memoize recent checks in a small table
called the allocation-record-cache (ARC). However, programs making
and accessing many small memory allocations cause many ARC
misses and incur significant runtime overhead. To address this issue,
we make a second key observation that because adjacent memory
objects result in ARC entries with contiguous address ranges, the
entries can be merged into one by simply merging the ranges into one.
This merging increases the effective size of the ARC. Finally, insuffi-
cient overlap among monitor threads occurs because of inefficient syn-
chronization to protect the allocation data structure updated by the
user thread and read by the monitor threads. We make the third key
observation that because monitor-thread reads occur for every check
but user-thread writes occur only in allocations and deallocations,
monitor reads are much more frequent than user writes. We propose a
locking strategy, called biased lock, which puts the locking overhead
on the writer away from the readers. We show that starting from a
runtime overhead of 414% our scheme reduces this overhead to a
respectable 24% running three monitor threads on an SMT using a
256-entry ARC with merging and biased lock.

I. INTRODUCTION

According to the National Institute of Standards (NIST) “soft-
ware developers spend approximately 80% of development costs
on identifying and correcting defects and yet few products of any
type other than software are shipped with so many errors” [1]. To
address this problem, static checking tool, such as [9], [11], [15],
[17] attempt to detect and remove software bugs in the testing and
verification phase. However, NIST reports that more than half of
bugs are not found until “downstream” in the development process
or during post-sale use of software. This figure will worsen as soft-
ware becomes more complex. To address the large percentage of
bugs slipping through static checking, dynamic monitoring
schemes, such as [10], [16], [25], [26], [19] and [8] attempt to
detect bugs at runtime.

A detailed study of software defects in commercial databa
management systems and operating systems [21] reports tha
many as half of the “high-impact” bugs are in dynamic memo
allocation and pointer management. The study defines high-imp
bugs as those that often results in system unavailability. The me
ory allocation and pointer management bugs cause out-of-bou
memory access. Accordingly, we target pointer bugs associa
with dynamically-allocated objects resulting in out-of-bound
memory access. Because static checking cannot detect such
easily, we explore a dynamic monitoring scheme.

While implementing dynamic monitoring is relatively
straightforward, the key difficulty is the runtime overhead. Thoug
dynamic monitoring is powerful and can catch hard-to-find bug
its considerable overhead has limited its applicability to in-hou
testing. As such, dynamic monitoring is too slow to be used in pr
duction runs. For instance, though Purify, which uses software
monitoring without any support from hardware, has bee
extremely successful in catching pointer bugs, 1000% slowdow
are common. Recent dynamic-monitoring schemes, such as [
iWatcher [26], and AccMon [25], propose to address this perfo
mance problem by leveraging thread-level speculation (TLS
These schemes use TLS to overlap speculative threads spaw
from the user computation as well as the monitoring code. [1
uses Dynamic Multi Threading (DMT) [2] as its TLS architecture
and iWatcher and AccMon use [20] as their TLS architectures.

However, there are two shortcomings with these TLS-bas
schemes: (1) TLS schemes introduce considerable complex
DMT uses associative searches through large trace buffers
dependence tracking and flash copying of register values. [
pushes speculative state into the cache hierarchy and requires c
plicated dependence tracking through the cache hierarchy.
Despite using TLS, dynamic monitoring still inflicts considerab
performance loss. [16] reports 700% runtime overhead over
monitoring, and [25] incurs 200% for three SPEC2000 program
While [16] targets dynamic monitoring during production runs
[25] targets the debugging phase of software development. Ir
spective of the intended target, their high performance degrada
coupled with their reliance on complex TLS hardware makes
hard to deploy them in production runs.

In this paper we address these shortcomings in the contex
monitoring out-of-bounds memory access due to pointer bu
based on the following key observations: (1) The main compu
tion and the monitoring code are unambiguously and truly ind
pendent except that the addresses of the main computatio
memory accesses need to be passed to the monitoring code. M
importantly, each dynamic instance of the monitoring code mea
to check one memory access is unambiguously and truly indep
dent of other instances. (2) Exploiting ambiguous, speculative p
allelism and incurring its complexity is unnecessary when explic

d
our

nd
er-
o
4%
er-
o

he
se
eap

In
. In
ing
nd
e

, or
oft-
for

are
nst
e

es,
ns,

ca-
sh
e

er
the
ress
tor
ar-
g
t the
ess
. A
am

d

y
e
y

ss
the
llow
s a
unambiguous parallelism exists. Accordingly, we propose to multi-
thread the monitoring code in which a thread checks one memory
access, and to use SMT [23] to exploit the explicit parallelism in
our monitoring code. Because SMT exploits explicit parallelism
instead of speculative parallelism, SMT is considerably simpler
than TLS.

Another choice to exploit explicit parallelism would be chip
multiprocessors (CMPs), as [19] does. However, memory
addresses need to be passed from the user thread to the monitor
threads. In CMPs, the user and monitor threads would run on dif-
ferent cores, requiring high-bandwidth (potentially specialized)
communication paths between the cores. To avoid this problem, we
choose SMT where the user and monitor threads run within one
core and can communicate easily.

Despite running multiple monitor threads overlapped with the
user thread, dynamic monitoring slows down the user thread due to
two problems: instruction overhead and insufficient overlap among
the monitor threads.

Because each check involves tens of instructions, monitoring
incurs the first the problem of instruction overhead. Though user
and monitor threads are independent, because all threads run on
one SMT core the monitor threads compete with the user thread for
execution resources causing substantial performance degradation.
To reduce the volume of monitor instructions, we exploit the natu-
ral locality in the user addresses and memoize recent checks in a
small table called theallocation-record-cache (ARC). When a user
address hits in the ARC, the hardware checks the access without
invoking a monitor thread, avoiding extra instructions.

This locality was also exploited by AccMon in its check-
lookaside-buffer (CLB). However, because each entry in CLB (and
ARC) correspond to a memory object, programs allocating and
accessing many objects need a large CLB (and ARC). In an
attempt to reduce the size of the CLB, AccMon implements a
bloom filter which results in false positives. However, while Acc-
Mon is used for debugging where the false positives will not reach
the user, pesticide is for production user runs where users will not
tolerate false positives unnecessarily terminating their program.
Consequently, we propose a scheme without false positives. We
make the key observation that because adjacent memory objects
result in ARC entries with contiguous address ranges, the entries
can be merged into one by simply merging the ranges into one.
Because the set of valid address ranges are derived from memory
allocation functions in software, we perform this merging in soft-
ware in the monitoring code. Merging enables ARC to cover more
memory objects with fewer entries.

The second performance problem is the insufficient overlap
among the monitor threads. Although monitor threads are largely
independent of the user program there still exists some synchroni-
zation. The monitor threads have to read the data structure holding
the current set of valid memory allocations where as the user
thread writes to the structure when allocating or deallocating mem-
ory (e.g., malloc and free). Using the standard reader-writer-lock
[6] for this synchronization causes inordinate contention among
the monitor threads. To address this issue, we make the key obser-
vation that because monitor-thread reads occur for every check but
user-thread writes occur only in malloc and free, monitor reads are
much more frequent than user writes. Accordingly, we employ a
novel locking strategy, calledbiased lock, in which each monitor
thread has its own lock for reading whereas the user thread has to

obtain all the monitor-thread locks before writing. This biase
strategy makes readers fast at the cost of the writer which fits
context of frequent monitor reads and infrequent user writes.

The key novelty of this paper are the range merging ARC a
biased lock. Our simulation results show that starting from an av
age runtime overhead of 414% incurred by monitoring over n
monitoring, pesticide reduces this overhead to a respectable 2
using a 256-entry ARC and three monitor threads. This 24% ov
head compares well with [16]’s 700% and [25]’s 200% and als
with the fact the Java which performs bounds-checks in-line in t
user code incurs about 100% runtime overhead [4], [24]. Becau
pesticide checks all heap accesses, it covers all out-of-bounds h
accesses without any false positives.

The roadmap for the rest of the paper is as follows.
Section II we describe our software and hardware architecture
Section III, we describe the ARC, the biased locks and the merg
scheme. We present our evaluation methodology in Section IV a
our results in Section V. Section VI describes related work and w
conclude in Section VII.

II. OUR SCHEME

In general, pointer bugs can be associated with heap, stack
static objects, However, because the study on commercial s
ware, mentioned in Section I, shows that heap objects account
about half of all the “high-impact” bugs [21], we monitor only
heap objects and not the stack or static objects. Moreover, there
efficient schemes to monitor the stack (e.g., [7] protects agai
buffer overflow with minimal performance degradation). As w
explain later, pesticide can apply to static objects.

 A. Overview
To achieve our goal of monitoring user-thread heap access

we need to track user-thread heap allocations and deallocatio
and check whether user-thread accesses fall within a valid allo
tion. We track the memory allocations and deallocations in a ha
table called the book-keeping-structure (BKS). To perform th
checking, our monitor threads run concurrently with the us
thread on a SMT processor. Upon a load or store instruction in
user thread, pesticide triggers a monitor thread to check the add
and the length of the access. Multiple instances of the moni
thread run on the SMT processor to check multiple accesses in p
allel (the number of monitor threads is fixed). Each monitorin
thread matches the address and length of the access agains
BKS entries. A match (i.e., access is to a valid address and acc
length is within allocated size) indicates that the access is legal
mismatch indicates a pointer bug. Figure 1 shows a block diagr
of pesticide.

We now give the details of our software in Section II-B an
hardware structures in Section II-C.

 B. Software support
In order for application programmers not having to worr

about monitoring routines, we propose that library functions b
instrumented with monitoring capabilities. We augment librar
calls to memory-management routines (e.g.,malloc, calloc, real-
loc, andfree) with code to maintain the BKS.

The BKS is a hash table that tracks valid memory addre
ranges by recording memory allocations and deallocations (
addresses are virtual addresses annotated with process ID to a
for multiple concurrent user processes). Every allocation create

e
hat
ove

igh
re
wn
itor
loy

trig-

ff-
the
eck
MJQ
lies

h of
ken

e
ld
ads
the
ck
eue
ess

d
ead,
he
ni-
d to
the
p-
tion
nd
the
-
tes.
we
any
lls
ct

ad
lo-
s to
tly,
tion
cial
c-
d.

f a
ing
ig-
new BKS entry which is removed at the corresponding dealloca-
tion. Each entry contains the start address and the length of the
allocation.

The BKS is fundamentally different from conventional hash
tables. In a conventional hash table, an object that is hashed into
the hash table is found by using thesameobject as the key. In BKS,
while we hash in allocations’ address ranges, accesses to a specific
address probe the BKS to determine if a given address falls within
a valid range. Thus there is a disparity between what is stored (i.e.,
address ranges) and what is used to probe (i.e., a specific address).
This disparity implies that if we hash in a long address range using
the range’s start address, and an access far from the start but within
the range occurs, then the range and the access may fall into differ-
ent hash buckets resulting in the access not finding the range
though the access is valid. One way to solve this problem is that we
could repeatedly hash each byte of the whole range of the
allocation and store all of them in the BKS. However, this
approach would result in inordinately many copies of the same
range and blow up the hash table size. Instead, we break the origi-
nal allocation’s address range into many small ranges called hash-
blocks (e.g, 512-byte ranges). We hash all the hash-blocks of the
original allocation into the BKS using the hash-block’s start
address. Consecutive hash-blocks fall into consecutive buckets,
and a BKS entry corresponds to one hash-block. Upon an access,
we use the hash-block number part of the access’s address (e.g.,
hash-block of 512 bytes and a 32-bit address mean that the upper
23 bits of the address are the hash-block numbers) to probe the
BKS. Because the addresses within a hash-block have the same
hash-block number as the hash-block’s start address, accesses to a
hash-block map to the same bucket as that holding the hash-block.
Though our solution allows the access to find its corresponding
range, we break up long address ranges into many hash-blocks,
each of which repeatedly store the original range, increasing the
hash table size.

We use simple open chains to handle collisions. Because
access probes need to traverse the chains to ascertain validity of the
access, the longer the chains the more the monitoring overhead.
Therefore, it is important to keep the chains short. While a good
hash function is necessary for this purpose, it is not sufficient.
Hash-block size has a considerable impact on the chain length.
Both small and large hash-blocks result in long chaining but in dif-
ferent scenarios. Small hash-blocks break up larger allocations into
many BKS entries (albeit in different buckets) resulting in much
chaining. Large hash-blocks imply that many smaller allocations
fall into the same bucket resulting in much chaining. Thus, the
hash-block size has to match the allocation size commonly found

in programs.
One simple optimization we can do is that, upon an check, w

move a hash element to the top of its hash chain in anticipation t
the hash element will be accessed again due to locality. This m
reduces the chain traversal in subsequent accesses.

 C. Hardware support
Because the volume of memory accesses to be checked is h

and the check itself is fairly short especially if the BKS chains a
short (e.g., a few tens of instructions), using software to spa
monitor threads or to pass the addresses from user to mon
thread would incur considerable overhead. Instead, we emp
hardware support in the form of themonitor-job-queue (MJQ)
which captures the user thread’s addresses off the pipeline and
gers a monitor thread to check the access.

The MJQ is a FIFO queue built in hardware. The queue bu
ers address (virtual address and process ID) and the length of
heap accesses to be monitored. As we mentioned before, we ch
only heap accesses, and not stack and static accesses. The
determines an address to belong to the heap if the address
between the heap bottom and heap ceiling. Address and lengt
the access whether it is a byte, word, or quadword are then ta
from the load-store queue.

Monitoring could potentially be triggered at any point in th
execution of loads and stores. Monitoring before commit wou
include misspeculate loads and stores along with the correct lo
and stores leading to wastage of SMT resources as much of
monitoring would be unnecessarily triggered. Therefore, we che
at commit. Because loads and stores stay in the load-store qu
until commit, we readily obtain the addresses and the acc
lengths from the load-store queue.

While the checking itself is independent of the user threa
once the access address and length are given to the monitor thr
the decision of whether to allow the access to commit before t
check completes or not impacts the parallelism between the mo
tor and user threads. While loads does not cause bugs to sprea
other programs, stores may propagate bugs via I/O. Delaying
commit till the check completes prevents a buggy store from pro
agating further. Because stores are frequent enough, this op
would curtail the parallelism between user and monitor threads a
would severely slow down the user threads. Instead, to retain
parallelism, we do not hold up store commits till the check com
pletes. Thus, accesses may commit before the check comple
(e.g., a few hundreds of cycles). To prevent bug propagation,
ensure that all checks pending in the MJQ are complete before
system call, including I/O call, is committed. Because system ca
are infrequent this delay in commit does not significantly impa
performance.

Apart from system calls, the other point where the user thre
waits for the monitor thread is upon memory deallocations. Deal
cating a heap object while there are pending checks of accesse
the object would cause us to flag a bug incorrectly. Consequen
we ensure that all pending checks complete before the dealloca
starts. While hardware can easily detect system calls as spe
opcodes and trigger the draining of the MJQ, deallocation fun
tions are indistinguishable from other functions in the user threa
To that end, we use a special NOP to signal the beginning o
deallocation. Because deallocations are also infrequent, delay
the deallocation till all pending checks are complete does not s
nificantly impact performance.

Program thread

Monitoring threads

MJQ/ARC
Book Keeping
Structure

1. Update book-keeping-structure

2. Put heap accesses into MJQ
for monitoring at commit

3. Monitoring jobs passes to monitoring
threads

4. Monitoring threads consult the
book-keeping-structure. If successful
then do nothing, otherwise report error

Figure 1: Proposed monitoring scheme

p
the
e

by
o
n
ca-
in
try

the
ons
the
ng
the
the
e
rt

-
an

ring
ea-
go
le

ct it
va-
This
ld
tly,

uld
ent
We

ca-
ese

ed
ed
b-

g of
lel.

in
es-
cifi-
ver,
n-
sic
ser
ere
to

nd
the
n in
the
by
r

We mentioned earlier that we can easily extend pesticide to
static objects. Because static objects’ address ranges are known at
link time, the linker can insert the ranges into the BKS.

III. SUPPORTING EFFICIENT MONITORING

The key reasons for performance degradation in the basic
scheme described so far are instruction overhead and insufficient
overlap among monitor threads. We alleviate these problems via
our optimizations.

 A. Allocation-record-cache (ARC)
To reduce the instruction overhead of monitoring, we exploit

the locality in the user-thread accesses to memoize checks to
recently-accessed heap objects so that future checks to the same
objects are elided completely and the instruction count overhead of
monitoring is reduced. We use a hardware cache, called the alloca-
tion-record-cache (ARC), for this memoization.

Before inserting an access into the MJQ, the address of the
access is first checked in the ARC. Upon a hit, the ARC performs
the check in hardware. Consequently we do not place the access in
the MJQ, saving the instructions of the check. A miss launches a
monitor thread which performs the check in software but also loads
the ARC with the BKS entry used to perform the check.

Each ARC entry holds a BKS entry: the start address and the
length of the allocation. However, there is a key difference between
the BKS and ARC entry. To avoid the danger of an address not
finding its range in the BKS, both the address and range are hashed
by their hash-block number. Consequently, each hash entry can
cover only a hash-block implying that large allocations be broken
up into multiple hash-blocks, introducing repetition in the hash
entries. Because the ARC is a small cache, such repetition would
be wasteful. Instead we use a fully-associative cache so that there
is no indexing into the ARC. Because every access searches
through all of ARC’s entries, there is no danger of an access not
finding its range in the ARC. Consequently, each entry in the ARC
is not restricted to covering one hash-block, implying that an ARC
entry can cover an entire allocation without breaking up the alloca-
tion across multiple ARC entries.

Thus, the address of an access is matched against all the
ARC’s entries in parallel, checking if the address fall within an
entry’s start address and the entry’s allocation length.

Because the ARC is essentially a cache of the BKS, any mod-
ifications to the BKS need to be handled by the ARC for maintain-
ing coherence between the BKS and the ARC. Consequently, the
ARC is flushed upon deallocations which are identified by the spe-
cial NOPs described in Section II-C. As mentioned earlier, deallo-
cations are infrequent, so the flushes do not significantly impact the
ARC.

 B. Range merging
While the ARC works well for many programs, a few pro-

grams make and access many (small) allocations. Because one
ARC entry can hold only one allocation, small allocations imply
that the ARC can reach only a small part of the user thread’s work-
ing set; and many allocations imply that many ARC entries would
be needed. The net effect is many misses in the ARC. Many alloca-
tions also implies long hash collision chains in the BKS. Here
again, the long collision chains is not due to an ineffective hash
function, but rather due to the fact the one hash entry can hold only
one allocation.

We exploit the fact that the BKS entries for adjacent hea
objects can be merged to increase the effective capacity of
ARC. This merging has the additional benefit of shortening th
hash collision chains.

Because memory allocations and deallocations are tracked
the BKS, we perform this merging in software in the BKS code. T
implement merging, we keep the BKS entries in the collisio
chains in ascending order of starting addresses. Upon new allo
tions, an insert into a chain merges entries if two entries conta
contiguous ranges. Upon deallocations, a previously-merged en
may be broken into two entries. As such, merging increases
overhead of the BKS code. Because allocations and deallocati
are relatively less frequent than accesses which benefit from
improved effective ARC size and shorter chain lengths, mergi
improves performance (allocations need not be infrequent in
absolute just fewer than accesses). Also, we do not perform
locality optimization of moving the hash element to the top of th
hash chain as such moving will violate the ordering of the sta
addresses.

There is one difficulty with merging: Because memory alloca
tors often allocate memory objects padded to a size larger th
requested for reducing memory-management overhead, sto
heap-management-related meta information, and alignment r
sons, merging padded ranges would result in letting some bugs
undetected. If an access falls in the padding which is in the midd
of a merged range then the access is invalid, but we cannot dete
to be so. To address this problem, we first make the key obser
tion that same-sized objects are adjacent in the common case.
observation implies that in the common case padding wou
exhibit a repetitious pattern in the merged ranges. Consequen
recording the padding just once for the entire merged range wo
suffice. Therefore, we merge two ranges only if they are adjac
and they are of the same size and have the same padding.
record the start address of the first allocation, the size of the allo
tion, and end address of the merged entry. The ARC caches th
merged entries.

Ignoring the above observation and merging different-siz
objects would mean recording all the paddings within the merg
range. This recording even if done via bit vectors would add su
stantial space overhead, defeating merging’s purpose.

 C. Biased Locks
Because checking of one access is independent of checkin

other accesses, we employ multiple monitor threads in paral
However, because memory allocation and deallocation routines
the user thread share the BKS with the monitor threads, it is nec
sary to protect the shared data via proper synchronization. Spe
cally, the user thread writes and the monitor threads read. Howe
the two commonly-used locking strategies lead to heavy conte
tion among the monitor threads. The first strategy, called the ba
lock, uses one global lock contended by all threads (i.e., u
thread and multiple monitor threads), as shown in Figure 2a. Th
is heavy contention among the multiple monitor threads leading
complete serialization.

The second strategy, called RW, is for multiple readers a
writers involved in producer-consumer scenarios (user thread is
producer and the monitor threads are the consumers). As show
Figure 2b, RW also has a global lock between the reader and
writer. RW attempts to reduce the overhead on the readers
requiring only the first reader to grab the global lock, allowing late

e is
g

.
o-
te
e

or-
not
-of-
s.
i-
le
g
ral-
gths
e
e

E
the
lly,

e
ne

ith
ts

ars
xis
he
tra
in
rs

he
-
ks

e
ks
at
readers to avoid grabbing the global lock. However, the readers
among themselves have to grab a local lock to identify the first
reader. Because the local lock protects just an increment operation,
the local lock does not serialize the readers much. If the original
critical section to be protected from the writer is long, the local
lock overhead is amortized. Unfortunately, because our monitor
threads are very short, the local lock overhead is not amortized.

We make the key observation that our writer (i.e., user thread)
is much less frequent than readers (i.e., monitor thread). Therefore
we bias the overhead away from the readers and towards the writer
in the lock called biased-lock, as shown in Figure 2c. In the biased-
lock each reader is given its own lock. So there is no contention
among the readers. The writer on the other hand needs to grab the
locks of all the readers. This ensure mutual exclusion and at the
same time allows the monitors to be accessed without too much
overhead. With biased lock, we do not perform the locality optimi-
zation of moving the hash element to the top of the hash chain as
such moving will make monitor threads also writers of BKS,
breaking our assumption that monitor threads can execute in paral-
lel completely.

In SMT, resources are shared across threads. It is wasteful for
a thread to be spin-waiting on a lock because instructions which go
repeatedly into the pipeline will only confirm that the lock is still
not available. We want the thread waiting for this lock to stall so
the thread will not eat up resources which would be allocated to
other threads which may make progress. Such a stalling scheme is
implemented in Lock-box [22] which we use. The lock-box stalls a
thread on a busy bit when the lock is already taken. Upon the
unlock instruction, the bit is cleared and the waiting thread is sig-
naled to go ahead.

IV. EVALUATION METHODOLOGY

We use a SMT simulator based on the Simplescalar 3.0c [5]
running the Alpha instruction set to simulate pesticide. Our simula-
tion parameters are shown in Table I.

We use SPEC2000CPU benchmark set. Because we focus on
heap accesses, we do not consider Fortran-77 benchmarks which
does not have dynamic allocations. Due to time constraint, we sim-
ulate only C benchmarks and not C++. We create benchmark bina-
ries with and without monitoring incorporated into the memory
management libraries. To ensure that both versions have the same
level of compiler optimizations, we compile the benchmarks using
gcc2.97 on a DEC Alpha running OSF.

The key software parameters are hash-table size and hash-
block size. We use a hash-table with 64K buckets which are suffi-

cient for our benchmarks. We found that the best hash-block siz
512 bytes which we use in all experiments except while varyin
the hash-block size.

We incorporate early SimPoints [18] in our simulations
Because of the instruction-count overhead of monitoring, the n
monitoring and monitoring versions of the benchmarks execu
different total number of instructions for the same Simpoints. W
ensured that the two versions run the sameuser instructions as
intended by SimPoints.

V. RESULTS

Because performance is the key concern for dynamic monit
ing, we present performance achieved by pesticide. We do
show coverage because by design pesticide covers all out
bounds heap accesses. Also, we do not incur any false positive

Section V-A presents the unoptimized, raw impact of mon
toring on performance. Section V-B shows how running multip
monitor threads impacts performance—with different lockin
strategies. These numbers show the benefit of using explicit pa
lelism. Because the hash-block size impacts the hash chain len
which directly impacts the instruction overhead of monitoring, w
vary the hash-block size in Section V-C. Section V-D shows th
benefit of eliding checks via ARC’s memoization. Section V-
shows how much merging improves performance by increasing
ARC’s reach and also shortening the hash chains. Fina
Section V-F summarizes our results.

 A. Runtime overhead due to monitoring
In Figure 3, we show the runtime overhead of monitoring. Th

Y axis shows as percent, the run time of the user thread with o
monitor thread normalized to the run time of the user thread w
no monitoring. We show a line at the 100% mark which represen
no performance degradation due to monitoring. The higher the b
above this line, the more the performance degradation. The X a
shows the benchmarks. Low IPC (instructions per cycle) in t
case of no monitoring implies that the pipeline can absorb the ex
monitoring instructions. To show this trend, we order the X axis
increasing order of no-monitoring IPC. There are two numbe
shown on top of each bar. The top number is the ratio of t
dynamic instruction counts with monitoring over the counts with
out monitoring. The bottom number is the IPC of the benchmar
without monitoring.

With monitoring the benchmarks’ runtime overhead rang
from 5% to 1634% with an average of 414%. Most benchmar
incur significant runtime overhead. There are two factors th

c) Biased locka) Basic lock

Reader:

Writer :

b) Reader-Writer lock

Reader:
lock(R);
readcount=readcount+1;
if (readcount==1)

unlock(R)
...critical section...
lock(R);
readcount=readcount-1;
if (readcount==0)

unlock(R)

Writer:
lock(MUTEX);
...critical section...
unlock(MUTEX);

Reader # i (1<= i <=n):
lock (MUTEXi);
...critical section...
unlock (MUTEXi);

Writer :
for (i=1; i<=n; i++)
lock (MUTEXi)
...critical section...
for (i=1; i<=n; i++)
unlock (MUTEXi)

then lock (MUTEX)

then unlock (MUTEX)

Figure 2: Three lock schemes

lock (MUTEX);
...critical section...
unlock (MUTEX);

lock (MUTEX);
...critical section...
unlock (MUTEX);

TABLE I: Simulation parameters
Simulator Parameters
fetch width 8
decode width 8
issue width 8
commit width 8
active list size (per thread) 256
LSQ size (per thread) 128
issue queue 64
L1 I-cache 64K, 2way, 3cycle
L1 D-cache 64K, 2way, 3cycle
L2 unified 2M, 8way, 12cycle
Memory Latency 300 cycles
Branch prediction 2-level hybrid
MJQ size 1000
ARC size 0,8,256,1024

he
lity

e

g
sh-
to

ed
12

C
re

ng
or-
ry
ale

ers
tio
,
try

t-
ries
m-
in
ad
),

and
s.
m-

sh
ies
nt-
sh-
ng

gh
determine performance with monitoring: (1) the dynamic instruc-
tion overhead due to monitoring (the top number on top of the
bars) and (2) the IPC of the no-monitoring case (the bottom num-
ber). Because each check adds about 33 instructions to probe the
BKS and determine the validity of the access and because heap
accesses are frequent in general, the instruction overhead is usually
high. If the instruction overhead is low, as is the case in gzip and
crafty, then there is little increase in the runtime due to monitoring.
However, if the instruction overhead is high, then there is substan-
tial increase in the runtime even if the no-monitoring IPC is low
allowing SMT to absorb the instruction overhead. This trend is true
for most of the benchmarks on the left side of the graph such as art,
equake, twolf, vpr, parser, and ammp. The only exception to this
trend is mcf whose no-monitoring IPC is so low that even a high
instruction overhead does not hurt performance. If the no-monitor-
ing IPC is higher, then SMT can absorb the overhead only to a
lesser extent, resulting in higher increase in runtime with monitor-
ing. gap, perl, and mesa show this effect.

Thus, monitoring introduces substantial runtime overhead.
While programs with low performance such as mcf can absorb
monitoring’s instruction overhead, we want programs with high
performance not to degrade. Therefore, we apply our optimizations
to reduce the overhead, both by overlapping monitor threads and
by eliminating software checks by memoizing in hardware.

 B. Locking strategy
We show the improvements achieved by better locking strate-

gies from Section III-C. Figure 4 shows the runtime normalized to
that of no monitoring. For each benchmark, the bars going from
left to right represent one monitor thread (same as Figure 3), seven
monitor threads with basic lock, with reader-writer lock, and with
biased-lock, respectively.

While one would expect runtime to improve with multiple
monitor threads, that is not the case for basic locks (e.g., equake).
Basic lock incurs contention which offsets the benefits of multiple
monitor threads. Comparing basic lock with biased lock, we see
that biased lock performs significantly better due to the reduced
contention for the readers. This improvement is despite the fact
that the monitor code using biased lock requires 42 instructions for
each check compared to the 33 required by basic lock. This
instruction count increase is because biased locks do not perform
the locality optimization done by basic lock of moving the hash
element to the top of the hash chain (Section III-C).

While the RW lock performs better than the basic lock, biased
lock is better than RW. In RW, the readers incur the overhead of its
local lock (Section III-C). Apart from the serialization due to the
local lock, RW requires 61 instructions for each check compared to

biased-lock’s 42. This increase in instruction count is due to t
local lock because neither biased lock and RW perform the loca
optimization. Thus, the local lock overhead is high.

Comparing one monitor thread with the biased lock, runtim
overhead decreases from an average of 414% to 157%.

 C. Hash-block size
As discussed in Section II-B, a small hash-block implies lon

hash chains due to breaking up larger allocation into many ha
blocks and a large hash-block implies long hash chains due
many smaller allocations falling into the same bucket. We vari
the hash block size from 256 bytes to 4KB and found that 5
bytes is the best hash-block size for our benchmarks.

 D. ARC
To reduce the runtime overhead further, we now use the AR

which exploits locality to reduce the number of checks in softwa
by memoizing recent checks in hardware.

Figure 5 shows the runtime for seven monitor threads usi
biased locks and 512-byte hash-blocks normalized to no-monit
ing case. For each benchmark, the bars going from left to right va
ARC sizes as 0, 8, 256, and 1024 entries. Note that the y-axis sc
is different than that of the previous graphs. There are two numb
on top of the bars for each benchmark. The top number is the ra
of the instruction count of monitoring over that of no monitoring
and the bottom number is the ARC miss rate, both for 1024-en
ARC.

We see that even an 8-entry ARC significantly improves run
ime over the no-ARC case. For many benchmarks, even 8 ent
suffice. For these benchmarks, the ARC miss rates (bottom nu
bers) are low allowing many checks to be memoized resulting
low instruction overhead (top number). Comparing this overhe
with the overhead without the ARC (the top numbers in Figure 3
we see a large reduction. The only exceptions are equake
twolf, both of which have large miss rates even with 1024 entrie
In equake’s case, there are over 1 million less-than-32-bytes me
ory allocations which overwhelm the ARC. An 1024-entry ARC
could only reach 32KB of equake’s 32MB memory footprint.

 E. Merging
To increase the effective size of the ARC and to shorten ha

chains we employ our merging scheme which merges BKS entr
of contiguous allocations of the same size. Figure 6 shows the ru
ime for seven monitor threads using biased lock, 512-byte ha
blocks, 256- and 1024-entry ARC, and merging and no-mergi
normalized to no-monitoring case.

Equake and twolf are the two benchmarks which have hi

Figure 3: Runtime overhead of monitoring

mcf art

equake
tw

olf vp
r

parse
r

ammp
gcc

bzip
2

gap
vo

rte
x
cra

fty gzip

perlb
mk

mesa
0

500

1000

1500

5.4
1.1

10.3

8.1
0.2

19.2
0.3

4.8
0.4

7.7
0.5

2.6
0.7

4.4
0.7

1.6
1.3

6.5
1.6

1.7
2.0

0.1
2.2

0.0
2.3

3.5
2.7

1.8
3.7

0.04100

R
un

tim
e

re
la

tiv
e

to
 n

o
m

on
ito

r
(%

)

Figure 4: Effectiveness of different locks

mcf art

equake
tw

olf vp
r

parse
r

ammp
gcc

bzip
2

gap
vo

rte
x
cra

fty gzip

perlb
mk

mesa
0

500

1000

1500

2000

2500

3000

100

R
un

tim
e

re
la

tiv
e

to
 n

o
m

on
ito

r
(%

)

1 monitor thread, basic lock
7 monitor thread, basic lock
7 monitor thread, RW lock
7 monitor thread, biased lock

s)
for
s,
in-
4].
t-of-

].
s,
gs

-
ad.

or-

ft-
th
for
ic
ut

are
fall

nd
n)
ries

at
s,

that
s
por-
its
he
-
red
istic

n
er
th
n-
ARC miss rates in Figure 5. Because equake allocates same-sized
objects (about 24 bytes), merging works well. Equake’s ARC miss
rate improves from 62% to 11%, resulting in the runtime overhead
almost vanishing. Because twolf’s allocation is not as regular as
equake’s, twolf’s improvement is less drastic. As explained in
Section III-B, different-sized objects are not meged due to difficul-
ties with padding. By reducing the rutime overhead of equake and
twolf, merging provides peformance-robustness to the ARC.

Perl’s runtime worsens because of its memory allocation char-
acteristics: perl invokes the realloc() library function often, which
not only reduces the possibility of merging, but also causes high
instruction overhead when merging is incorporated. This high
overhead is the result of realloc() performing both frees and mal-
locs, both of which incur instruction overhead due to merging.

For the rest of the benchmarks merging is not needed as their
ARC miss rates are good to start with. Consequently merging does
not improve them, but merging does not hurt them either.

 F. Performance summary
Summarizing our results in Figure 7, we show the normalized

runtime averaged over the benchmarks. The three groups from left
to right, show monitoring with the basic lock, with the biased lock
but no merging, and with the biased lock and merging. In each
group from left to right we show 1, 3 and 7 monitor threads.

Going from basic lock to biased lock corrects the disadvanta-
geous trend of worsening performance with more threads. In all the
groups, the ARC significantly improves performance, and a 256-
entry ARC is enough for most benchmarks. Merging improves
over the ARC by providing performance-robustness.

We see that we started with a 414% runtime overhead which
we reduced to 24% using a 256-entry ARC and 3 monitor threads
(the overhead is 18% for 7 monitor threads but using 7 SMT contexts

for pointer bugs may be too aggressive, so we highlight 3 thread.
This 24% overhead compares well with the 700% overhead
[16] and 200% overhead for [25] which also incurs false positive
and also with the fact the Java which performs bounds-checks
line in the user code incurs about 100% runtime overhead [4], [2
Because pesticide checks all heap accesses, it covers all ou
bounds heap accesses without false positives.

VI. RELATED WORK

We have discussed [16], iWatcher [26], and Accmon [25
Previous work on bug detection is broadly divided into two classe
static and dynamic checking. Static checking and analysis for bu
include work from [9], [11], [15] and [17]. We define static check
ing as those schemes that do not impose any runtime overhe
However, for languages like C, pointer alias problems prevent th
ough checking of code during compile time.

In dynamic checking, the earlier proposals are mainly so
ware solutions (e.g., BCC [13] and SafePointer [3]). However bo
these schemes have substantial runtime overhead (30 times
BCC and 5.4 times for SafePointer). More sophisticated dynam
checking schemes check for program-invariant violations [12] b
incur high runtime overhead (e.g., 500%).

Next we discuss dynamic schemes which use some hardw
support. DISE [14] is designed for checking whether accesses
within coarse-grain contiguous address spacerather thanfine-
grain objects. DISE checks all accesses against the same bou
(which can be kept in two registers for the whole executio
whereas we check accesses against individual object bounda
(need to be kept in memory, not registers).

HeapMon [19] also targets out-of-bounds bugs but checks
word granularity whereas we check at byte granularity. Thu
HeapMon would miss out-of-bounds accesses for object sizes
are not multiple of words. As [21] shows, “high-impact” bug
access a few bytes past objects. HeapMon would miss these im
tant bugs. Adding byte granularity to HeapMon would increase
overhead. Additionally, HeapMon uses an extra 128KB cac
(much larger than our 256-entry ARC), without which its perfor
mance overhead is 17%. However, this 17% cannot be compa
with our 24% overhead because Heapmon uses small, unreal
SPEC2000testinputs while we use realisticref inputs. HeapMon’s
performance would be worse with largerref inputs.

Mondrian Memory Protection [8] checks memory protectio
for arbitrary-sized memory blocks, and could be used for point
bugs. However, Mondrian has no ability to overlap checking wi
user thread. Implementing Mondrian with additional features (no

Figure 5: Effectiveness of the ARC

mcf ar
t

eq
ua

ke
tw

olf vp
r

pa
rse

r

am
mp

gc
c
bz

ip2 ga
p

vo
rte

x
cra

fty gz
ip

pe
rlb

mk
mes

a
0

500

1000
R

un
tim

e
re

la
tiv

e
to

 n
o

m
on

ito
r

(%
)

no ARC
8-entries ARC
256-entries ARC
1024-entries ARC

0.03
0.1%

15.9%

16.2
61.9%

3.6
77.4%

0.01
0.1%

0
0%

1.2
27.4%

0.1
1.4%

0
0%

0.03
1.6%

0.3
7.7%

0
0.2%

1.0

100

0
0%

0
0%

0
0%

Figure 6: Effectiveness of merging

mcf ar
t

eq
ua

ke
tw

olf vp
r

pa
rse

r

am
mp

gc
c
bz

ip2 ga
p

vo
rte

x
cra

fty gz
ip

pe
rlb

mk
mes

a
0

100

200

300

400

500

600

700

no merging 256ARC
no merging 1024ARC
with merging 256ARC
with merging 1024ARC

R
un

tim
e

re
la

tiv
e

to
 n

o
m

on
ito

r
(%

)

Figure 7: Runtime overhead summary

no
 A

RC
10

24
 A

RC

no
 A

RC
8

ARC
25

6
ARC

10
24

 A
RC

8
ARC

25
6

ARC
10

24
 A

RC

0

100

200

300

400

500

600

700

R
un

tim
e

re
la

tiv
e

to
 n

o
m

on
ito

r
(%

)

basic lock biased lock,no merge biased lock,merge

1 monitor threads
3 monitor threads
7 monitor threads

ers

ke,
rd:

o-
-

nd

gs

s,

ing

e

d
.
and

-

In

r-
a-
ng

-
g
n

ry.

em

ne-
In

ad-

n
f

el
-

s.
existent in [8]) to allow this overlap would need significantly more
complex and dedicated hardware to service or buffer checks while
checker cache misses are being serviced. [8]‘s performance num-
bers cannot be compared to ours because [8] gives an overhead on
the number of memory accesses using SPEC2000test and train
inputs but not runtime overhead withref inputs.

VII. CONCLUSION

The key challenge with dynamic monitoring schemes for
detecting pointer bugs is the runtime overhead. Previous
approaches have used thread-level speculation (TLS) to reduce the
overhead. However, the approaches still incur substantial slow-
downs while requiring complex TLS hardware. We explicitly mul-
tithreaded the monitor code and use SMT to exploit the parallelism
in the monitor code, avoiding TLS’s complexity.

Out scheme still slows down the user thread due to two prob-
lems: instruction overhead and insufficient overlap among the
monitor threads. To address instruction overhead, we exploited the
natural locality in the user thread addresses and memoized recent
checks in a small table called the allocation-record-cache (ARC).
However, programs making and accessing many small memory
allocations cause many ARC misses and reduce the effectiveness
of ARC. To address this issue, we make the key observation that
because adjacent memory objects result in ARC entries with con-
tiguous address ranges, the entries can be merged into one by sim-
ply merging the ranges into one. This merging increases the
effective size of the ARC. Finally, insufficient overlap among mon-
itor threads occurs because of inefficient synchronization to protect
the allocation data structure updated by the user thread and read by
the monitor threads. We made the key observation that because
monitor-thread reads occur for every check but user-thread writes
occur only in allocations and deallocations, monitor reads are
much more frequent than user writes. We proposed a locking strat-
egy, called biased lock, which puts the locking overhead on the
writer away from the readers.

We show that starting from a runtime overhead of 414% pesti-
cide reduces this overhead to a respectable 24% running three
monitor threads on an SMT using a 256-entry ARC with merging
and biased lock. This 24% overhead compares well with previous
schemes’ 700% and 200% and also with the fact the Java which
performs bounds-checks in-line in the user code incurs about
100% runtime overhead. Because pesticide checks all heap
accesses, it covers all out-of-bounds heap accesses without any
false positives.

REFERENCES
[1] Software errors cost us economy $59.5 billion annually. http://

www.nist.gov/public_affairs/releases/n02-10.htm, 2002.
[2] Haithm Akkary and Michael Driscoll. A Dynamic Multithreading Proces-

sor.Proceedings of 31st Int’l Symposium on Microarchitecture, Dec 1998.
[3] Todd Austin, Scott Breach, and Gurindar Sohi. Efficient Detection of All

Pointer and Array Access Errors. InProceedings of the ACM SIGPLAN 94
Conference on Programming Language Design and Implementation,June
1994.

[4] Chris Bentley, Scott Watterson, David Lowenthal, and Barry Rountree.
Implicit Java Array Bounds Checking on 64-bit Architecture. InProceed-
ings of the 18th annual Int’l Conference on Supercomputing,June 2004.

[5] Doug Burger, Todd Austin, and Steve Bennett. Evaluating Future Micro-
processors: The Simplescalar Tool Set. Technical Report CS-TR-1996-
1308, University of Wisconsin, 1996.

[6] P. Courtois, F.Heymans, and D. Parnas. Concurrent Control with read
and writers. InComminication of the ACM, Vol 14, No10, pp.667-668, Oct
1971.

[7] Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bak
Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stackgua
Automatic Detection and Prevention of Buffer-Overflow Attacks. InPro-
ceedings of the USENIX Summer Conference (USENIX 98), Jan. 1998.

[8] Josh Cates, Emmett Witchel and Krste Asanovic. "Mondrian Memory Pr
tection". InProceedings of the 10th Int’l Conference on Architectural Sup
port for Programming Languages and Operating Systems, Oct. 2002.

[9] David Evans. Static detection of dynamic memory errors. InProceedings of
the ACM SIGPLAN 96 Conference on Programming Language Design a
Implementation,May 1996.

[10] Sudheendra Hangal and Monica S. Lam. Tracking down software bu
using automatic anomaly detection. InProceedings of the 24th Int’l Con-
ference on Software Engineering, May 2002.

[11] David Hovemeyer and William Pugh. Finding Bugs is Easy. InProceedings
of the 19th ACM Conference on Object-Oriented Programming, System
Languages and Applications, Dec. 2004.

[12] Richard Jones and Paul Kelly. Backwards-Compatible Bounds Check
for Arrays and Pointers in C Programs. InProceedings of the 3rd Int’l
Workshop on Automated Debugging, May 1997.

[13] Samuel Kendall. BCC: Run-time Checking for Cprograms. InProceedings
of the USENIX Summer Conference (USENIX 83), Summer 1983.

[14] E. Christopher Marc Corliss and Amir Roth. "DISE: A Programmabl
Macro Engine for Customizing Applications". InProceedings of the 30th
Int’l Symposium on Computer Architecture, June 2003.

[15] Madanlal Musuvathi, David Park, Andy Chou, Dawson Engler, an
David Dill. Cmc: A Pragmatic Approach to Model Checking Real Code
In Proceedings of the 5th Symposium on Operating Systems Design
Implementation, Dec. 2002.

[16] Jeffery Oplinger and Monica Lam. Enhancing Software Reliability with
Speculative Threads. InProceedings of the 10th Int’l Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Oct
2002.

[17] D. Park, U. Stern, J. Skakkebask, and D. Dill. Java Model Checking.
15th IEEE Int’l Conference on Automated Software Engineering, Sept.
2000.

[18] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy She
wood, and Brad Calder. Using SimPoint for Accurate and Efficient Simul
tion. In Proceedings of the Int’l Conference on Measurement and Modeli
of Computer Systems (SIGMETRICS 03), June 2003.

[19] Yan Solihin, Rithin Shetty, Mazen Kharbutli and Milos Prvulovic. Heap
Mon: a Low Overhead, Automatic, and Programmable Memory Bu
Detector. In Proceedings of the 1st Watson Conference on Interactio
between Architecture, Circuits, and Compilers (PAC2 04), Oct. 2004.

[20] J. Gergory Steffan, Christopher Colohan, Antonia Zhai, and Todd Mow
A Scalable Approach to Thread-level Speculation. InProceedings of the
27th Int’l Symposium on Computer Architecture, June 2000.

[21] M. Sullivan and R. Chillarege. Software defects and their impact on syst
availability: A study of field failures in operating systems. InProceedings
of 21st Int’l Symposium on Fault-Tolerant Computing, 1991, June 1991.

[22] Dean Tullsen, Jack Lo, Susan Eggers, and Henry Levy. Supporting Fi
grained synchronization on a Simultaneous Multithreading Processor.
5th Int’l Symposium on High Performance Computer Architecture, 1999.

[23] Dean Tullsen, Susan Eggers, and Henry Levy. Simultaneous Multithre
ing: Maximizing On-chip Parallelism. InProceedings of the 22nd Int’l
Symposium on Computer Architecture, June 1995.

[24] Hongwei Xi and Songtao Xia. Towards Array Bound Check Elimination i
Java Virtual Machine Language. InProceedings of the 1999 Conference o
the IBM Center for Advanced Studies on Collaborative Research, 1999.

[25] Pin Zhou, Wei Lin, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Samu
Midkiff, and Jose Torrellas. AccMon: Automatically Detecting Memory
related Bugs via Program Counter-Based Invariants. InProceedings of the
37th Int’l Symposium on Microarchitecture, Dec 2004.

[26] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Joseph Torrella
iWatcher: Efficient Architectural Support for Software Debugging. InPro-
ceedings of the 31st Int’l Symposium onComputer Architecture, June
2004.

	TABLE I: Simulation parameters
	I. INTRODUCTION
	II. OUR SCHEME
	A. Overview
	B. Software support
	Figure 1: Proposed monitoring scheme

	C. Hardware support
	III. SUPPORTING EFFICIENT MONITORING

	A. Allocation-record-cache (ARC)
	B. Range merging
	C. Biased Locks
	IV. EVALUATION METHODOLOGY
	Figure 2: Three lock schemes

	V. RESULTS

	A. Runtime overhead due to monitoring
	Figure 3: Runtime overhead of monitoring

	B. Locking strategy
	Figure 4: Effectiveness of different locks

	C. Hash-block size
	D. ARC
	Figure 5: Effectiveness of the ARC

	E. Merging
	Figure 6: Effectiveness of merging

	F. Performance summary
	Figure 7: Runtime overhead summary
	VI. RELATED WORK
	VII. CONCLUSION

	REFERENCES

