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Abstract

A buffer overflow attack is perhaps the most common attackd usecompromise the security of a
host. This attack can be used to change the function retutressl and redirect execution to the attacker’s
code. We present a hardware-based solution, called SmasthGio protect against all known forms of
attack on the function return addresses stored on the progtack. With each function call instruction, the
current return address is pushed onto a hardware stackuriestruction compares its address to the return
address from the top of the hardware stack. An exceptiorigedao signal the mismatch. Because the stack
operations and checks are done in hardware in parallel Wehusual execution of instructions, our best-
performing implementation scheme has virtually'nperformance overhead. While previous software-based
approaches’ average performance degradation for the S nchmarks is only 2.8%, their worst-case
degradation is up to 8.3%. Apart from the lack of robustnasserformance, the software approaches’ key
disadvantages are less security coverage and the needctomp#ation of applications. SmashGuard, on

the other hand, is secure and does not require recompilafiapplications.

Index Terms

Buffer overflow, function return address, hardware stack.

1Beacause we are modifying hardware, it is impossible to guaranteeozerbead without an actual hardware implementation.



|. INTRODUCTION

OMPUTER security is critical in this increasingly netwodk&vorld. Attacks continue to
C pose a serious threat to the effective use of computers ded disrupt commercial services
worldwide, resulting in embarrassment and significant lofssevenue. While techniques for pro-
tecting against the malicious attacks have been confinedapity to the domain of software, the
increasing demand for computer security presents a newrtyppty for hardware research. Recent
examples are buffer overflow protection features employegrocessors by AMD [1], Intel [2]
and Transmeta Corporation [3]. These features can be atil®gt Windows XP’s Data Execution
Protection mechanism [4] to block any attempt to executesdomm memory reserved for data only,
i.e., the stack and the heap. These efforts, although nopledensolutions to buffer overflows, are
indications of the severity of the attacks and the incloatiowards hardware based methods to find
a solution.

In this paper, we describe such an opportunity. We proposeoarichitectural support for au-
tomatic detection/prevention of what is perhaps the mosvglent vulnerability today: attacks on
the function return address pointer. The most common examipan attack on the function return
address pointer is a buffer overflow attack [5]. The Code Redafg] Code Red Il [7] worms of
2001, W32/Blaster [8] and W32/Nachi-A [9] worms of 2003 and $a$%0] of 2004 all exploited
such a vulnerability in Microsoft’s IIS [11], Windows RPC [[Li&nplementation and Local Security
Authority Subsystem Service (LSASS) [10], respectivalyptopagate themselves across the Internet.
Although it is fairly simple to fix an individual instance otaffer overflow vulnerability, it continues
to remain one of the most popular methods by which attackamgpcomise a host. In 2002, buffer
overflow vulnerabilities were in 10 of the 31 advisories psiéd by CERT [13] and in 5 of the top
20 vulnerabilities compiled by the SANS Institute [14]. 1B, 17 out of 28 advisories published
by CERT [15] and 13 out of the top 20 vulnerabilities compilgdtbe SANS Institute [16], have
been on buffer overflow vulnerabilities.

Buffer overflow attacks overwrite data on the stack and can ds# Uo redirect execution by
changing the value stored on the process stack for the ratidress of a function call. We propose
SmashGuard, a hardware-based approach to detecting sacksatn which we add a small hardware

stack to the pipeline. With each function call instructidine return address and the current stack



TABLE |
APPLICATIONS DETECTED VULNERABLE TO BUFFER OVERFLOW ATTACRB

Linux/UNIX || Bind, RPCs, Apache, SendMail, SNMP, SSH, NIS/NSF, OpenSSL
Windows IS, MS SQL, IExplorer, RPCs, MSDAC

frame pointet are pushed onto the hardware stack. A return instructiorpeoes its return address
against the address from the top of the hardware stack. A atgdnmindicates an attack, and raises

an exception.

A. Contributions

SmashGuard is a novel hardware-based security technolbghwwrovides a combination of ad-
vantages that none of the software methods can provide.altveeadvantages SmashGuard provides
are robust performance, broad security coverage, applicatansparency and low implementation
cost. We discuss each of these benefits in turn.

Robust Performance: Because the stack operations and checks are done within Ciutiiens,
and in parallel with the usual execution of call and returstrnctions, the best-performing
SmashGuard implementation scheme incurs virtually nooperdnce overhead.

Security Coverage: Many software solutions do not protect against all forms ttdck on the
return address pointer. For instance, they may fail to ptagainst attacks that overwrite
the return address indirectly. In contrast, SmashGuartepgi® against all forms of attack
on the return address pointer.

Transparency: Many software solutions’ key disadvantage is the need foomgilation of
the source code to protect the program. SmashGuard, on liee lband, is a hardware
modification with a kernel patch that supports the hardwahriology, and therefore
protects all applications.

Low Implementation Cost: Finally, the cost of our solution is a modest 2-KB storage tfo
hardware stack and a 2-KB storage for an internal table ugedibbest-performing imple-
mentation scheme. Addition of storage buffers and modi6oatto the microarchitecture
are basic steps of designing a new processor version. Iti@ddince the stack is accessed

2We explain why we store the Stack Pointer to properly hasdiej np() /| ongj np() in Section IV-B.
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at instruction commit, which is not on the execution pathnstiuctions, the critical path

of the pipeline is not affected.

B. Paper Organization

In Section Il we describe the vulnerability of the functi@turn address and the different ways in
which an attacker can exploit a vulnerability. In Sectiohwe summarize related work to point out
their strengths and weaknesses, both in terms of perforenand functionality. Then in Section IV
we describe our proposed hardware solution in detail. Irii@e& we present performance results.

Finally, in Section VI we provide our conclusions and owdlifuture extensions to our work.

II. ANATOMY OF AN ATTACK

This section provides an overview of the vulnerability ofura address pointers on the stack and

describes how “stack smashing” attacks exploit this vidhgity to execute the attacker’s code.

A. The Stack

Before describing the vulnerabilities and the attacks &éfigahe function return address, we first
briefly review the memory organization of a process. On tlieHand side of Figure 1, we show
the five logical areas of memory used by a process. The tdytymortion contains the program
instructions, literal pool, and static data. The stack isdut implement functions and procedures,
and the heap is used for memory that is dynamically allocatedhe process during run time.
During thefunction prologue the function arguments are pushed on to the stack in revedss,
and then the return address is pushed onto the statke return address holds the address of the

30ur discussion is based on the x86 architecture because it is widely kifiomother architectures, details will vary slightly.



instruction immediately following the function call and @ address in the program code section
of the process’ memory space. The prologue finishes by pgstinthe previous frame pointer

followed by the local variables of the function. The functiarguments, return address, previous
frame pointer, and local variables comprisestack frame Because functions can be nested, the
previous frame pointer provides a handy mechanism for duidkallocating space on the stack
when the function exits. During thiinction epilogugthe return address is read off of the stack

and the stack frame is deallocated by moving the stack poiatéhe previous stack frame.

B. Vulnerability of the Function Return Address

The return address in a stack frame points to the next irtgtru¢co execute after the current
function returns (finishes). This introduces a vulnerapilat allows an attacker to cause a program
to execute arbitrary code. An attacker can overwrite thectian return address with one of the
exploit techniques explained in Section II-C.1 to redireaaition to the attacker’s code. When the
function exits, the program execution will continue frone tlocation pointed to by the stored return
address. On successful modification of the return addressattacker can execute commandgh
the same level of privilegas that of the attacked program. If the compromised progsararining
as root, then the attacker can use the injected code to spawot shell, and take control of the

machine. Recent exploits fall into the category of worms [8], [10].

C. Exploiting the Vulnerability

There are several methods for overwriting the functionrreaddress and two targets to redirect
execution. In this section, we describe different vulnéitaéds that allow an attacker to overwrite
the return address on the stack, possible targets to whiddicect execution, and how the attacker
can inject the crafted exploit into the vulnerable code.

1) Overwriting the Return Address on the sta&uffer overflow attacks are the undesirable side-
effects of unbounded string copy functions. The most comer@amples from the C programming
language arestrcpy() and gets() which copy each character from a source buffer to a
destination buffer until a null or newline character is teed, respectively. The vulnerability arises
because neither checks whether the destination bufferge knough to contain the source buffer’s

contents. If the destination buffer is a local variable (dmefrefore stored on the stack frame), then



an attacker can exploit this vulnerability to overflow thdfeuand overwrite a pointer on the stack
or the return address. Note that for most architectures, (8%, SPARC, MIPS) the stack grows
down from high to low addresses, whereas a string copy ontdek snoves up from low to high
addresses. It is trivial to overflow a buffer to overwrite tieéurn address because it is located above
the local variables in that particular stack frame. There taro types of buffer overflow attacks to
overwrite the function return address:

Type 1. A local buffer (character array) is filled in excess of its hds (overflowed) to

overwrite the return address on the stack, which is adjaderthe local buffer; or

Type 2: A local buffer is overflowed to overwrite an adjacent pointariable with a pointer

to the return address on the stack. Then the return addressnaritten by an assignment
to the pointer.

Format string attacks are relatively new and are thought to have first appeared th 2000
[17]. We provide a brief overview here, but for details thader is referred to [17], [18]. Similar
to a buffer overflow attack, format string attacks modify tleurn address in order to redirect
the flow of control to execute the attacker’s code. In the Qymmming language, format strings
allow the programmer to format inputs and outputs to a progusing conversion specifications.
For example, in the statemeptintf ("% is % years ol d.", nane, age), the string in
guotes is thdormat string % and %l are conversion specifications, andne andage are the
specification arguments. Wher i nt f () is called, a stack frame is created and the specification
arguments are pushed on the stack along with a pointer toatmeat string. When the function
executes, the conversion specifiers will be replaced by ripen@ents on the stack. The vulnerability
arises because programmers write statementsplikent f (stri ng) instead of the proper form:
printf("%", string). The statements behave identically, unlessi ng contains conversion
specifiers. In that case, for each conversion speciier,nt f () will pop an argument from the

stack. For example, consider the following:
int fool(char *str) { printf(str); }

If the user calld 001() with an argument strin %08x. ¥98x" , the function will pop two words
from the stack and display them in hex format with a dot (.) @tvieeen. Using this technique, the

attacker can dump the contents of the entire stack. The kéyigoattack is the' %" conversion

“Note that the frame pointer is stored between the local variables and the aeliress on the stack.



specifier, which pops four bytes off the stack and writes thenlmer of characters in the format
string before"” %" to the address pointed to by the popped four bytes. An aftacke craft a
format string with length (in bytes) equal to the addresshefexploit code, with the last four bytes
(a 32-bit address) identical to the address of the functaarn address on the stack followed by a
final " %" . When the format string is decoded byai nt f (), ° the number of bytes written thus
far (this number is the address of the shellcode) will betemito the address popped off the stack
which will be the address of the function return address.eNbat length specifiers allow creation
of arbitrarily long format strings without needing the stiitself to be of equivalent length.

Like buffer overflow attacks, format string attacks can beduto redirect execution to shellcode
in the stack (or heap) or to theeyst en{) call in libc. Format string attacks are similar to Type 2
buffer overflow attacks in the sense that the return addes®e modified without touching anything
else on the stack, so methods that can prevent Type 2 buefl@wv attacks can also prevent format
string attacks.

Integer Overflows: We find it valuable to mention integer overflows in our disemsf attacks
on the return address because, even though they do notylmeetwrite the function return address,
they lead to other attacks (which are generally buffer ooers). The behavior of an integer overflow

int fool(char =*str, char =str2,
unsi gned int size, unsigned int size2) {
char | ocal [ 256];
if((size + size2) > 256) { /+*[a]*/
return (-1);
}

strncpy(local, str, size); /*[b]=*/
strncpy(local + size, str2, size2),;

return (0);

}

Fig. 2. Integer Overflow Example

is undefined in ISO C99 standards, and most compilers ignera.tithis becomes dangerous when
the integer that is overflowed is used to calculate the siza béffer or the index into an array.

Unsigned integers do not overflow but wrap around to 0. Thengk& in Figure 2 demonstrates a
possible integer overflow attack that leads to a buffer cwerthttack. An attacker can bypass the

validation check af a] and overwrite past the end of thecal buffer with two large unsigned

SFormat string attacks are possible with variqus nt f () family of functions.



numbers insi ze andsi ze2 that result in a number smaller than 256 when added togdtber
more detailed explanation, the reader is directed to [19].
2) Where to redirect control: After an attacker overflows a buffer to overwrite the retuddr@ss,

there are two ways to redirect execution to compromise a host

Shellcode: The most well-known method to redirect execution is to ovéenthe return address
with an address that points to a location in memory at whi@h attacker has placed an
exploit code Exploit code is a hexadecimal representation of machisguntions which
most frequently either spawns a shell or is a worm. Even thqalgcing the exploit code
into the local buffer being overflowed is a common technighe, code can alternatively
be placed above the return address on the stack, or in the Hahap attacked program
has root privilege, then when control is redirected to thedared exploit code, the code is
executed with root privileges.

A buffer overflow usually contains both executable code alt agthe address of where
that code is stored on the stack. Frequently, this is a ssigleg constructed by the attacker
with the executable code first followed by enough repetgtiohthe target address that the
return address is overwritten. This requires knowing dyaehere the executable code will
be stored or else the attack will fail. Attackers get aroumns by prepending a sequence of
unneeded instructions (such HEP) to their string. This creates ramp or sledgeleading

to the executable code. Now the modified return address adglsito point somewhere
in the ramp to cause a successful attack. While it still takeseseffort to find the proper
range, an attacker only needs a close guess to hit the target.

system() function: The second choice for redirecting execution is called rtern-to-libc
attack. It was invented to bypass protection methods thak the stack as non-executable
[20], which prevents execution of code on the stack. Thermetio-libc attack eliminates
the need for shellcode by redirecting execution to slyest erm() call to create a shell.
All the attack needs to do is copy the necessary argumenthémyst enm() call onto
the stack and change the return address to point to theyiladdress osyst en() .

3) Methods of inputting the exploit cod&here are three main ways of injecting malicious code

into the vulnerable program. These are 1) user input, 2) ar&twonnection and, 3) environment

variables. For example, a program might ask for a user or fil@menfrom standard input. If the



program useglet s() then a sufficiently large user response could overflow thgetaouffer. An

operating system might utilize a small buffer for the hamgliof ICMP echo packets (as they are
normally quite small) and suffer an overflow if an attackerdsean unusually large packet. Similarly,
if a program attempts to determine a user’s home directaaytve HOME environment variable,
a malicious user might be able to cause an overflow by settiagvélue of the variable to be an

unusually long value.

[11. RELATED WORK

Various tools and methods have been devised to stop theskstvith varying levels of security
advantage and performance overhead. Solutions that triideigh levels of security for better
performance prove incomplete and are eventually bypasgeattackers. On the other hand, high
security solutions seriously degrade the system perfocmalue to the high frequency of integrity
checks and high cost of software-based memory protectioroth®er issue that diminishes the
feasibility of these tools and methods is their lack of tpErency to user applications. We have split
the existing work into five groups: Static and Dynamic An&ysf Source Code, Modifications to
the Executable, Modifications to the Compiler, Modificatiortlte System Software, and Hardware
solutions. A thorough list of all buffer overflow protectionethods and tools is available frofie

Buffer Overflow Pagg¢21].

A. Static (and Dynamic) Analysis of Source Code

Static analysis techniques try to identify potentially darous pointer de-references and unsafe
function calls in the source code. Because detecting bufferflow vulnerabilities statically is
undecidable, these methods work on heuristics and thereferneither sound nor complete. Several
factors affect the inadequacy of static analysis: difficolt bounds checking, pointer analysis, inter-
procedural analysis, and unavailability of the progranmuingt compile time. There is a collection
of freely available auditing tools for C/C++ code, but Wilané¢ al. [22] reports that static analysis
tools do not have a sufficiently low false positive rate to heige to programmers, therefore they
are merely used for security audits.

Wagner et al. [23] formulated the buffer overrun detectioobfem as aninteger constraint

problem and used graph theoretic techniques to solve thstreamts. This technique has a high
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rate of false alarms, cannot handle pointers, double psirtealiasing. The reported analysis time
for 32K lines of C code is on the order of tens of minutes.

In a recent paper, Dor, et al. [24] combined all known typessttic analysis methods to
propose a toolCSSV, for statically detecting buffer overflows. Using procealuanalysis, CSSV
in-lines the source code with annotations that have prest-pand side-effect conditions (which
they name “contracts”), analyzes pointer interaction,ckleor runtime string manipulation errors
with assert (), and finally performs conservative integer analysis. Wabpect to related work,
a 93% drop in false alarm rate is reported however, manualiting contracts still renders a high
implementation cost.

Larochelle and Evans [25] proposed a static analysiskoii upon LCLintwith more expressive
annotations. Annotations are the semantic comments teatfgphe highest index that can be safely
written to and read from in a buffer. The annotations are useatktect inconsistencies between the
code written and its expected behavior. This method doesleisict all instances of vulnerabilities
and has a high rate of false alarms.

Dynamic checks inserted by static analysis analyze theinu@-contents of the variables during
program execution. However, dynamic analysis is compartatly more complex than static analysis
and better results come with the price of increased computéime.

Haugh and Bishop [26] extended Wagner, et al.’s [23] methodyaamic execution. This method
uses the STOBO tool to convert the vulnerabilities in the sewode to the instrumented safe
versions. The paper reports that this method comparesdialyoto ITS4 and Wagner, et al.’s original
method in that it detects more vulnerabilities and has fefakse positives.

Yong and Horwitz [27] proposed a static analysis tool witmawyic checks to protect C programs
from attacks via invalid pointer dereferences. The methad & low runtime overhead, no false
positives, requires no source code modification and p®tagainst a wide variety of attacks via
bad pointer dereferences. The main idea is to use statiysaamdb detectun-safepointers, and
protect memory regions that are not legitimate targets e$e¢hpointers. This method maintains a
mirror of the memory locations that can be pointed Uny-safepointers using one bit for every
byte of the memory to specify whether each mirrored byte isevgafe, i.e.)Jegitimate The major
drawback of this approach is that it doubles applicationtmne.

Toth and Kruegel [28] proposed abstract payload executiddTd P requests to detect the NOP
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sledge which precedes the shellcode in most Type 1 buffaflows. Toth and Kruegel report only
a 1.4% increase in client contention rate and 2.9% decreaskent throughput. This method will

only detect attacks that use a NOP sledge with the shellcode.

B. Modification of the Executable

Bhatkar et al. [29] proposed a method calkedidress Obfuscationthat transforms the object file
at link time (or the executable at load time) to 1) randomize base addresses of stack, heap, and
dynamically loaded libraries; 2) randomize the locationha routines and static data in executables;
3) permute the order of local variables on stack, staticaldes and routines in shared libraries and
executables; and 4) insert random gaps in stack frames,ebatwuccessive malloc buffers and
between static variables. This method, which is very simidaPaX [30] except that PaX is a kernel
patch, requires no change to the OS or to the compiler. Bottheget methods are probabilistic
methods that only harden, but do not eliminate, the atté&kdances of success. This method also
imposes a process startup overhead.

Prasad and Chiueh [31] presents a static binary translatethad that saves a redundant copy
of the return address on the stack in the return addressit@goRAR) at the function prologue,
compares the saved return address with the original at thetifun epilogue, and flags an exception
upon a mismatch. It is implemented by inserting a jump irtdion in the prologue and the epilogue
to jump to the corresponding code snippet and jump back ttneadal prologue and real epilogue.
The paper reports a 3% runtime performance overhead and &6kirpcess space overhead. This
method is not secure because the RAR is protected withntime zonéswhich makes this method

vulnerable to Type 2 attacks.

C. Modification of the Compiler

StackGuard’ [33], [34] is one of the earliest and most well-known compidased solutions.
The additional code inserted at compile time places an énte known value (called a canary)
between the return address and the local variables on thlke atahe function prologue. If a local
buffer on the stack is overflowed, the attacker must oveewhe canary to reach the return address.
StackGuard supports two types of canaries. Tamdom canarymethod inserts a 32-bit random

®Mine zones are read only protected regions above and below the RARt&rpoverflow into or out of the RAR.
"Microsoft also adopted a StackGuard-like mechanism in Visual C++.NE7) [32].



12

canary after the return address in the function prologud,cirecks the integrity of its value before
using the return address at epilogue. Tkeeaminating canaryconsists of four string termination
charactersnul I , CR, -1, andLF. Note that each one of these characters is a terminating valu
for at least one unbounded data copying function. If theckéatries to overwrite the canary with
the same terminating values, the overflow will never reach rifturn address because the string
copy will be terminated at the canary.

As pointed out by Bulba and Kil3r [35], StackGuard only prasemgainst Type 1 buffer overflows.
In addition, it requires recompilation of the source codecdese it modifies the stack contents,
programs dependent on the stack structure (e.g., debgggaysno longer work. Finally, the random
canary needs to be protected. For every function call angrahstruction executed StackGuard
must write the random canary to the stack and compare it anreA varying performance overhead
of 6-80% is reported in [33] which is a function of the ratio thie instructions required for the
modified prologue and epilogue to the number of original fiomcinstructions.

StackShield[36] is a compiler modification that provides two differembfection mechanisms for
protecting the return addresSlobal ret stackimplements a separate stack for the return addresses
in a global array of 256 32-bit entries. For each function, ¢aé return address is pushed onto both
the program stack and the redundant global stack. On funeéiturn, the return address stored on
the separate stack is usdglet range checgka faster alternative to global ret stack, saves the return
address of the currently executing function in a global lorigger, and then compares it to the return
address on the program stack when the function returns.ritbod has a low overhead, however
it leaves the global ret stack and global return addressevabie to Type 1 and Type 2 attacks.
In addition, return addresses from the program stack anddfendant stack are not compared
therefore, attacks are prevented bot detected

Return Address Defender[37] creates a global integer array called Beturn Address Repository
(RAR)that holds the copies of the return addresses pushed onable Jthere are two versions
of RAD that differ in the amount and cost of protection to the RARe first and less expensive
method,MineZone RADinserts two “minezones” above and below the RAR and marks tasm
read-only with therpr ot ect () system call. Any attempt by the attacker to overflow a buffed a
overwrite the RAR would cause a trap and be denied by the OS.mbthod protects against Type
1 buffer overflows but can be defeated by Type 2. The secorslovenf RAD, Read-Only RAD
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marks the entire RAR as read-only witipr ot ect () to achieve high security. This incurs a large
overhead because during the function prologue, the RAR ikedaas writable, the return address
is saved into the RAR, and then the RAR is marked as read-only.aganilar to MineZone RAD,
this method cannot prevent return-to-libc attacks whiclravite function pointers on the stack.

Chiueh, et al., report a performance degradation of 5-40%/oezone RAD, and up to 1000%
degradation for the more secure Read-Only RAD [37].

ProPolice[38] is a gcc extension that utilizes a mechanism similah&d in StackGuard, but with
additional features. It adds some protection against Typ#eatks by reordering the local variables
stored on the stack such that the buffers are right beforeanary and hence cannot be used in
the same function’s scope to overwrite a pointer. This toa$ wsed to compile OpenBSD [39] and
is part of its distribution. ProPolice requires recompdatof the source code, and like Stackguard,
it modifies the stack contents, so, programs dependent ostdle& structure may no longer work.

PointGuard [40] is a compiler technique to defend against attacks ugoigters. A modification
to gcc enables pointers to be encrypted with a per-procesR K& while in memory, and to be
decrypted only when they are loaded into the registers. Tdublnique requires recompilation of
source code and incurs up to 21% slowdown on OpenSSL Speetirharks [41].

CRED (C Range Error Detector) [42] is a dynamic buffer overflow detector implemented as
an extension of the GNU C compiler. CRED uses a bounds checketbaa that replaces every
out-of-bounds (OOB) pointer value with the address of a gp&@OB object created for that value.
Tested on twenty open-source programs, CRED claims to avdidietecies of previous dynamic

buffer overrun detectors. CRED imposes 26% overhead andresqcdmpilation of source code.

D. Modifications of the Library

FreeBSD Stack Integrity Patch (Libparanoia): Alexandre Snarski posted a patch to FreeBSD
[43] in 1997 to check the integrity of the stack and later ioy&d on the same idea and called it
Libparanoia [44]. The patch modifies the insecure libc fiomg likest rcpy() andsprintf ()
to kill the process if the destination buffer contains a lstalame pointer (FP).

Baratloo et al. [45]-[47] proposed two dynamically loadaliteary methods to protect against
buffer overflow attacks. Neither of these methods requireorapilation unless the program is

statically linked. The first method.ibsafe intercepts all calls to vulnerable library functions,
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such asstrcpy() andstrcat (), and executes their safe versions which implement the same
functionality as the original but employ bounds checkingtevent buffer overflows. This method
estimates the upper bound on the size of the buffer to be teokthe stack frame, so the return
address can not be overwritten. Libsafe protects agains¢ Tybuffer overflows only since it still
allows for overwriting a pointer or a function pointer in thazal variables area of the stack which
can be used to modify the return addrdsbverify , on the other hand, is a run time implementation
of StackGuard, which inserts function return address atifbn code at execution time via a binary
re-write of the process memory instead of at compile timdaveérify also protects against only
Type 1 buffer overflow attacks.

Baratloo, et al., report an average overhead of 15% for agipdics protected by Libsafe, Libverify,
and StackGuard.

FormatGuard [48] is a patch to glibc that provides general protectionirgaformat bugs.
FormatGuard uses particular properties of GNU CPP (the CrBceBsor) macro handling of variable
arguments to extract the count of actual arguments. Thelobtunt of arguments is then passed to
a safepri nt f () wrapper. The wrapper parses the format string to deternomerhany arguments
to expect, and if the format string calls for more argumehgéntthe actual number of arguments, it
raises an intrusion alert and kills the process. This mefaiglto protect against calls for i nt f ()
when the correct number of arguments is given but they areohtite expected types, i.e., if an
integer is received when a double is expected. It also fatlsei call topri nt f () is implemented
via a function pointer or if the low level functions @fri ntf () (e.g.,vsprintf()) are called
directly, or another 1/O library is used. FormatGuard ing®87% overhead opri ntf () calls

which result in an 1.3% run-time overhead for their set ofdmenmarks [48].

E. Modifications of the Kernel/OS

The first kernel-based solutio8tackGhost[49], is a patch to the OpenBSD 2.8 kernel under the
Sun SPARC architecture. Frantzen and Shuey performed exgais on three methods for protecting
the return address. The first two XOR the return address ost#ol with a cookie before writing it
on the stack and then XOR it again with the same cookie befaredturn address is popped off the
stack. This method distorts any attack to the return addvesdoes not detect it, therefore, another

method is used to detect the attacks. In SPARC architectueememory is four byte aligned and
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the least significant (LS) two bits are always 0s. So, the ti® dre set at the function prologue
and verified to be set at the epilogue. If the attacker is n@rewf this, they will inject a four byte
aligned address in the return address and therefore trek atith fail. But, once the attacker figures
this out, they can set the two LS bits of the address that theayt wo jump to, and then overwrite
the return address with the modified address. The XOR coolethad comes with two flavors.
XOR cookie per-kernel and XOR cookie per-process. Both afeéhmethods (especially per kernel
XOR cookie) are easily bypassable since the cookie can beefigout if the contents of the stack
frame can be observed (e.g., using the method in the formag sittacks as described in Section
[I-C) and the return addresses are extracted from the probraaries. Frantzen and Shuey report
17.44% overhead for per-kernel XOR cookie and 37.09% owetlier per-process XOR cookie.

To prevent execution of the shellcode on the stack, SolaigDes proposed thdlon-Executable
User Stack This solution, a Linux kernel patch from the Openwall Pcbj0], can be bypassed
with return-to-libc attacks or running the shellcode sornexg in memory other than in the stack,
for instance the heap. To prevent return-to-libc attadis, patch also changes the default addresses
of the shared libraries in libc to contain a zero byte. It iBiclilt to overwrite the return address
with a value that contains a zero byte (null) since a zero s/ string terminator and terminates
string copying functions. This method, which failed to passus Trovald’s approval [50] to be
included in the linux kernel, prevents attacks where thélabde is inserted in the stack and causes
trampoline functions [51] and debuggers to fail.

PaX [30] is a kernel patch that includes two protection mechasiSNOEXECIis a page based
mapping mechanism which does not allow pages that are ugitalalso be executable. This prevents
injection and execution of code in a process’ address spAdelress Space Layout Randomization
(ASLR) is a technique that randomizes the addresses of tbéditctions (e.g., system), the function
return addresses, the base of the stack and the heap. Attltbisgmethod makes it harder for the
attacker to predict the vulnerable memory addresses, itunsidmentally a probabilistic method

which also incurs a process startup overhead.

F. Hardware Solutions

Independent of and concurrent to our proposal, there hase tveo recent attempts to provide a

hardware solution.

8\Write-Xor-Execute [52] method implements the same idea.



16

Xu, et al. [53] proposed two methods for protection of thection return address from being
overwritten on the stackSplit control and data stackprotects the return address by storing it on
the control stack, away from buffers in the data stack thatlmoverflowed to overwrite the return
address. This approach can be implemented with either ¢engyi hardware support. The compiler
implementation has up to 23% overhead in SPECINT benchmark@% to 5% overhead for an FTP
server. The hardware implementation eliminates this aasthbut would require an extra register and
a change to the instruction set semantics. The authors assaenpage of memory should be enough
for every process and do not discuss memory management abtiteol stack. This method does
not protect against Type 2 buffer overflows or format strittgeks because the control stack is not
protected. The second method, Secure Return Address StR&S)Sis a hardware-based approach
that is implemented on top of the Return Address Stack (RAS). SR#dres a redundant copy
of the function return addresses in the processor to valittet return addresses on the stack. This
method has three versiorpeculative SRASIon-Speculative SRA&1dNon-Speculative SRAS with
Overflow Handling Speculative SRAS incurs almost 100% overhead. Non-Spe@Il8RAS has
fixed stack size and cannot handle deeply nested functioms-Sypeculative SRAS with Overflow
Handling swaps the contents of the SRAS to the PCB of the prdcdsmndle overflows. Xu, et.al do
not discuss context switch overhead and tisait j np() /| ongj np() handling method requires
the addition of a special instruction to rewind the SRAS.

Lee et al. [54] also proposed a hardware-baSedure Return Address Stacko protect against
attacks on the function return address. Changes are made toitihoarchitectural structure of the
CPU to keep a copy of the return addresses for validation. @pgoach does not consider 1)
register port contention due to validity checks of the netaddress, 2) issues of cleaning up the
SRAS after branch mispredictions, or 3) program flow changesed by functions likeet j np()
andl ongj nmp() . Its performance tests use a single-way, in-order-issaegsisor, which is outdated

compared to modern wide, out-of-order-issue processors.

G. Safer C Language Compilers

There are several dialects of C that offer security measemgsloyed in higher level languages
such as Java, while maintaining the low level and efficiepeats of the C programming language.

Enforcing type safety, providing better memory managemamd array bounds checks are some of
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the security features employed in Cyclone [55], Safe C Comilé], and CCured [57].

These modified variants of C are not simple drop-in replacesnd hese language modifications
require a programmer to change portions of the source cdtd# equiring some sort of indication
where protection should be enabled (otherwise, the noraed bf bounds checking applies for
compatibility). The reason for manual activation of boustiecking is that these projects self-report
overheads on the order of 100% in some instances. Additiotia¢y suffer from the same drawbacks
on legacy binaries as do other compiler modifications. Ngyrieky only protect newly compiled

programs and do not protect system kernel, libraries, astiexj binaries without recompilation.

H. Summary

Solutions that trade off a high level of security for betterformance are eventually bypassed by
the attackers and prove incomplete. On the other hand leghrsy solutions seriously degrade the
system performance due to frequent integrity checks antlyceaftware based memory protection.
An issue that diminishes the feasibility of these tools arethods is their lack of transparency to
the application or to the operating system. Moreover, soatkee methods lack protection against
Type 2 attacks. In our evaluation of our hardware-basedogghr we have elected to compare
against StackGuard for several reasons. First, it is theoapp that is most widely cited. Second,
its mechanism for protecting the return address on the swééund in the tools ProPolice and
Libverify. Third, it is not architecture specific and is te&re portable, and fourth, it reports little
overhead while maintaining security against the most peevaype of attack on the return address

pointer.

V. SMASHGUARD: A HARDWARE SOLUTION

In this section we present a hardware solution that is seemaldnherently faster than the existing
software methods. We elaborate on the complications wevatteset j np() andl ongj np(),
process context switches, and deeply-nested functios, catid how we solve them. Finally, we

describe our microarchitecture and discuss hardware mgaiéation issues.

A. Overview

Our approach, which we call SmashGuard, protects agaitagtkaton return addresses by saving

the return address in a hardware stack added to the CPU. Withfaaction call instruction, the
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a(){ longjmp’s frame | |RA of longjmp
} ol d’s frame RAof d
(b) | ret setjimp |» b’s frame RAof b
b ()1 .
var = setjmp();/* setjmp returns 0 */ a’s frame RA of a

Setjmp Buffer

if (var == 0){
aQ);
@ 1}
else { both setjmp and

Program Stack Hardware Stack

setjimp’s frame RA of setjmp
b’s frame RA of b
a’s frame RA of a

ret setjimp

Program Stack Hardware Stack

Fig. 3. Setjmp()/longjmp() example. (a) code snippet, (b) progrankstad hardware stack just befok®ngj np() returns, (c)
program stack and hardware stack just befoeg j np() returns

return address and the stack frame pointer are pushed antmtdware stack A return instruction
pops the most recent pair of address from the top of the haedstack and compares it to its return
address. If a mismatch is detected between the two returresgls, then a hardware exception is
raised. In the exception handler, the OS may employ a vaokpplicies based on the desired level
of security (e.g., the process may be killed and a report neagdnt to syslog).

This simple functionality is not sufficient to handle the lplem ofset j np() andl ongj nmp() .
setj nmp() andl ongj np() circumvent the last-in first-out ordering of the prograncktaausing
the hardware stack to become inconsistent with the progtaok.sAs we explain in Section IV-B,
we extend the hardware stack’s functionality to enable mntintain consistency.

In the simplest case (single process and nesting of furstiess that the size of the hardware
stack), all read and writes to the hardware stack are doneaidware via the function call and
the return instructions, so there is no instruction thataeptted to read/write directly from/to the
hardware stack. Specifically, no user-level load or stostruction can access the hardware stack.
To handle the more complicated cases of multiple procegspsring context switching, and deeply
nested function calls, the hardware stack needs to be adaleelsg the OS. As we explain in Section
IV-C, we solve this problem by memory-mapping the hardwaaelst The user cannot access the
hardware stack via the OS either, since it is protected akéneel privilege level.

®In the next section we explain why merely storing the return address ohatitvare stack is not sufficient.
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B. Handlingsetj np() andl ongj np()

One of the more complicated aspects of trying to protect #ilé stack is correctly handling
set ) np() andl ongj np() functions. Briefly,set j np() stores the context information for the
current stack frame and execution point into a buffer, hiodigj np() causes that environment
to be restored. This allows a program to quickly return to evimus location, effectively short-
circuiting any intervening return instructions. One pldloes might be used is in a complex search
algorithm: the program useset j np() to mark where to return once the item is found, begins
calling search functions, and once the target is found it Moingj np() back to the marked point.

Because ongj np() avoids going through the usual function return sequenaghadware stack
becomes inconsistent with respect to the program stackidaré& 3(a), we show a code snippet
wherea() callsb() which in turn callsset j np() . As is typical in programs usinget j np()
and| ongj np(), depending orset j np() s return valuevar, b() may or may not calld() .
d() callsl ongj np() . During executiona() callsb() andb() callssetj np().setjnp()
saves a snapshot of( ) 's current register state and a copy of its own return addiress buffer.
setj np() then returns with a return value of O causithQ) to be calledd() callsl ongj np()
which usesset j np( ) 's buffer to restoreb() ’s register statel ongj np() uses the saved return
address in the buffer which set j nmp() ’s return address to return to( ) with a return value of
1, allowingb() to return toa() .

In Figure 3(c), we show the program stack whest j np() is about to return. We see that the
hardware stack is consistent with the program stack. Wesaledhat the buffer holds ) ’s state and
setj nmp() ’s return address. In Figure 3(b), we show the program stdekmvongj np() is about
to return. At this point, the program stack will collapse aotw b( ) 's frame, and ongj np() will
return toset j mp() 's return address using the buffer. Because the return axldresming from the
buffer and not the program stacket j np() ’s return address does not exist anywhere — certainly
not at the top, nor anywhere below — in the hardware stackglwtracks only the program stack.
If nothing is done, SmashGuard would compare the hardwakgop, which isl ongj np()’s
return address intd( ), againstset j np() ’s return address, and a mismatch would result.

Because the relevant return address simply does not exiseihardware stack, we propose that

| ongj np() use anindirect-jump(i.e., jump-through-register) instruction to return,het than use
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a return instruction’®. Because an indirect-jump instruction will not trigger Shf@sard’s check,
| ongj np() will be allowed to return without a mismatch. The prograncktand hardware stack
are not consistent yet: the program stack holds frame®Qr anda( ), but the hardware stack
holds the return addresses lobngj np(), d(), b(), anda() (see Figure 3 (c)). Wheb()
returns, a mismatch would result.

However, unlike the previous mismatch situation, the resuireturn address (i.eb() s return
address) exists in the hardware stack — only not at the toprefdre, we propose that upon a
mismatch SmashGuard keep popping the hardware stack ith8r @ match occurs, or the bottom
of the stack is reached in which case the mismatch exceimmsed. If a return address is modified
due to an attack, none of the addresses on the hardware stat#f match and the bottom of the
stack will be reached. Therefore, no attack will go undetgcBecause the only way for the bottom
of the stack to be reached is due to an attack, SmashGuardevilr raise a false alarm.

There are two more complications remaining. Firsit(if is called multiple times beforleongj np()
is called, then the hardware stack would hold multiple insés ofb()’s return address. In that
case, the popping of the hardware stack would stop at theirfstince ofb() , which may not be
the instance that executed thet j np() . To identify the correct instance, we proposestore the
return address and the stack point@nstead of just the return address, in the hardware stack. N
calls push the two values onto the hardware stack, and seettompare both the return addresses
and the stack pointers. Using the stack pointer is guardrite@entify the correct instance because
1) the stack pointer holds a unique value for each instano@, 23 the stack pointer value is the
same when a function call and the corresponding functicurmebccurs.

Second, because we requlrengj np() to return using an indirect-jump instruction and not a
return instruction, returns frorhongj np() are not processed within SmashGuard. Therefore, an
attack on the return address stored in $tet | np() buffer (via some buffer overflow attack that
somehow overflows into theet j np() buffer) would go undetected. To avoid this problem, we
propose that writers aset j np() andl ongj np() library code protect the return address stored
in the buffer using schemes similar to StackGuard (e.ggepl@andom numbers around the return
address and check their integrity before using the retudness in thd ongj np() ). Because this
code is library code and not application code, we retainiegipbn transparency.

%This is a library modification.
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Now we explain the solutions proposed by the other appresadescribed in Section 3 to
setj nmp() andl ongj np() . Techniques, such as StackGuard, that do not store a copg oéturn
address stack need not do anything speciab®irj np() andl ongj np() . RAD’s solution is to
continue to pop return addresses off of their stored tabletofrn addresses until a match is found.
The problem with this approach is that it is possible that rtiadified return address value exists
somewhere further down on the hardware stack, causing gaecio continue without detecting
the problem. As has been pointed out before, failing to stagr@ion is no worse than the current
situation where no check is being made, but this answer iatisfisctory.

The hardware solution proposed by Lee, et al. [54] lists foays to handleset j np() and
| ongj np(), none of which retain both security and the functionalitytibé code. On the two
extremes the authors suggest either prohibisiet)j mp() /1 ongj np() or disabling the hardware
stack protection for programs that contaset j np() /1 ongj np() . An intermediate solution,
is to introduce new user-mode (i.e., non-privilege modsjructionssr as_pop andsr as_psh
(SRAS is the name of their proposed hardware solution) to nta&ehardware stack consistent
after al ongj np() . They propose injecting these instructions either at ctertpne or at runtime.
However, a malicious user could use the instructions to &ampth the hardware stack itself,

possibly compromising security.

C. Handling Deeply-Nested Function Calls and Process Contexced

Because our solution is the same for deeply-nested calls @ameéxt switches, we describe these
issues together. The hardware stack may fill up for prograitts deeply-nested function calls. A
2-KB stack holds 512 32-bit addresses (e.g., x86) or 256i64dduresses (e.g., Alpha). To handle
nested function calls deeper than 512 (256) smashguaskraisardware-stack-overflow exception,
which copies the contents of the hardware stack to the pmogr&rocess Control Block (PCB)
where it is saved at context switch. The PCB includes a stactawks and every time a stack is
full, it is appended to the previous full stack. Another gxoen, hardware-stack-underflow, will be
raised when the hardware stack is empty to copy in the lastdsaul-stack from the PCB. These
exceptions are not a performance concern because we ekpetttd be infrequent. Indeed, in our
experiments with the SPEC2000 benchmarks, our 2-KB stackswégiently large such that no

overflows occurred.
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A context switch requires saving process state, requitiag) we 1) copy out the hardware stack
of the running process either to the PCB or a memory locatiant@d by a special pointer in
the PCB, and 2) copy in the hardware stack of the scheduled ggode handle both the above
scenarios without adding any special instructions to tk&uction set, we employ memory mapping
(similar to memory-mapped 1/O), so that regular load orestostructions can be used to read and
write the stack in these scenarios. We map a part of the asldpsce to the hardware stack. A
regular load or store access to this part translates to aageadite access to the hardware stack,
much as memory-mapped I/O devices are read and written. IRbe&ll/O devices are protected
from direct access by user-level code via virtual memonytgmtion. Similarly, direct access to the
hardware stack is forbidden by virtual memory protectiohud, only the OS can read or write
the memory-mapped stack, and the OS does so to handle botariese Because the saving and
retrieving of the hardware stack from memory is handled lgykérnel our method is secure.

Although SmashGuard increases the state that needs to & aad restored at context switches,
we expect this overhead to be small. In typical interactigektibp environments, modern operating
systems target about 1% overhead for context switches ddaien&oslice expiration. For a 10-20
milliseconds time slice, the context switch overhead,(timme spent in the OS to switch from one
process to another) is about 100-200 microseconds. Copying-&B (512 64-bit words) hardware
stack will require about 1000 instructions (a pair of loadl atore instructions for each word),
which may take around 2000 cycles (assuming a conservativm§iructions per cycle). At 1 GHz,
this copy adds 2 microseconds to the context switch time @2@ microseconds, or about 1-
2% of context switch time. With a 10-20 millisecond time slicopying adds about 0.01-0.02%
overhead to wall clock time. In more context-switch-infgasnvironments (e.g., interrupt-intensive

embedded systems), the copying overhead will be higher.

D. Implementation

In this section, we describe three implementation schehgsallow different trade-offs between
implementation difficulty and performance. We explain aaplementations in terms of an Alpha-
like RISC architecture that places the return address of lairesttuction in alink register. This
link register may be either an implicit register that is haadled in the instruction set, or a register

explicitly-specified in the call instruction. The returnstruction uses aeturn address register
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either the implicit register or an explicitly-specified r&gr to return.

SmashGuard modifies call instructions to push the link tegiand the stack pointer register
onto the hardware stack. Recall that both are needed to acodateset j np() /1 ongj np()
(see Section IV-B). Return instructions pop off the hardwaeels and check the return register
and the stack pointer against the popped values. Becausernrmpiezessors execute instructions
out of program order and speculatively under branch priedictall and return instructions may be
executed under misspeculation and out of program order.ggoestly, pushing on and popping off
the hardware stack at the time of execution of call and reitustructions is not reliable. Doing so
would require that we clean up the hardware stack on misgliieds. To avoid this complication,
we push on and pop off the hardware stack when call and retstructions commit, which occurs
in program order and after all outstanding speculationscardirmed. However, there is one main
difficulty: call and return instructions do not carry the ded register values — the link register and
the return address register — with them to the commit poiné link register is written to the register
file when the call instruction executes, and the return addregister value is used by the return
instruction when it executes, well before commit. Certaitilg instructions do not carry the stack
pointer to the commit point. There are two options: 1) obthi@ register values from the pipeline
during instruction execution, or 2) obtain the values frdra tegister file at instruction commit.

For the first option, we use a table, called the return addedds (RAT), into which call and return
instructions place the register values. The values are fread the RAT upon instruction commit
and pushed on the hardware stack, or compared against tloé tiop stack. To avoid complications
in matching instructions to their RAT values, we make the RATaage as the active list (or the
reorder buffer, which is used to hold all in-flight instruets until commit), so that instructions
can easily find their register values simply by using thetivaclist pointers. Because the RAT is
accessed using the active list pointers, mispredictionlibacks of the active list — automatically
roll back the RAT. This advantage does not exist if we had ubedhardware stack itself to hold
speculative values, because rolling back the active likichvis a queue, is not similar to rolling
back the hardware stack, which is a stack.

The only issue now is that call and return instructions neead the stack pointer register value
(from the register file or bypass paths), an action that istalkén in conventional pipelines. This

extra read, however, is not a problem because calls anchsetaad at most one source operand (a
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call-through-register reads the call target from a regjistmplying the stack pointer can be read in
place of the non-existent second source operand. The lgiktee value is computed by calls and
can be pulled off from wherever it is computed (e.g., the alestage).

Because the RAT is invisible to the software, like the hardwsteek, this scheme is secure.
Because the number of in-flight instructions is not large.(e8Q0 instructions) and because call
and return instructions are relatively infrequent, the RAEM be neither large (e.g., a 2-KB RAT
would suffice) nor support high bandwidth. Because this optesults in virtually no performance
degradation, we call this scher\o-Stall

If the RAT does not fit the constraints of a specific pipeline lengentation, designers may
pursue the second option of reading the values from thetegdite. This option raises two issues:
1) because of register renaming, we cannot access the physgister file with the architectural
register specifiers, and 2) the register file needs to be seddsy all committing call and return
instructions, which may contend with instructions in thgiseer read stage of the pipeline.

We address each of these issues in turn. Call and return d¢tistte have to carry the required
physical register specifiers to the commit point. It woul@rsethat carrying the required values
themselves instead of the specifiers is a better option. Menvéhere are two advantages with
the specifiers: 1) the specifiers are smaller than the vakigs, @B-bits versus 64-bits), and 2) in
modern pipelines, instructions already carry the previphgsical register specifier mapping the
architectural destination register to the commit pointttsat the previous physical register may be
freed. Therefore, the wires and control circuitry neededaoy specifiers already exist; we simply
need one additional specifier to be carried.

The only remaining complication is register port contemtiBecause adding extra register file ports
is expensive, and because call and return instructions @rérequent enough to cause significant
contention, we propose two schemes to handle contentioonsecvative scheme callé@bmplete-
Stalland a more aggressive scheme caRadial-Stall. In the Complete-Stall scheme, we completely
stall issue in a cycle in which a call or a return instructi@menits. The rationale is that it may be
hard to design a select logic that accounts for registerrpguirements of committing call and return
instructions, in addition to the usual resource requirdsi@h instructions waiting to be selected.
The select logic is usually on the critical path of the cloakd such additional requirements may

impact clock speed. In the Partial-Stall scheme, the sébgat stalls only those instructions as are
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needed to free up the requisite number of ports for the cotimgitalls and returns.

E. Implementation Cost

SmashGuard’s implementation cost is minimal. The main ecorept of the cost is the hardware
stack in the processor to hold function return addressessi@enng that modern microprocessors
employ on-chip level one (L1) caches of sizes 32-64 KB, anatip-L2 caches exceeding 1 MB,
the 1 KB stack adds minimal overhead (less than one-tentmefpgrcent) to the chip.

Adding the stack to the next implementation of an instructset (e.g., Pentium Il and Pentium IV
are both implementations of the x86 instruction set) doggpresent any difficulties. It is common
practice for newer implementations to incorporate optatans for better performance. Indeed, such
optimizations often involve employing tables which are iamto SmashGuard’s hardware stack.

When introducing new hardware, a key cost factor to avoidesintroduction of new instructions
to the instruction set. New instructions imply an implicdast in future implementations that must
support the new instructions (in their original form) fomgpatibility reasons. Because SmashGuard
introduces a hardware stack, we have to ensure that the dtak not imply new instructions.
If the hardware stack were completely invisible to softwéeey., the hardware caches are usually
invisible to the user-level code, unless the code optimipesache performance), then the stack
will not require new instructions. In our approach the haadsvstack is invisible to software except
for context switches and when the call depth exceeds th& stae. In the later case, an exception

is raised and the exception handler copies the stack toidmsain memory owned by the OS.

F. Issues Raised by Multithreading

Some modern processors implement Simultaneous MultitimggSMT) [58] which simultane-
ously executes multiple threads on a single pipeline. Midtithreads sharing a single hardware stack
in SmashGuard may make the effective size of the stack tod.dBsrause SMT already provides
as many copies of certain hardware resources (e.g., rerabvtes t load/store queue, active list) as
the number of threads, SmashGuard’s hardware stack carbalseplicated. Second, kernel-level
multithreading does not cause any problems for SmashGueealise the threads are switched in and
out by the OS and the hardware stack can be saved and ressopadt @f the context switch. Third,

process migration in multiprocessor systems does not camgeproblems. Conventional systems
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explicitly migrate some of the process state such as regestd TLB contents, SmashGuard’s
hardware stack can also be migrated explicitly.

However, user-level multithreading is problematic for Shm@uard because multiple user-level
threads would share the hardware stack, but call and refuons the threads would interleave in
arbitrary order, and not LIFO. Because user-level threadsalago through the OS for invocation,
suspension, and resumption, an OS-driven context switchatde used to share the hardware stack
among the threads. The option of providing a large numbetaxks in hardware is not attractive
either because the number of stacks needed would be largged®6) to avoid restricting user-level
threading. One option is to allow threads the same hardwaek Sy (statically or dynamically)
partitioning the stack and accessing the stack based oneadhdentifier (id). The thread id is
maintained by the thread library in a register and the threhdllows each thread to access
its part of the hardware stack. Any overflow or underflow wobkl handled as before. Another
option is to disable SmashGuard and use software-basetibssldor user-level multithreaded code.
Finally, certain synchronization primitives such as cdirmes may be difficult to accommodate in
SmashGuard. Coroutine calls may be done in one thread anthgatuanother thread, and it may
be hard to synchronize the hardware stacks of the two thrétel® again, an option is to disable
SmashGuard and use software-based solutions for corehaised code. In both of these cases
recompilation is not an issue because the user code is bhila

TABLE 1l
HARDWARE PARAMETERS

Processor 4-way issue, 128-entry window, 64-entry ld/st queue (10 lmypenalty)
Branch Prediction| 8K/8K/8K hybrid, 128-entry RAS, 4-way 8K BTB

L1 Cache 64K 2-way 2-cycle I/D (lockup free and pipelined)

L2 Cache 2MB 8-way 14-cycle (lockup free and pipelined)

Main Memory Infinite capacity, 80 cycle latency split transaction 32ebwide bus
Hardware Stack || 512-entry Hardware Stack

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of SmashGuatdSsackGuard, a software based
protection mechanism, on a common execution-driven sitmanfrastructure for a modern, high-

perform ance processor.



27

TABLE 11l
CALL FREQUENCY PER1K INSTRUCTIONS (CF), MAXIMUM CALL DEPTH (CD), AND BASE IPCS USING4-WAY (14) AND 8-WAY
(18) ISSUE WIDTHS FORINTEGER AND FLOATING POINT BENCHMARKS

Int bzip | crafty | gap | gcc | gzip | mcf | parser| perlomk| twolf | vortex | vpr
CF 424 | 6.89 | 3.37| 241| 3.34 | 6.06 | 14.08 9.71 8.13 | 13.33 | 16.67
CD 12 32 77 | 61 | 12 22 238 65 17 31 18
14 1.9 1.8 20| 1.7 1.9 0.7 1.7 14 15 1.9 2.2
I8 2.1 22 | 25] 18| 21 0.7 1.8 1.6 1.7 2.3 2.8

FP || ammp| applu| apsi| art | mesal mgrid | swim | wupwise
CF | 483 | ~0 |[211/0.34| 7.35| ~0 ~0 |8.33
CD 17 13 20 12 15 16 13 14
14 2.2 26 | 19| 16| 23 2.5 28 |20
18 2.5 31 | 19| 17| 29 2.7 38 |23

A. Methodology

We modified the SimpleScalar-3.0 simulator [59] to model mi@mur three schemes of Smash-
Guard — Partial-Stall and Complete-Stall. We do not reportSthdl because it incurs almost no
performance overhead. Table Il shows the base system caatiigu parameters used throughout
the experiments, unless specified otherwise. We simulate #o and 8-way out-of-order issue
superscalar processors augmented with a 512-entry hagdstack for SmashGuard. We modified
gcc-3.0.3to port StackGuard to the Alpha architecture. The portedigarof StackGuard modifies
the prologue and epilogue code of the compiled functionsttude the terminating canary (see
Section I11-C). In Figure 4 we show the eight extra instrugtionserted by our StackGuard patch. The
prologue code places the terminating canary (Ox00Oafféd)he program stack, and the epilogue
code loads the canary from the stack and compares it to tlggnali If there is mismatch, the
functionat t ack_handl er () is called.

We compiled the benchmarks on an Alpha machine running Tugdg the original gcc and
the StackGuard port. The original gcc’s binaries are usedhbySmashGuard runs. Because the
StackGuard port to handle C libraries is not available, wehmited only the benchmark code
with the StackGuard port and used the standard C librariesorlingly, our simulator samples
performance only in the application functions and not thealiy functions. We ran the SPEC2000
benchmarks shown in Table Ill. We used f2c to covert forifaneenchmarks (applu, apsi, equake,

mgrid, sixtrack, swim, and wupwise) to C. We did not simulatetfan-90 (facerec, fma3d, galgel,
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function entry:

<ol d prol ogue>
| dah $1, 11 #nmove canary into reg
lda  $1, -243(%$1)
stqg $1, 0(%$30)

<ol d prol ogue>

<function body>

ldg $1, 0(%$30) #l oad canary from stack
| dah $2, 11 #nove canary into reg
lda  $2, -243(%2)
cnpeq $1, $2, $3 #conpare
bne  $3, $Label
call $26, attack handl er
$Label :
<ol d epi | ogue>
ret

Fig. 4. StackGuard’s extra instructions

and lucas) and C++ (eon) benchmarks as doing so would requipéementing StackGuard in
Fortran-90 and C++ compilers. While the total number of irdtams executed by SmashGuard and
StackGuard are different, the number of call/returns aeesdime in SmashGuard and StackGuard.
Therefore, we ran each benchmark for the same number ofrsituctions in each case for fair
comparison. We skipped 20 million calls and ran 10 milliofiscéor all the integer programs (bzip,
crafty, gap, gcc, mcf, parser, perlbomk, twolf, vortex, amf)vand for three floating-point programs
(ammp, mesa, and wupwise). The rest of the floating-poingnaras have such low call frequency
that we had to simulate fewer calls to avoid inordinatelyeagling our simulation time. We skipped
1 and 0.5 million calls and ran 1 and 0.5 million calls for agsd art, respectively. Programs applu,
mgrid, and swim make virtually no application calls. We da sleow results for equake and sixtrack

because they make only library calls.

B. Functionality Results

To verify that our hardware modifications can actually detgltanges in the program return
address, we created a binary for the Alpha that overwritesadnts own local buffers and executed
it in the simulator. We were limited to self-attacking codecuse SimpleScalar only supports single

process execution. Our hardware modification was able &ctétat the return address value being
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Fig. 6. Results for 8-way issue superscalar

pulled from the stack did not match the value stored in thel\ware stack.

C. Performance Results

In this section, we compare SmashGuard and StackGuard tovermional superscalar with no
support for buffer overflow detection. Figure 5 and Figureh6vs our results for issue widths of 4
and 8, respectively. In both graphs, the Y-axis gives thegmrslowdown with respect to the base
superscalar processor of equal issue width, and the X-&éaws our benchmarks starting on the
left with the integer programs bzip through vpr, followed ttne average for the integer programs,
the floating-point programs ammp through wupwise, endinidp Wie average for the floating-point
programs. The left bars show SmashGuard using the Pat@lllstheme, the middle bars show
SmashGuard using the Complete-Stall scheme and the rightshaw StackGuard. The figures do
not show the No-Stall scheme because it does not incur ang stalls than the base superscalar
(i.e., No-Stall has virtually zero percent degradation).

A striking trend in both Figure 5 (4-way issue) and Figure 6w@y issue) is that the in-
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teger programs incur more performance degradation thaningppoint programs, which incur
little degradation. If a program’s call frequency is lowgthboth SmashGuard's and StackGuard’s
overhead are incurred less frequently. This trend is comatied by Table Ill, where we see that the
integer programs’ call frequencies are generally highantthose of the floating-point programs.
The exceptions arenesaand wupwise which have modestly high call frequencies. Because these
programs have high instruction-level-parallelism intiéchby their high IPC (instructions per cycle),
SmashGuard’s overhead of stalled issue is hidden by thdlglsm. Because the floating-point
programs’ degradations are negligible, we do not discusstfurther.

Focusing on the SmashGuard numbers (left and middle baesdew two trends. First, as expected,
the Partial-Stall scheme (left bar) performs better than@omplete-Stall scheme (middle bar), on
both 4-way issue (Figure 5) and 8-way issue (Figure 6) psmrss With 4-way issue, Partial-Stall
and Complete-Stall incur 0.5% and 2.4% average degrada#epectively, for the integer programs.
Partial-Stall's worst-case degradation is 1.8% for vpr hasl less than 1% degradation for the rest of
the programs. Complete-Stall, on the other hand, incurs itiae 4% degradation for mcf, parser,
vortex, and vpr. The relatively large degradations are mgprssing because these programs have
not only high call frequency leading to high overhead, bsbdbw IPC with less ability to hide
the overhead (Table III).

As we increase the issue width from 4 to 8, Partial-Stall iacalmost no degradation while
Complete-Stall still incurs 1.2% average degradation. Beedhere are more free issue slots in a
8-way issue processor than a 4-way issue processor, bo#imssh overheads are hidden.

Now, we focus on the StackGuard numbers (right bar). We ssteStackGuard’s average degra-
dation is worse than that of Partial-Stall, and comparablehtit of Complete-Stall on both 4-
way issue and 8-way issue processors. StackGuard incur8% @nd 1.8% average degradation
on 4-way issue and 8-way issue processors, respectivelyety, for perlbomk, vortex and vpr,
StackGuard incurs more than 8% and 6% degradation on 4-vgag iand 8-way issue processor,
respectively. High call frequency and low IPC of these paogs have the same negative effect on
StackGuard’s performance as SmashGuard's performance SmashGuard, StackGuard incurs less
degradation when the issue width was increased from 4 to 8h©8-way issue processor, apsi and
wupwise unexpectedly improve in performance (i.e., nggatiegradation) with StackGuard. This

improvement is the result of a pathological interactionaeetn StackGuard’s extra instructions and
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the branch predictor, causing an accidental improvemettiérprediction accuracy.
Finally, the call depths listed in Table Il show that the gmams do not exceed the depth of
238 (parser), indicating that a 512-entry hardware stadufBcient to avoid most stack overflow

exceptions in SmashGuard.

VI. CONCLUSIONS ANDFUTURE WORK

This paper has proposed a novel microarchitectural supp@rotect against attacks that overwrite
the return address on the process stack to redirect exacMie have provided a hardware stack
that securely handles both Type 1 (buffer overflows) and By§attacks through a pointer) attacks

on the return address. The key contributions of this paper ar

Complete Solution: We have designed a complete solution, which hansiétg np andl ongj np
as part of the hardware solution, and handles hardware staeklow/underflow and
process context switches with a small modification to the OS.

Trade-offs:  We have proposed three implementation schemes that allfferatit trade-offs
between implementation difficulty and performance.

Detailed Performance Analysis: We have performed a detailed performance analysis com-
paring the most-frequently applied software solution,cB&uard, to SmashGuard on a
common simulator for a high-performance processor.

Our best-performing implementation, No-Stall, incurstuadly no performance degradation but
has the small implementation cost of a 2-KB table. We contpdine other two implementations
(Complete-Stall and Partial-Stall) to StackGuard. Our expents show that StackGuard performs
comparably to Complete-Stall but StackGuard is less rolnast Partial-Stall. For an 8-issue proces-
sor, while StackGuard incurs only slightly less averageraidgfion than Partial-Stall, StackGuard’s
worst-case degradation is 8% whereas Partial-Stall inlags than 0.5%. Moreover, StackGuard
requires application recompilation and does not proteatrsf Type 2 attacks.

With every passing day, the number of attacks on systemsectexh to the Internet increases [60].
Attacks are increasingly automated, attack tools are muate reophisticated, and there have been
attacks on the critical infrastructure of the Internet [63inashGuard provides a robust solution to

one of the most prevalent attacks of today.
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