
1

SmashGuard: A Hardware Solution to Prevent
Security Attacks on the Function Return Address

H. Özdõganõglu∗, T. N. Vijaykumar‡, C. E. Brodley†,
B. A. Kuperman§ and A. Jalote¶

∗hilmi@alumni.purdue.edu,‡vijay@purdue.edu,¶jalote@purdue.edu
School of Electrical and Computer Engineering

Purdue University, West Lafayette, Indiana 47906–1285
†brodley@cs.tufts.edu,

Department of Computer Science
Tufts University, Medford, MA 02155

§kuperman@cs.swarthmore.edu
Department of Computer Science

Swarthmore College, Swarthmore, PA 19081

Abstract

A buffer overflow attack is perhaps the most common attack used to compromise the security of a

host. This attack can be used to change the function return address and redirect execution to the attacker’s

code. We present a hardware-based solution, called SmashGuard, to protect against all known forms of

attack on the function return addresses stored on the program stack. With each function call instruction, the

current return address is pushed onto a hardware stack. A return instruction compares its address to the return

address from the top of the hardware stack. An exception is raised to signal the mismatch. Because the stack

operations and checks are done in hardware in parallel with the usual execution of instructions, our best-

performing implementation scheme has virtually no1 performance overhead. While previous software-based

approaches’ average performance degradation for the SPEC2000 benchmarks is only 2.8%, their worst-case

degradation is up to 8.3%. Apart from the lack of robustness in performance, the software approaches’ key

disadvantages are less security coverage and the need for recompilation of applications. SmashGuard, on

the other hand, is secure and does not require recompilationof applications.

Index Terms

Buffer overflow, function return address, hardware stack.

1Beacause we are modifying hardware, it is impossible to guarantee zerooverhead without an actual hardware implementation.

2

I. I NTRODUCTION

COMPUTER security is critical in this increasingly networked world. Attacks continue to

pose a serious threat to the effective use of computers and often disrupt commercial services

worldwide, resulting in embarrassment and significant lossof revenue. While techniques for pro-

tecting against the malicious attacks have been confined primarily to the domain of software, the

increasing demand for computer security presents a new opportunity for hardware research. Recent

examples are buffer overflow protection features employed in processors by AMD [1], Intel [2]

and Transmeta Corporation [3]. These features can be activated by Windows XP’s Data Execution

Protection mechanism [4] to block any attempt to execute code from memory reserved for data only,

i.e., the stack and the heap. These efforts, although not complete solutions to buffer overflows, are

indications of the severity of the attacks and the inclination towards hardware based methods to find

a solution.

In this paper, we describe such an opportunity. We propose microarchitectural support for au-

tomatic detection/prevention of what is perhaps the most prevalent vulnerability today: attacks on

the function return address pointer. The most common example of an attack on the function return

address pointer is a buffer overflow attack [5]. The Code Red [6]and Code Red II [7] worms of

2001, W32/Blaster [8] and W32/Nachi-A [9] worms of 2003 and Sasser [10] of 2004 all exploited

such a vulnerability in Microsoft’s IIS [11], Windows RPC [12] implementation and Local Security

Authority Subsystem Service (LSASS) [10], respectively, to propagate themselves across the Internet.

Although it is fairly simple to fix an individual instance of abuffer overflow vulnerability, it continues

to remain one of the most popular methods by which attackers compromise a host. In 2002, buffer

overflow vulnerabilities were in 10 of the 31 advisories published by CERT [13] and in 5 of the top

20 vulnerabilities compiled by the SANS Institute [14]. In 2003, 17 out of 28 advisories published

by CERT [15] and 13 out of the top 20 vulnerabilities compiled by the SANS Institute [16], have

been on buffer overflow vulnerabilities.

Buffer overflow attacks overwrite data on the stack and can be used to redirect execution by

changing the value stored on the process stack for the returnaddress of a function call. We propose

SmashGuard, a hardware-based approach to detecting such attacks, in which we add a small hardware

stack to the pipeline. With each function call instruction,the return address and the current stack

3

TABLE I

APPLICATIONS DETECTED VULNERABLE TO BUFFER OVERFLOW ATTACKS

Linux/UNIX Bind, RPCs, Apache, SendMail, SNMP, SSH, NIS/NSF, OpenSSL

Windows IIS, MS SQL, IExplorer, RPCs, MSDAC

frame pointer2 are pushed onto the hardware stack. A return instruction compares its return address

against the address from the top of the hardware stack. A mismatch indicates an attack, and raises

an exception.

A. Contributions

SmashGuard is a novel hardware-based security technology which provides a combination of ad-

vantages that none of the software methods can provide alone. The advantages SmashGuard provides

are robust performance, broad security coverage, application transparency and low implementation

cost. We discuss each of these benefits in turn.

Robust Performance: Because the stack operations and checks are done within CPU instructions,

and in parallel with the usual execution of call and return instructions, the best-performing

SmashGuard implementation scheme incurs virtually no performance overhead.

Security Coverage: Many software solutions do not protect against all forms of attack on the

return address pointer. For instance, they may fail to protect against attacks that overwrite

the return address indirectly. In contrast, SmashGuard protects against all forms of attack

on the return address pointer.

Transparency: Many software solutions’ key disadvantage is the need for recompilation of

the source code to protect the program. SmashGuard, on the other hand, is a hardware

modification with a kernel patch that supports the hardware technology, and therefore

protects all applications.

Low Implementation Cost: Finally, the cost of our solution is a modest 2-KB storage forthe

hardware stack and a 2-KB storage for an internal table used by our best-performing imple-

mentation scheme. Addition of storage buffers and modifications to the microarchitecture

are basic steps of designing a new processor version. In addition, since the stack is accessed

2We explain why we store the Stack Pointer to properly handlesetjmp()/longjmp() in Section IV-B.

4

Fig. 1. Process Memory Organization and the Stack Layout

at instruction commit, which is not on the execution path of instructions, the critical path

of the pipeline is not affected.

B. Paper Organization

In Section II we describe the vulnerability of the function return address and the different ways in

which an attacker can exploit a vulnerability. In Section III we summarize related work to point out

their strengths and weaknesses, both in terms of performance and functionality. Then in Section IV

we describe our proposed hardware solution in detail. In Section V we present performance results.

Finally, in Section VI we provide our conclusions and outline future extensions to our work.

II. A NATOMY OF AN ATTACK

This section provides an overview of the vulnerability of return address pointers on the stack and

describes how “stack smashing” attacks exploit this vulnerability to execute the attacker’s code.

A. The Stack

Before describing the vulnerabilities and the attacks affecting the function return address, we first

briefly review the memory organization of a process. On the left hand side of Figure 1, we show

the five logical areas of memory used by a process. The text-only portion contains the program

instructions, literal pool, and static data. The stack is used to implement functions and procedures,

and the heap is used for memory that is dynamically allocatedby the process during run time.

During the function prologue, the function arguments are pushed on to the stack in reverseorder,

and then the return address is pushed onto the stack3. The return address holds the address of the

3Our discussion is based on the x86 architecture because it is widely known; for other architectures, details will vary slightly.

5

instruction immediately following the function call and isan address in the program code section

of the process’ memory space. The prologue finishes by pushing on the previous frame pointer

followed by the local variables of the function. The function arguments, return address, previous

frame pointer, and local variables comprise astack frame. Because functions can be nested, the

previous frame pointer provides a handy mechanism for quickly deallocating space on the stack

when the function exits. During thefunction epilogue, the return address is read off of the stack

and the stack frame is deallocated by moving the stack pointer to the previous stack frame.

B. Vulnerability of the Function Return Address

The return address in a stack frame points to the next instruction to execute after the current

function returns (finishes). This introduces a vulnerability that allows an attacker to cause a program

to execute arbitrary code. An attacker can overwrite the function return address with one of the

exploit techniques explained in Section II-C.1 to redirect execution to the attacker’s code. When the

function exits, the program execution will continue from the location pointed to by the stored return

address. On successful modification of the return address, the attacker can execute commandswith

the same level of privilegeas that of the attacked program. If the compromised program is running

as root, then the attacker can use the injected code to spawn aroot shell, and take control of the

machine. Recent exploits fall into the category of worms [6],[8], [10].

C. Exploiting the Vulnerability

There are several methods for overwriting the function return address and two targets to redirect

execution. In this section, we describe different vulnerabilities that allow an attacker to overwrite

the return address on the stack, possible targets to which toredirect execution, and how the attacker

can inject the crafted exploit into the vulnerable code.

1) Overwriting the Return Address on the stack:Buffer overflow attacks are the undesirable side-

effects of unbounded string copy functions. The most commonexamples from the C programming

language arestrcpy() and gets() which copy each character from a source buffer to a

destination buffer until a null or newline character is reached, respectively. The vulnerability arises

because neither checks whether the destination buffer is large enough to contain the source buffer’s

contents. If the destination buffer is a local variable (andtherefore stored on the stack frame), then

6

an attacker can exploit this vulnerability to overflow the buffer and overwrite a pointer on the stack

or the return address. Note that for most architectures (e.g., x86, SPARC, MIPS) the stack grows

down from high to low addresses, whereas a string copy on the stack moves up from low to high

addresses. It is trivial to overflow a buffer to overwrite thereturn address because it is located above

the local variables in that particular stack frame. There are two types of buffer overflow attacks to

overwrite the function return address:

Type 1: A local buffer (character array) is filled in excess of its bounds (overflowed) to

overwrite the return address on the stack, which is adjacent4 to the local buffer; or

Type 2: A local buffer is overflowed to overwrite an adjacent pointervariable with a pointer

to the return address on the stack. Then the return address isoverwritten by an assignment

to the pointer.

Format string attacks are relatively new and are thought to have first appeared in mid 2000

[17]. We provide a brief overview here, but for details the reader is referred to [17], [18]. Similar

to a buffer overflow attack, format string attacks modify thereturn address in order to redirect

the flow of control to execute the attacker’s code. In the C programming language, format strings

allow the programmer to format inputs and outputs to a program using conversion specifications.

For example, in the statementprintf("%s is %d years old.",name,age), the string in

quotes is theformat string, %s and %d are conversion specifications, andname andage are the

specification arguments. Whenprintf() is called, a stack frame is created and the specification

arguments are pushed on the stack along with a pointer to the format string. When the function

executes, the conversion specifiers will be replaced by the arguments on the stack. The vulnerability

arises because programmers write statements likeprintf(string) instead of the proper form:

printf("%s",string). The statements behave identically, unlessstring contains conversion

specifiers. In that case, for each conversion specifier,printf() will pop an argument from the

stack. For example, consider the following:

int foo1(char *str) { printf(str); }

If the user callsfoo1() with an argument string"%08x.%08x", the function will pop two words

from the stack and display them in hex format with a dot (.) in between. Using this technique, the

attacker can dump the contents of the entire stack. The key tothis attack is the"%n" conversion

4Note that the frame pointer is stored between the local variables and the return address on the stack.

7

specifier, which pops four bytes off the stack and writes the number of characters in the format

string before"%n" to the address pointed to by the popped four bytes. An attacker can craft a

format string with length (in bytes) equal to the address of the exploit code, with the last four bytes

(a 32-bit address) identical to the address of the function return address on the stack followed by a

final "%n". When the format string is decoded by aprintf(), 5 the number of bytes written thus

far (this number is the address of the shellcode) will be written to the address popped off the stack

which will be the address of the function return address. Note that length specifiers allow creation

of arbitrarily long format strings without needing the string itself to be of equivalent length.

Like buffer overflow attacks, format string attacks can be used to redirect execution to shellcode

in the stack (or heap) or to thesystem() call in libc. Format string attacks are similar to Type 2

buffer overflow attacks in the sense that the return address can be modified without touching anything

else on the stack, so methods that can prevent Type 2 buffer overflow attacks can also prevent format

string attacks.

Integer Overflows: We find it valuable to mention integer overflows in our discussion of attacks

on the return address because, even though they do not directly overwrite the function return address,

they lead to other attacks (which are generally buffer overflows). The behavior of an integer overflow

int foo1(char *str, char *str2,
unsigned int size, unsigned int size2) {

char local[256];
if((size + size2) > 256) { /*[a]*/

return (-1);
}
strncpy(local, str, size); /*[b]*/
strncpy(local + size, str2, size2);
...
return (0);

}

Fig. 2. Integer Overflow Example

is undefined in ISO C99 standards, and most compilers ignore them. This becomes dangerous when

the integer that is overflowed is used to calculate the size ofa buffer or the index into an array.

Unsigned integers do not overflow but wrap around to 0. The example in Figure 2 demonstrates a

possible integer overflow attack that leads to a buffer overflow attack. An attacker can bypass the

validation check at[a] and overwrite past the end of thelocal buffer with two large unsigned

5Format string attacks are possible with variousprintf() family of functions.

8

numbers insize andsize2 that result in a number smaller than 256 when added together.For a

more detailed explanation, the reader is directed to [19].

2) Where to redirect control::After an attacker overflows a buffer to overwrite the return address,

there are two ways to redirect execution to compromise a host:

Shellcode: The most well-known method to redirect execution is to overwrite the return address

with an address that points to a location in memory at which the attacker has placed an

exploit code. Exploit code is a hexadecimal representation of machine instructions which

most frequently either spawns a shell or is a worm. Even though placing the exploit code

into the local buffer being overflowed is a common technique,the code can alternatively

be placed above the return address on the stack, or in the heap. If the attacked program

has root privilege, then when control is redirected to the injected exploit code, the code is

executed with root privileges.

A buffer overflow usually contains both executable code as well as the address of where

that code is stored on the stack. Frequently, this is a singlestring constructed by the attacker

with the executable code first followed by enough repetitions of the target address that the

return address is overwritten. This requires knowing exactly where the executable code will

be stored or else the attack will fail. Attackers get around this by prepending a sequence of

unneeded instructions (such asNOP) to their string. This creates aramp or sledgeleading

to the executable code. Now the modified return address only needs to point somewhere

in the ramp to cause a successful attack. While it still takes some effort to find the proper

range, an attacker only needs a close guess to hit the target.

system() function: The second choice for redirecting execution is called thereturn-to-libc

attack. It was invented to bypass protection methods that mark the stack as non-executable

[20], which prevents execution of code on the stack. The return-to-libc attack eliminates

the need for shellcode by redirecting execution to thesystem() call to create a shell.

All the attack needs to do is copy the necessary arguments forthe system() call onto

the stack and change the return address to point to the library address ofsystem().

3) Methods of inputting the exploit code:There are three main ways of injecting malicious code

into the vulnerable program. These are 1) user input, 2) network connection and, 3) environment

variables. For example, a program might ask for a user or file name from standard input. If the

9

program usesgets() then a sufficiently large user response could overflow the target buffer. An

operating system might utilize a small buffer for the handling of ICMP echo packets (as they are

normally quite small) and suffer an overflow if an attacker sends an unusually large packet. Similarly,

if a program attempts to determine a user’s home directory via the HOME environment variable,

a malicious user might be able to cause an overflow by setting the value of the variable to be an

unusually long value.

III. R ELATED WORK

Various tools and methods have been devised to stop these attacks with varying levels of security

advantage and performance overhead. Solutions that trade off high levels of security for better

performance prove incomplete and are eventually bypassed by attackers. On the other hand, high

security solutions seriously degrade the system performance due to the high frequency of integrity

checks and high cost of software-based memory protection. Another issue that diminishes the

feasibility of these tools and methods is their lack of transparency to user applications. We have split

the existing work into five groups: Static and Dynamic Analysis of Source Code, Modifications to

the Executable, Modifications to the Compiler, Modification to the System Software, and Hardware

solutions. A thorough list of all buffer overflow protectionmethods and tools is available fromThe

Buffer Overflow Page[21].

A. Static (and Dynamic) Analysis of Source Code

Static analysis techniques try to identify potentially dangerous pointer de-references and unsafe

function calls in the source code. Because detecting buffer overflow vulnerabilities statically is

undecidable, these methods work on heuristics and therefore are neither sound nor complete. Several

factors affect the inadequacy of static analysis: difficulty of bounds checking, pointer analysis, inter-

procedural analysis, and unavailability of the program input at compile time. There is a collection

of freely available auditing tools for C/C++ code, but Wilander et al. [22] reports that static analysis

tools do not have a sufficiently low false positive rate to be of use to programmers, therefore they

are merely used for security audits.

Wagner et al. [23] formulated the buffer overrun detection problem as aninteger constraint

problem and used graph theoretic techniques to solve the constraints. This technique has a high

10

rate of false alarms, cannot handle pointers, double pointers or aliasing. The reported analysis time

for 32K lines of C code is on the order of tens of minutes.

In a recent paper, Dor, et al. [24] combined all known types ofstatic analysis methods to

propose a tool,CSSV, for statically detecting buffer overflows. Using procedural analysis, CSSV

in-lines the source code with annotations that have pre-, post-, and side-effect conditions (which

they name “contracts”), analyzes pointer interaction, checks for runtime string manipulation errors

with assert(), and finally performs conservative integer analysis. With respect to related work,

a 93% drop in false alarm rate is reported however, manually writing contracts still renders a high

implementation cost.

Larochelle and Evans [25] proposed a static analysis toolbuilt upon LCLintwith more expressive

annotations. Annotations are the semantic comments that specify the highest index that can be safely

written to and read from in a buffer. The annotations are usedto detect inconsistencies between the

code written and its expected behavior. This method does notdetect all instances of vulnerabilities

and has a high rate of false alarms.

Dynamic checks inserted by static analysis analyze the run-time contents of the variables during

program execution. However, dynamic analysis is computationally more complex than static analysis

and better results come with the price of increased computation time.

Haugh and Bishop [26] extended Wagner, et al.’s [23] method for dynamic execution. This method

uses the STOBO tool to convert the vulnerabilities in the source code to the instrumented safe

versions. The paper reports that this method compares favorably to ITS4 and Wagner, et al.’s original

method in that it detects more vulnerabilities and has fewerfalse positives.

Yong and Horwitz [27] proposed a static analysis tool with dynamic checks to protect C programs

from attacks via invalid pointer dereferences. The method has a low runtime overhead, no false

positives, requires no source code modification and protects against a wide variety of attacks via

bad pointer dereferences. The main idea is to use static analysis to detectun-safepointers, and

protect memory regions that are not legitimate targets of these pointers. This method maintains a

mirror of the memory locations that can be pointed byun-safepointers using one bit for every

byte of the memory to specify whether each mirrored byte is write-safe, i.e.,legitimate. The major

drawback of this approach is that it doubles application run-time.

Toth and Kruegel [28] proposed abstract payload execution of HTTP requests to detect the NOP

11

sledge which precedes the shellcode in most Type 1 buffer overflows. Toth and Kruegel report only

a 1.4% increase in client contention rate and 2.9% decrease in client throughput. This method will

only detect attacks that use a NOP sledge with the shellcode.

B. Modification of the Executable

Bhatkar et al. [29] proposed a method calledAddress Obfuscationthat transforms the object file

at link time (or the executable at load time) to 1) randomize the base addresses of stack, heap, and

dynamically loaded libraries; 2) randomize the location ofthe routines and static data in executables;

3) permute the order of local variables on stack, static variables and routines in shared libraries and

executables; and 4) insert random gaps in stack frames, between successive malloc buffers and

between static variables. This method, which is very similar to PaX [30] except that PaX is a kernel

patch, requires no change to the OS or to the compiler. Both of these methods are probabilistic

methods that only harden, but do not eliminate, the attacker’s chances of success. This method also

imposes a process startup overhead.

Prasad and Chiueh [31] presents a static binary translation method that saves a redundant copy

of the return address on the stack in the return address repository (RAR) at the function prologue,

compares the saved return address with the original at the function epilogue, and flags an exception

upon a mismatch. It is implemented by inserting a jump instruction in the prologue and the epilogue

to jump to the corresponding code snippet and jump back to do the real prologue and real epilogue.

The paper reports a 3% runtime performance overhead and 16K per process space overhead. This

method is not secure because the RAR is protected with twomine zones6 which makes this method

vulnerable to Type 2 attacks.

C. Modification of the Compiler

StackGuard7 [33], [34] is one of the earliest and most well-known compiler-based solutions.

The additional code inserted at compile time places an integer of known value (called a canary)

between the return address and the local variables on the stack at the function prologue. If a local

buffer on the stack is overflowed, the attacker must overwrite the canary to reach the return address.

StackGuard supports two types of canaries. Therandom canarymethod inserts a 32-bit random

6Mine zones are read only protected regions above and below the RAR to protect overflow into or out of the RAR.
7Microsoft also adopted a StackGuard-like mechanism in Visual C++.NET(v.7) [32].

12

canary after the return address in the function prologue, and checks the integrity of its value before

using the return address at epilogue. Theterminating canaryconsists of four string termination

characters:null, CR, -1, andLF. Note that each one of these characters is a terminating value

for at least one unbounded data copying function. If the attacker tries to overwrite the canary with

the same terminating values, the overflow will never reach the return address because the string

copy will be terminated at the canary.

As pointed out by Bulba and Kil3r [35], StackGuard only protects against Type 1 buffer overflows.

In addition, it requires recompilation of the source code. Because it modifies the stack contents,

programs dependent on the stack structure (e.g., debuggers) may no longer work. Finally, the random

canary needs to be protected. For every function call and return instruction executed StackGuard

must write the random canary to the stack and compare it on return. A varying performance overhead

of 6-80% is reported in [33] which is a function of the ratio ofthe instructions required for the

modified prologue and epilogue to the number of original function instructions.

StackShield[36] is a compiler modification that provides two different protection mechanisms for

protecting the return address.Global ret stackimplements a separate stack for the return addresses

in a global array of 256 32-bit entries. For each function call, the return address is pushed onto both

the program stack and the redundant global stack. On function return, the return address stored on

the separate stack is used.Ret range check, a faster alternative to global ret stack, saves the return

address of the currently executing function in a global longinteger, and then compares it to the return

address on the program stack when the function returns. Thismethod has a low overhead, however

it leaves the global ret stack and global return address vulnerable to Type 1 and Type 2 attacks.

In addition, return addresses from the program stack and theredundant stack are not compared

therefore, attacks are prevented butnot detected.

Return Address Defender[37] creates a global integer array called theReturn Address Repository

(RAR) that holds the copies of the return addresses pushed on the stack. There are two versions

of RAD that differ in the amount and cost of protection to the RAR.The first and less expensive

method,MineZone RADinserts two “minezones” above and below the RAR and marks themas

read-only with themprotect() system call. Any attempt by the attacker to overflow a buffer and

overwrite the RAR would cause a trap and be denied by the OS. This method protects against Type

1 buffer overflows but can be defeated by Type 2. The second version of RAD, Read-Only RAD

13

marks the entire RAR as read-only withmprotect() to achieve high security. This incurs a large

overhead because during the function prologue, the RAR is marked as writable, the return address

is saved into the RAR, and then the RAR is marked as read-only again. Similar to MineZone RAD,

this method cannot prevent return-to-libc attacks which overwrite function pointers on the stack.

Chiueh, et al., report a performance degradation of 5-40% forMinezone RAD, and up to 1000%

degradation for the more secure Read-Only RAD [37].

ProPolice [38] is a gcc extension that utilizes a mechanism similar to that in StackGuard, but with

additional features. It adds some protection against Type 2attacks by reordering the local variables

stored on the stack such that the buffers are right before thecanary and hence cannot be used in

the same function’s scope to overwrite a pointer. This tool was used to compile OpenBSD [39] and

is part of its distribution. ProPolice requires recompilation of the source code, and like Stackguard,

it modifies the stack contents, so, programs dependent on thestack structure may no longer work.

PointGuard [40] is a compiler technique to defend against attacks usingpointers. A modification

to gcc enables pointers to be encrypted with a per-process XOR key while in memory, and to be

decrypted only when they are loaded into the registers. Thistechnique requires recompilation of

source code and incurs up to 21% slowdown on OpenSSL Speed benchmarks [41].

CRED (C Range Error Detector) [42] is a dynamic buffer overflow detector implemented as

an extension of the GNU C compiler. CRED uses a bounds checking method that replaces every

out-of-bounds (OOB) pointer value with the address of a special OOB object created for that value.

Tested on twenty open-source programs, CRED claims to avoid deficiencies of previous dynamic

buffer overrun detectors. CRED imposes 26% overhead and requires compilation of source code.

D. Modifications of the Library

FreeBSD Stack Integrity Patch (Libparanoia): Alexandre Snarski posted a patch to FreeBSD

[43] in 1997 to check the integrity of the stack and later improved on the same idea and called it

Libparanoia [44]. The patch modifies the insecure libc functions likestrcpy() andsprintf()

to kill the process if the destination buffer contains a stack frame pointer (FP).

Baratloo et al. [45]–[47] proposed two dynamically loadablelibrary methods to protect against

buffer overflow attacks. Neither of these methods require re-compilation unless the program is

statically linked. The first method,Libsafe intercepts all calls to vulnerable library functions,

14

such asstrcpy() andstrcat(), and executes their safe versions which implement the same

functionality as the original but employ bounds checking toprevent buffer overflows. This method

estimates the upper bound on the size of the buffer to be the end of the stack frame, so the return

address can not be overwritten. Libsafe protects against Type 1 buffer overflows only since it still

allows for overwriting a pointer or a function pointer in thelocal variables area of the stack which

can be used to modify the return address.Libverify , on the other hand, is a run time implementation

of StackGuard, which inserts function return address verification code at execution time via a binary

re-write of the process memory instead of at compile time. Libverify also protects against only

Type 1 buffer overflow attacks.

Baratloo, et al., report an average overhead of 15% for applications protected by Libsafe, Libverify,

and StackGuard.

FormatGuard [48] is a patch to glibc that provides general protection against format bugs.

FormatGuard uses particular properties of GNU CPP (the C PreProcessor) macro handling of variable

arguments to extract the count of actual arguments. The actual count of arguments is then passed to

a safeprintf() wrapper. The wrapper parses the format string to determine how many arguments

to expect, and if the format string calls for more arguments than the actual number of arguments, it

raises an intrusion alert and kills the process. This methodfails to protect against calls toprintf()

when the correct number of arguments is given but they are notof the expected types, i.e., if an

integer is received when a double is expected. It also fails if the call toprintf() is implemented

via a function pointer or if the low level functions ofprintf() (e.g.,vsprintf()) are called

directly, or another I/O library is used. FormatGuard imposes 37% overhead onprintf() calls

which result in an 1.3% run-time overhead for their set of benchmarks [48].

E. Modifications of the Kernel/OS

The first kernel-based solution,StackGhost[49], is a patch to the OpenBSD 2.8 kernel under the

Sun SPARC architecture. Frantzen and Shuey performed experiments on three methods for protecting

the return address. The first two XOR the return address on thestack with a cookie before writing it

on the stack and then XOR it again with the same cookie before the return address is popped off the

stack. This method distorts any attack to the return addressbut does not detect it, therefore, another

method is used to detect the attacks. In SPARC architecture, the memory is four byte aligned and

15

the least significant (LS) two bits are always 0s. So, the two bits are set at the function prologue

and verified to be set at the epilogue. If the attacker is not aware of this, they will inject a four byte

aligned address in the return address and therefore the attack will fail. But, once the attacker figures

this out, they can set the two LS bits of the address that they want to jump to, and then overwrite

the return address with the modified address. The XOR cookie method comes with two flavors.

XOR cookie per-kernel and XOR cookie per-process. Both of these methods (especially per kernel

XOR cookie) are easily bypassable since the cookie can be figured out if the contents of the stack

frame can be observed (e.g., using the method in the format string attacks as described in Section

II-C) and the return addresses are extracted from the programbinaries. Frantzen and Shuey report

17.44% overhead for per-kernel XOR cookie and 37.09% overhead for per-process XOR cookie.

To prevent execution of the shellcode on the stack, Solar Designer proposed theNon-Executable

User Stack. This solution, a Linux kernel patch from the Openwall Project [20], can be bypassed

with return-to-libc attacks or running the shellcode somewhere in memory other than in the stack,

for instance the heap. To prevent return-to-libc attacks, this patch also changes the default addresses

of the shared libraries in libc to contain a zero byte. It is difficult to overwrite the return address

with a value that contains a zero byte (null) since a zero byteis a string terminator and terminates

string copying functions. This method, which failed to passLinus Trovald’s approval [50] to be

included in the linux kernel, prevents attacks where the shellcode is inserted in the stack and causes

trampoline functions [51] and debuggers to fail.

PaX [30] is a kernel patch that includes two protection mechanisms. NOEXECis a page based

mapping mechanism which does not allow pages that are writable to also be executable. This prevents

injection and execution of code in a process’ address space.8 Address Space Layout Randomization

(ASLR) is a technique that randomizes the addresses of the libc functions (e.g., system), the function

return addresses, the base of the stack and the heap. Although this method makes it harder for the

attacker to predict the vulnerable memory addresses, it is fundamentally a probabilistic method

which also incurs a process startup overhead.

F. Hardware Solutions

Independent of and concurrent to our proposal, there have been two recent attempts to provide a

hardware solution.
8Write-Xor-Execute [52] method implements the same idea.

16

Xu, et al. [53] proposed two methods for protection of the function return address from being

overwritten on the stack.Split control and data stacksprotects the return address by storing it on

the control stack, away from buffers in the data stack that can be overflowed to overwrite the return

address. This approach can be implemented with either compiler or hardware support. The compiler

implementation has up to 23% overhead in SPECINT benchmarks and 2% to 5% overhead for an FTP

server. The hardware implementation eliminates this overhead, but would require an extra register and

a change to the instruction set semantics. The authors assume one page of memory should be enough

for every process and do not discuss memory management of thecontrol stack. This method does

not protect against Type 2 buffer overflows or format string attacks because the control stack is not

protected. The second method, Secure Return Address Stack (SRAS), is a hardware-based approach

that is implemented on top of the Return Address Stack (RAS). SRAS stores a redundant copy

of the function return addresses in the processor to validate the return addresses on the stack. This

method has three versions,Speculative SRAS, Non-Speculative SRAS, andNon-Speculative SRAS with

Overflow Handling. Speculative SRAS incurs almost 100% overhead. Non-Speculative SRAS has

fixed stack size and cannot handle deeply nested functions. Non-Speculative SRAS with Overflow

Handling swaps the contents of the SRAS to the PCB of the processto handle overflows. Xu, et.al do

not discuss context switch overhead and theirsetjmp()/longjmp() handling method requires

the addition of a special instruction to rewind the SRAS.

Lee et al. [54] also proposed a hardware-basedSecure Return Address Stackto protect against

attacks on the function return address. Changes are made to the microarchitectural structure of the

CPU to keep a copy of the return addresses for validation. Thisapproach does not consider 1)

register port contention due to validity checks of the return address, 2) issues of cleaning up the

SRAS after branch mispredictions, or 3) program flow changes caused by functions likesetjmp()

andlongjmp(). Its performance tests use a single-way, in-order-issue processor, which is outdated

compared to modern wide, out-of-order-issue processors.

G. Safer C Language Compilers

There are several dialects of C that offer security measuresemployed in higher level languages

such as Java, while maintaining the low level and efficient aspects of the C programming language.

Enforcing type safety, providing better memory management, and array bounds checks are some of

17

the security features employed in Cyclone [55], Safe C Compiler [56], and CCured [57].

These modified variants of C are not simple drop-in replacements. These language modifications

require a programmer to change portions of the source code, often requiring some sort of indication

where protection should be enabled (otherwise, the normal lack of bounds checking applies for

compatibility). The reason for manual activation of boundschecking is that these projects self-report

overheads on the order of 100% in some instances. Additionally, they suffer from the same drawbacks

on legacy binaries as do other compiler modifications. Namely, they only protect newly compiled

programs and do not protect system kernel, libraries, or existing binaries without recompilation.

H. Summary

Solutions that trade off a high level of security for better performance are eventually bypassed by

the attackers and prove incomplete. On the other hand high-security solutions seriously degrade the

system performance due to frequent integrity checks and costly software based memory protection.

An issue that diminishes the feasibility of these tools and methods is their lack of transparency to

the application or to the operating system. Moreover, some earlier methods lack protection against

Type 2 attacks. In our evaluation of our hardware-based approach we have elected to compare

against StackGuard for several reasons. First, it is the approach that is most widely cited. Second,

its mechanism for protecting the return address on the stackis found in the tools ProPolice and

Libverify. Third, it is not architecture specific and is therefore portable, and fourth, it reports little

overhead while maintaining security against the most prevalent type of attack on the return address

pointer.

IV. SMASHGUARD: A HARDWARE SOLUTION

In this section we present a hardware solution that is secureand inherently faster than the existing

software methods. We elaborate on the complications we facewith setjmp() andlongjmp(),

process context switches, and deeply-nested function calls, and how we solve them. Finally, we

describe our microarchitecture and discuss hardware implementation issues.

A. Overview

Our approach, which we call SmashGuard, protects against attacks on return addresses by saving

the return address in a hardware stack added to the CPU. With each function call instruction, the

18

 a(){
 b{};
 }

 b(){
 var = setjmp();/* setjmp returns 0 */
 if (var == 0){
 d();
(a) }
 else { both setjmp and

ret setjmp

...

...

Setjmp Buffer

longjmp�s frame

d�s frame

b�s frame

a�s frame

Program Stack

RA of longjmp

RA of d

RA of b

RA of a

Hardware Stack

(b)

Hardware Stack

RA of setjmp

RA of b

RA of a

Program Stack

setjmp�s frame

b�s frame

a�s frame

ret setjmp

...

...

Fig. 3. Setjmp()/longjmp() example. (a) code snippet, (b) program stack and hardware stack just beforelongjmp() returns, (c)
program stack and hardware stack just beforesetjmp() returns

return address and the stack frame pointer are pushed onto the hardware stack9. A return instruction

pops the most recent pair of address from the top of the hardware stack and compares it to its return

address. If a mismatch is detected between the two return addresses, then a hardware exception is

raised. In the exception handler, the OS may employ a varietyof policies based on the desired level

of security (e.g., the process may be killed and a report may be sent to syslog).

This simple functionality is not sufficient to handle the problem ofsetjmp() andlongjmp().

setjmp() andlongjmp() circumvent the last-in first-out ordering of the program stack causing

the hardware stack to become inconsistent with the program stack. As we explain in Section IV-B,

we extend the hardware stack’s functionality to enable it tomaintain consistency.

In the simplest case (single process and nesting of functions less that the size of the hardware

stack), all read and writes to the hardware stack are done in hardware via the function call and

the return instructions, so there is no instruction that is permitted to read/write directly from/to the

hardware stack. Specifically, no user-level load or store instruction can access the hardware stack.

To handle the more complicated cases of multiple processes requiring context switching, and deeply

nested function calls, the hardware stack needs to be accessible by the OS. As we explain in Section

IV-C, we solve this problem by memory-mapping the hardware stack. The user cannot access the

hardware stack via the OS either, since it is protected at thekernel privilege level.

9In the next section we explain why merely storing the return address on thehardware stack is not sufficient.

19

B. Handlingsetjmp() and longjmp()

One of the more complicated aspects of trying to protect the call stack is correctly handling

setjmp() andlongjmp() functions. Briefly,setjmp() stores the context information for the

current stack frame and execution point into a buffer, andlongjmp() causes that environment

to be restored. This allows a program to quickly return to a previous location, effectively short-

circuiting any intervening return instructions. One placethis might be used is in a complex search

algorithm: the program usessetjmp() to mark where to return once the item is found, begins

calling search functions, and once the target is found it will longjmp() back to the marked point.

Becauselongjmp() avoids going through the usual function return sequence, our hardware stack

becomes inconsistent with respect to the program stack. In Figure 3(a), we show a code snippet

wherea() callsb() which in turn callssetjmp(). As is typical in programs usingsetjmp()

and longjmp(), depending onsetjmp()’s return valuevar, b() may or may not calld().

d() callslongjmp(). During execution,a() callsb() andb() callssetjmp(). setjmp()

saves a snapshot ofb()’s current register state and a copy of its own return addressin a buffer.

setjmp() then returns with a return value of 0 causingd() to be called.d() callslongjmp()

which usessetjmp()’s buffer to restoreb()’s register state.longjmp() uses the saved return

address in the buffer which issetjmp()’s return address to return tob() with a return value of

1, allowingb() to return toa().

In Figure 3(c), we show the program stack whensetjmp() is about to return. We see that the

hardware stack is consistent with the program stack. We alsosee that the buffer holdsb()’s state and

setjmp()’s return address. In Figure 3(b), we show the program stack whenlongjmp() is about

to return. At this point, the program stack will collapse down tob()’s frame, andlongjmp() will

return tosetjmp()’s return address using the buffer. Because the return address is coming from the

buffer and not the program stack,setjmp()’s return address does not exist anywhere – certainly

not at the top, nor anywhere below – in the hardware stack, which tracks only the program stack.

If nothing is done, SmashGuard would compare the hardware-stack top, which islongjmp()’s

return address intod(), againstsetjmp()’s return address, and a mismatch would result.

Because the relevant return address simply does not exist in the hardware stack, we propose that

longjmp() use anindirect-jump(i.e., jump-through-register) instruction to return, rather than use

20

a return instruction10. Because an indirect-jump instruction will not trigger SmashGuard’s check,

longjmp() will be allowed to return without a mismatch. The program stack and hardware stack

are not consistent yet: the program stack holds frames forb() anda(), but the hardware stack

holds the return addresses oflongjmp(), d(), b(), and a() (see Figure 3 (c)). Whenb()

returns, a mismatch would result.

However, unlike the previous mismatch situation, the required return address (i.e.,b()’s return

address) exists in the hardware stack – only not at the top. Therefore, we propose that upon a

mismatch SmashGuard keep popping the hardware stack until either a match occurs, or the bottom

of the stack is reached in which case the mismatch exception is raised. If a return address is modified

due to an attack, none of the addresses on the hardware stack would match and the bottom of the

stack will be reached. Therefore, no attack will go undetected. Because the only way for the bottom

of the stack to be reached is due to an attack, SmashGuard willnever raise a false alarm.

There are two more complications remaining. First, ifb() is called multiple times beforelongjmp()

is called, then the hardware stack would hold multiple instances ofb()’s return address. In that

case, the popping of the hardware stack would stop at the firstinstance ofb(), which may not be

the instance that executed thesetjmp(). To identify the correct instance, we propose tostore the

return address and the stack pointer, instead of just the return address, in the hardware stack. Now

calls push the two values onto the hardware stack, and returns compare both the return addresses

and the stack pointers. Using the stack pointer is guaranteed to identify the correct instance because

1) the stack pointer holds a unique value for each instance, and 2) the stack pointer value is the

same when a function call and the corresponding function return occurs.

Second, because we requirelongjmp() to return using an indirect-jump instruction and not a

return instruction, returns fromlongjmp() are not processed within SmashGuard. Therefore, an

attack on the return address stored in thesetjmp() buffer (via some buffer overflow attack that

somehow overflows into thesetjmp() buffer) would go undetected. To avoid this problem, we

propose that writers ofsetjmp() andlongjmp() library code protect the return address stored

in the buffer using schemes similar to StackGuard (e.g., place random numbers around the return

address and check their integrity before using the return address in thelongjmp()). Because this

code is library code and not application code, we retain application transparency.

10This is a library modification.

21

Now we explain the solutions proposed by the other approaches described in Section 3 to

setjmp() andlongjmp(). Techniques, such as StackGuard, that do not store a copy of the return

address stack need not do anything special forsetjmp() andlongjmp(). RAD’s solution is to

continue to pop return addresses off of their stored table ofreturn addresses until a match is found.

The problem with this approach is that it is possible that themodified return address value exists

somewhere further down on the hardware stack, causing execution to continue without detecting

the problem. As has been pointed out before, failing to stop execution is no worse than the current

situation where no check is being made, but this answer is unsatisfactory.

The hardware solution proposed by Lee, et al. [54] lists fourways to handlesetjmp() and

longjmp(), none of which retain both security and the functionality ofthe code. On the two

extremes the authors suggest either prohibitingsetjmp()/longjmp() or disabling the hardware

stack protection for programs that containsetjmp()/longjmp(). An intermediate solution,

is to introduce new user-mode (i.e., non-privilege mode) instructionssras pop and sras psh

(SRAS is the name of their proposed hardware solution) to makethe hardware stack consistent

after alongjmp(). They propose injecting these instructions either at compile time or at runtime.

However, a malicious user could use the instructions to tamper with the hardware stack itself,

possibly compromising security.

C. Handling Deeply-Nested Function Calls and Process Context Switches

Because our solution is the same for deeply-nested calls and context switches, we describe these

issues together. The hardware stack may fill up for programs with deeply-nested function calls. A

2-KB stack holds 512 32-bit addresses (e.g., x86) or 256 64-bit addresses (e.g., Alpha). To handle

nested function calls deeper than 512 (256) smashguard raises a hardware-stack-overflow exception,

which copies the contents of the hardware stack to the program’s Process Control Block (PCB)

where it is saved at context switch. The PCB includes a stack ofstacks and every time a stack is

full, it is appended to the previous full stack. Another exception, hardware-stack-underflow, will be

raised when the hardware stack is empty to copy in the last saved full-stack from the PCB. These

exceptions are not a performance concern because we expect them to be infrequent. Indeed, in our

experiments with the SPEC2000 benchmarks, our 2-KB stack wassufficiently large such that no

overflows occurred.

22

A context switch requires saving process state, requiring that we 1) copy out the hardware stack

of the running process either to the PCB or a memory location pointed by a special pointer in

the PCB, and 2) copy in the hardware stack of the scheduled process. To handle both the above

scenarios without adding any special instructions to the instruction set, we employ memory mapping

(similar to memory-mapped I/O), so that regular load or store instructions can be used to read and

write the stack in these scenarios. We map a part of the address space to the hardware stack. A

regular load or store access to this part translates to a reador write access to the hardware stack,

much as memory-mapped I/O devices are read and written. Recall that I/O devices are protected

from direct access by user-level code via virtual memory protection. Similarly, direct access to the

hardware stack is forbidden by virtual memory protection. Thus, only the OS can read or write

the memory-mapped stack, and the OS does so to handle both scenarios. Because the saving and

retrieving of the hardware stack from memory is handled by the kernel our method is secure.

Although SmashGuard increases the state that needs to be saved and restored at context switches,

we expect this overhead to be small. In typical interactive desktop environments, modern operating

systems target about 1% overhead for context switches due totime slice expiration. For a 10-20

milliseconds time slice, the context switch overhead (i.e., time spent in the OS to switch from one

process to another) is about 100-200 microseconds. Copying our 4-KB (512 64-bit words) hardware

stack will require about 1000 instructions (a pair of load and store instructions for each word),

which may take around 2000 cycles (assuming a conservative 0.5 instructions per cycle). At 1 GHz,

this copy adds 2 microseconds to the context switch time of 100-200 microseconds, or about 1-

2% of context switch time. With a 10-20 millisecond time slice, copying adds about 0.01-0.02%

overhead to wall clock time. In more context-switch-intensive environments (e.g., interrupt-intensive

embedded systems), the copying overhead will be higher.

D. Implementation

In this section, we describe three implementation schemes that allow different trade-offs between

implementation difficulty and performance. We explain our implementations in terms of an Alpha-

like RISC architecture that places the return address of a call instruction in a link register. This

link register may be either an implicit register that is hard-coded in the instruction set, or a register

explicitly-specified in the call instruction. The return instruction uses areturn address register–

23

either the implicit register or an explicitly-specified register to return.

SmashGuard modifies call instructions to push the link register and the stack pointer register

onto the hardware stack. Recall that both are needed to accommodatesetjmp()/longjmp()

(see Section IV-B). Return instructions pop off the hardware stack and check the return register

and the stack pointer against the popped values. Because modern processors execute instructions

out of program order and speculatively under branch prediction, call and return instructions may be

executed under misspeculation and out of program order. Consequently, pushing on and popping off

the hardware stack at the time of execution of call and returninstructions is not reliable. Doing so

would require that we clean up the hardware stack on mispredictions. To avoid this complication,

we push on and pop off the hardware stack when call and return instructions commit, which occurs

in program order and after all outstanding speculations areconfirmed. However, there is one main

difficulty: call and return instructions do not carry the needed register values – the link register and

the return address register – with them to the commit point. The link register is written to the register

file when the call instruction executes, and the return address register value is used by the return

instruction when it executes, well before commit. Certainlythe instructions do not carry the stack

pointer to the commit point. There are two options: 1) obtainthe register values from the pipeline

during instruction execution, or 2) obtain the values from the register file at instruction commit.

For the first option, we use a table, called the return addresstable (RAT), into which call and return

instructions place the register values. The values are readfrom the RAT upon instruction commit

and pushed on the hardware stack, or compared against the topof the stack. To avoid complications

in matching instructions to their RAT values, we make the RAT aslarge as the active list (or the

reorder buffer, which is used to hold all in-flight instructions until commit), so that instructions

can easily find their register values simply by using their active list pointers. Because the RAT is

accessed using the active list pointers, misprediction – rollbacks of the active list – automatically

roll back the RAT. This advantage does not exist if we had used the hardware stack itself to hold

speculative values, because rolling back the active list, which is a queue, is not similar to rolling

back the hardware stack, which is a stack.

The only issue now is that call and return instructions need to read the stack pointer register value

(from the register file or bypass paths), an action that is nottaken in conventional pipelines. This

extra read, however, is not a problem because calls and returns read at most one source operand (a

24

call-through-register reads the call target from a register), implying the stack pointer can be read in

place of the non-existent second source operand. The link register value is computed by calls and

can be pulled off from wherever it is computed (e.g., the execute stage).

Because the RAT is invisible to the software, like the hardwarestack, this scheme is secure.

Because the number of in-flight instructions is not large (e.g., 300 instructions) and because call

and return instructions are relatively infrequent, the RAT need be neither large (e.g., a 2-KB RAT

would suffice) nor support high bandwidth. Because this option results in virtually no performance

degradation, we call this schemeNo-Stall.

If the RAT does not fit the constraints of a specific pipeline implementation, designers may

pursue the second option of reading the values from the register file. This option raises two issues:

1) because of register renaming, we cannot access the physical register file with the architectural

register specifiers, and 2) the register file needs to be accessed by all committing call and return

instructions, which may contend with instructions in the register read stage of the pipeline.

We address each of these issues in turn. Call and return instructions have to carry the required

physical register specifiers to the commit point. It would seem that carrying the required values

themselves instead of the specifiers is a better option. However, there are two advantages with

the specifiers: 1) the specifiers are smaller than the values (e.g., 8-bits versus 64-bits), and 2) in

modern pipelines, instructions already carry the previousphysical register specifier mapping the

architectural destination register to the commit point, sothat the previous physical register may be

freed. Therefore, the wires and control circuitry needed tocarry specifiers already exist; we simply

need one additional specifier to be carried.

The only remaining complication is register port contention. Because adding extra register file ports

is expensive, and because call and return instructions are not frequent enough to cause significant

contention, we propose two schemes to handle contention: a conservative scheme calledComplete-

Stalland a more aggressive scheme calledPartial-Stall. In the Complete-Stall scheme, we completely

stall issue in a cycle in which a call or a return instruction commits. The rationale is that it may be

hard to design a select logic that accounts for register portrequirements of committing call and return

instructions, in addition to the usual resource requirements of instructions waiting to be selected.

The select logic is usually on the critical path of the clock,and such additional requirements may

impact clock speed. In the Partial-Stall scheme, the selectlogic stalls only those instructions as are

25

needed to free up the requisite number of ports for the committing calls and returns.

E. Implementation Cost

SmashGuard’s implementation cost is minimal. The main component of the cost is the hardware

stack in the processor to hold function return addresses. Considering that modern microprocessors

employ on-chip level one (L1) caches of sizes 32-64 KB, and on-chip L2 caches exceeding 1 MB,

the 1 KB stack adds minimal overhead (less than one-tenth of one percent) to the chip.

Adding the stack to the next implementation of an instruction set (e.g., Pentium III and Pentium IV

are both implementations of the x86 instruction set) does not present any difficulties. It is common

practice for newer implementations to incorporate optimizations for better performance. Indeed, such

optimizations often involve employing tables which are similar to SmashGuard’s hardware stack.

When introducing new hardware, a key cost factor to avoid is the introduction of new instructions

to the instruction set. New instructions imply an implicit cost in future implementations that must

support the new instructions (in their original form) for compatibility reasons. Because SmashGuard

introduces a hardware stack, we have to ensure that the stackdoes not imply new instructions.

If the hardware stack were completely invisible to software(e.g., the hardware caches are usually

invisible to the user-level code, unless the code optimizesfor cache performance), then the stack

will not require new instructions. In our approach the hardware stack is invisible to software except

for context switches and when the call depth exceeds the stack size. In the later case, an exception

is raised and the exception handler copies the stack to locations in memory owned by the OS.

F. Issues Raised by Multithreading

Some modern processors implement Simultaneous MultiThreading (SMT) [58] which simultane-

ously executes multiple threads on a single pipeline. Multiple threads sharing a single hardware stack

in SmashGuard may make the effective size of the stack too small. Because SMT already provides

as many copies of certain hardware resources (e.g., rename tables, load/store queue, active list) as

the number of threads, SmashGuard’s hardware stack can alsobe replicated. Second, kernel-level

multithreading does not cause any problems for SmashGuard because the threads are switched in and

out by the OS and the hardware stack can be saved and restored as part of the context switch. Third,

process migration in multiprocessor systems does not causeany problems. Conventional systems

26

explicitly migrate some of the process state such as register and TLB contents, SmashGuard’s

hardware stack can also be migrated explicitly.

However, user-level multithreading is problematic for SmashGuard because multiple user-level

threads would share the hardware stack, but call and returnsfrom the threads would interleave in

arbitrary order, and not LIFO. Because user-level threads donot go through the OS for invocation,

suspension, and resumption, an OS-driven context switch cannot be used to share the hardware stack

among the threads. The option of providing a large number of stacks in hardware is not attractive

either because the number of stacks needed would be large (e.g., 256) to avoid restricting user-level

threading. One option is to allow threads the same hardware stack by (statically or dynamically)

partitioning the stack and accessing the stack based on a thread identifier (id). The thread id is

maintained by the thread library in a register and the threadid allows each thread to access

its part of the hardware stack. Any overflow or underflow wouldbe handled as before. Another

option is to disable SmashGuard and use software-based solutions for user-level multithreaded code.

Finally, certain synchronization primitives such as coroutines may be difficult to accommodate in

SmashGuard. Coroutine calls may be done in one thread and returns in another thread, and it may

be hard to synchronize the hardware stacks of the two threads. Here again, an option is to disable

SmashGuard and use software-based solutions for coroutine-based code. In both of these cases

recompilation is not an issue because the user code is available.

TABLE II

HARDWARE PARAMETERS

Processor 4-way issue, 128-entry window, 64-entry ld/st queue (10 cycbr. penalty)

Branch Prediction 8K/8K/8K hybrid, 128-entry RAS, 4-way 8K BTB

L1 Cache 64K 2-way 2-cycle I/D (lockup free and pipelined)

L2 Cache 2MB 8-way 14-cycle (lockup free and pipelined)

Main Memory Infinite capacity, 80 cycle latency split transaction 32-byte wide bus

Hardware Stack 512-entry Hardware Stack

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of SmashGuard and StackGuard, a software based

protection mechanism, on a common execution-driven simulation infrastructure for a modern, high-

performance processor.

27

TABLE III

CALL FREQUENCY PER1K INSTRUCTIONS (CF), MAXIMUM CALL DEPTH (CD), AND BASE IPCS USING4-WAY (I4) AND 8-WAY

(I8) ISSUE WIDTHS FORINTEGER AND FLOATING POINT BENCHMARKS

Int bzip crafty gap gcc gzip mcf parser perlbmk twolf vortex vpr

CF 4.24 6.89 3.37 2.41 3.34 6.06 14.08 9.71 8.13 13.33 16.67

CD 12 32 77 61 12 22 238 65 17 31 18

I4 1.9 1.8 2.0 1.7 1.9 0.7 1.7 1.4 1.5 1.9 2.2

I8 2.1 2.2 2.5 1.8 2.1 0.7 1.8 1.6 1.7 2.3 2.8

FP ammp applu apsi art mesa mgrid swim wupwise

CF 4.83 ∼0 2.11 0.34 7.35 ∼0 ∼0 8.33

CD 17 13 20 12 15 16 13 14

I4 2.2 2.6 1.9 1.6 2.3 2.5 2.8 2.0

I8 2.5 3.1 1.9 1.7 2.9 2.7 3.8 2.3

A. Methodology

We modified the SimpleScalar-3.0 simulator [59] to model twoof our three schemes of Smash-

Guard – Partial-Stall and Complete-Stall. We do not report No-Stall because it incurs almost no

performance overhead. Table II shows the base system configuration parameters used throughout

the experiments, unless specified otherwise. We simulate both 4- and 8-way out-of-order issue

superscalar processors augmented with a 512-entry hardware stack for SmashGuard. We modified

gcc-3.0.3to port StackGuard to the Alpha architecture. The ported version of StackGuard modifies

the prologue and epilogue code of the compiled functions to include the terminating canary (see

Section III-C). In Figure 4 we show the eight extra instructions inserted by our StackGuard patch. The

prologue code places the terminating canary (0x000aff0d) on the program stack, and the epilogue

code loads the canary from the stack and compares it to the original. If there is mismatch, the

function attack handler() is called.

We compiled the benchmarks on an Alpha machine running Tru64using the original gcc and

the StackGuard port. The original gcc’s binaries are used bythe SmashGuard runs. Because the

StackGuard port to handle C libraries is not available, we compiled only the benchmark code

with the StackGuard port and used the standard C libraries. Accordingly, our simulator samples

performance only in the application functions and not the library functions. We ran the SPEC2000

benchmarks shown in Table III. We used f2c to covert fortran-77 benchmarks (applu, apsi, equake,

mgrid, sixtrack, swim, and wupwise) to C. We did not simulate Fortran-90 (facerec, fma3d, galgel,

28

function entry:
<old prologue>

ldah $1, 11 #move canary into reg
lda $1, -243($1)
stq $1, 0($30)

<old prologue>
...

<function body>
...
ldq $1, 0($30) #load canary from stack
ldah $2, 11 #move canary into reg
lda $2, -243($2)
cmpeq $1, $2, $3 #compare
bne $3, $Label
call $26, attack_handler

$Label:
<old epilogue>
ret

Fig. 4. StackGuard’s extra instructions

and lucas) and C++ (eon) benchmarks as doing so would require implementing StackGuard in

Fortran-90 and C++ compilers. While the total number of instructions executed by SmashGuard and

StackGuard are different, the number of call/returns are the same in SmashGuard and StackGuard.

Therefore, we ran each benchmark for the same number of call instructions in each case for fair

comparison. We skipped 20 million calls and ran 10 million calls for all the integer programs (bzip,

crafty, gap, gcc, mcf, parser, perlbmk, twolf, vortex, and vpr) and for three floating-point programs

(ammp, mesa, and wupwise). The rest of the floating-point programs have such low call frequency

that we had to simulate fewer calls to avoid inordinately extending our simulation time. We skipped

1 and 0.5 million calls and ran 1 and 0.5 million calls for apsiand art, respectively. Programs applu,

mgrid, and swim make virtually no application calls. We do not show results for equake and sixtrack

because they make only library calls.

B. Functionality Results

To verify that our hardware modifications can actually detect changes in the program return

address, we created a binary for the Alpha that overwrites one of its own local buffers and executed

it in the simulator. We were limited to self-attacking code because SimpleScalar only supports single

process execution. Our hardware modification was able to detect that the return address value being

29

Fig. 5. Results for 4-way issue superscalar

Fig. 6. Results for 8-way issue superscalar

pulled from the stack did not match the value stored in the hardware stack.

C. Performance Results

In this section, we compare SmashGuard and StackGuard to a conventional superscalar with no

support for buffer overflow detection. Figure 5 and Figure 6 show our results for issue widths of 4

and 8, respectively. In both graphs, the Y-axis gives the percent slowdown with respect to the base

superscalar processor of equal issue width, and the X-axis shows our benchmarks starting on the

left with the integer programs bzip through vpr, followed bythe average for the integer programs,

the floating-point programs ammp through wupwise, ending with the average for the floating-point

programs. The left bars show SmashGuard using the Partial-Stall scheme, the middle bars show

SmashGuard using the Complete-Stall scheme and the right bars show StackGuard. The figures do

not show the No-Stall scheme because it does not incur any more stalls than the base superscalar

(i.e., No-Stall has virtually zero percent degradation).

A striking trend in both Figure 5 (4-way issue) and Figure 6 (8-way issue) is that the in-

30

teger programs incur more performance degradation than floating-point programs, which incur

little degradation. If a program’s call frequency is low, then both SmashGuard’s and StackGuard’s

overhead are incurred less frequently. This trend is corroborated by Table III, where we see that the

integer programs’ call frequencies are generally higher than those of the floating-point programs.

The exceptions aremesaand wupwise, which have modestly high call frequencies. Because these

programs have high instruction-level-parallelism indicated by their high IPC (instructions per cycle),

SmashGuard’s overhead of stalled issue is hidden by the parallelism. Because the floating-point

programs’ degradations are negligible, we do not discuss them further.

Focusing on the SmashGuard numbers (left and middle bars), we see two trends. First, as expected,

the Partial-Stall scheme (left bar) performs better than the Complete-Stall scheme (middle bar), on

both 4-way issue (Figure 5) and 8-way issue (Figure 6) processors. With 4-way issue, Partial-Stall

and Complete-Stall incur 0.5% and 2.4% average degradation,respectively, for the integer programs.

Partial-Stall’s worst-case degradation is 1.8% for vpr andhas less than 1% degradation for the rest of

the programs. Complete-Stall, on the other hand, incurs morethan 4% degradation for mcf, parser,

vortex, and vpr. The relatively large degradations are not surprising because these programs have

not only high call frequency leading to high overhead, but also low IPC with less ability to hide

the overhead (Table III).

As we increase the issue width from 4 to 8, Partial-Stall incurs almost no degradation while

Complete-Stall still incurs 1.2% average degradation. Because there are more free issue slots in a

8-way issue processor than a 4-way issue processor, both schemes’ overheads are hidden.

Now, we focus on the StackGuard numbers (right bar). We see that StackGuard’s average degra-

dation is worse than that of Partial-Stall, and comparable to that of Complete-Stall on both 4-

way issue and 8-way issue processors. StackGuard incurs a 2.8% and 1.8% average degradation

on 4-way issue and 8-way issue processors, respectively. However, for perlbmk, vortex and vpr,

StackGuard incurs more than 8% and 6% degradation on 4-way issue and 8-way issue processor,

respectively. High call frequency and low IPC of these programs have the same negative effect on

StackGuard’s performance as SmashGuard’s performance. Like SmashGuard, StackGuard incurs less

degradation when the issue width was increased from 4 to 8. Onthe 8-way issue processor, apsi and

wupwise unexpectedly improve in performance (i.e., negative degradation) with StackGuard. This

improvement is the result of a pathological interaction between StackGuard’s extra instructions and

31

the branch predictor, causing an accidental improvement inthe prediction accuracy.

Finally, the call depths listed in Table III show that the programs do not exceed the depth of

238 (parser), indicating that a 512-entry hardware stack issufficient to avoid most stack overflow

exceptions in SmashGuard.

VI. CONCLUSIONS ANDFUTURE WORK

This paper has proposed a novel microarchitectural supportto protect against attacks that overwrite

the return address on the process stack to redirect execution. We have provided a hardware stack

that securely handles both Type 1 (buffer overflows) and Type2 (attacks through a pointer) attacks

on the return address. The key contributions of this paper are:

Complete Solution: We have designed a complete solution, which handlessetjmp andlongjmp

as part of the hardware solution, and handles hardware stackoverflow/underflow and

process context switches with a small modification to the OS.

Trade-offs: We have proposed three implementation schemes that allow different trade-offs

between implementation difficulty and performance.

Detailed Performance Analysis: We have performed a detailed performance analysis com-

paring the most-frequently applied software solution, StackGuard, to SmashGuard on a

common simulator for a high-performance processor.

Our best-performing implementation, No-Stall, incurs virtually no performance degradation but

has the small implementation cost of a 2-KB table. We compared the other two implementations

(Complete-Stall and Partial-Stall) to StackGuard. Our experiments show that StackGuard performs

comparably to Complete-Stall but StackGuard is less robust than Partial-Stall. For an 8-issue proces-

sor, while StackGuard incurs only slightly less average degradation than Partial-Stall, StackGuard’s

worst-case degradation is 8% whereas Partial-Stall incursless than 0.5%. Moreover, StackGuard

requires application recompilation and does not protect against Type 2 attacks.

With every passing day, the number of attacks on systems connected to the Internet increases [60].

Attacks are increasingly automated, attack tools are much more sophisticated, and there have been

attacks on the critical infrastructure of the Internet [61]. SmashGuard provides a robust solution to

one of the most prevalent attacks of today.

32

REFERENCES

[1] AMD. (2004) AMD chips include new buffer overflow protection. [Online]. Available: http://www.computerweekly.com/

Article127571.htm

[2] Intel. (2001) Execute disable (XD) bit. [Online]. Available: http://www.intel.com/business/bss/infrastructure/security/xdbit.htm

[3] T. Corporation. (2004) AntiVirusNX Technology. [Online]. Available: http://www.transmeta.com/efficeon/antivirusnx.html

[4] Microsoft. (2004) Microsoft Windows XP SP2 Data Execution Prevention. [Online]. Available: http://www.microsoft.com/

technet/prodtechnol/winxppro/maintain/sp2mempr.mspx

[5] Aleph1, “Smashing the stack for fun and profit,”Phrack Magazine, vol. 7, no. 49, Nov. 1996. [Online]. Available:

http://www.phrack.org/show.php?p=49&a=14

[6] CERT Coordination Center. (2001, June 19) CERT Incident Note IN-2001-08 Code Red Worm Exploiting Buffer Overflow In

IIS Indexing Service DLL . [Online]. Available: http://www.cert.org/incident notes/IN-2001-08.html

[7] ——. (2001, August 6) CERT Incident Note IN-2001-09 Code RedII: Another Worm Exploiting Buffer Overflow In IIS

Indexing Service DLL . [Online]. Available: http://www.cert.org/incidentnotes/IN-2001-09.html

[8] ——. (2003, August 11) CERT Advisory CA-2003-20 W32/Blaster worm. [Online]. Available: http://www.cert.org/advisories/

CA-2003-20.html

[9] Sophos Virus Analysis. (2003, August 19) W32/Nachi-A. [Online]. Available: http://www.sophos.com/virusinfo/analyses/

w32nachia.html

[10] ——. (2004, May 1) W32/Sasser. [Online]. Available: http://www.eeye.com/html/research/advisories/AD20040501.html

[11] CERT Coordination Center. (2001, June 19) CERT Advisory CA-2001-13 Buffer Overflow In IIS Indexing Service DLL.

[Online]. Available: http://www.cert.org/advisories/CA-2001-13.html

[12] ——. (2003, July 16) CERT Vulnerability Note VU 568148 Microsoft Windows RPC vulnerable to buffer overflow. [Online].

Available: http://www.kb.cert.org/vuls/id/568148

[13] ——. CERT Coordination Center Advisories for 2002. [Online]. Available: http://www.cert.org/advisories/#2002

[14] SANS Institute. SANS/FBI Top 20 List, The Twenty Most Critical Internet Security Vulnerabilities, 2002. [Online]. Available:

http://www.sans.org/top20/oct02.php

[15] CERT Coordination Center. CERT Coordination Center Advisories for 2003. [Online]. Available: http://www.cert.org/

advisories/#2003

[16] SANS Institute. SANS Top 20 List, The Twenty Most Critical Internet Security Vulnerabilities, 2003. [Online]. Available:

http://www.sans.org/top20/

[17] Scut. (2001, September) Format String Vulnerabilities. [Online]. Available: http://teso.scene.at/articles/formatstring

[18] T. Newsham. (2000, September) Format string attacks. [Online]. Available: http://www.lava.net/∼newsham/format-string-attacks.

pdf

[19] Blexim, “Basic integer overflows,”Phrack Magazine, vol. 11, no. 60, December 2002. [Online]. Available: http:

//www.phrack.org/show.php?p=60&a=10

[20] S. Designer. (2001, January) Linux kernel patch from the openwall project: Non-executable user stack. [Online]. Available:

http://www.openwall.com/linux/README

[21] The SmashGuard Group. (2003) SmashGuard Website. [Online]. Available: http://www.smashguard.org/

[22] J. Wilander and M. Kamkar, “A comparison of publicly available toolsfor static intrusion prevention,” inProc. of the 7th

Nordic Workshop on Secure IT Systems, Karlstad, Sweden, November 2002, pp. 68–84.

33

[23] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step towards automated detection of buffer overrun vulnerabilities,”

in Network and Distributed System Security Symposium, San Diego, California, February 2000, pp. 3–7.

[24] N. Dor, M. Rodeh, and M. Sagiv, “CSSV: Towards a realistic toolfor statically detecting all buffer overflows in C,” inProc.

of the ACM SIGPLAN 2003 conference on Programming Language Design and Implementation, San Diego, California, June

9-11 2003, pp. 155–167.

[25] D. Larochelle and D. Evans, “Statically detecting likely buffer overflow vulnerabilities,” inProc. of the 10th USENIX Security

Symposium, Washington D.C., August 2001, pp. 177–190.

[26] E. Haugh and M. Bishop, “Testing C Programs for Buffer Overflow Vulnerabilities,” inProc. of the Network and Distributed

System Security Symposium, 2003. [Online]. Available: http://seclab.cs.ucdavis.edu/papers/HaughBishopNDSS2003.ps

[27] S. H. Yong and S. Horwitz, “Protecting C Programs from Attacks viaInvalid Pointer Dereferences,” inProc. of the 9th European

software engineering conference held jointly with 10th ACM SIGSOFT international symposium on Foundations of software

engineering, Helsinki, Finland, September 2003, pp. 307–316.

[28] T. Toth and C. Kruegel, “Accurate Buffer Overflow Detection via Abstract Payload Execution,” inProc. of the 5th

International Symposium on Recent Advances in Intrusion Detection, Zurich, Switzerland, 2002. [Online]. Available:

http://www.infosys.tuwien.ac.at/Staff/chris/doc/200208.ps

[29] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An efficient approach to combat a broad range of memory

error exploits,” in12th USENIX Security Symposium, Washington, D.C., August 2003, pp. 105–120.

[30] The PaX Team. (2001) PaX. [Online]. Available: http://pageexec.virtualave.net/

[31] M. Prasad and T. Chiueh, “A Binary Rewriting Defense against Stack based Buffer Overflow Attacks,” inUsenix Annual

Technical Conference, General Track, San Antonio, TX, June 2003, pp. 211–224.

[32] Microsoft. (2001) Visual c++ option to tighten security. [Online]. Available: http://archive.devx.com/security/bestdefense/2001/

mh0301/mh0301-1.asp

[33] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic

Adaptive Detection and Prevention of Buffer-Overflow Attacks,” inProc. of the 7th USENIX Security Conference, San Antonio,

TX, January 1998, pp. 63–78.

[34] C. Cowan, S. Beattie, R. F. Day, C. Pu, P. Wagle, and E. Walthinsen, “Protecting Systems from Stack

Smashing Attacks with StackGuard,” inProc. of the 5th Linux Expo, Raleigh, NC, May 1999. [Online]. Available:

http://www.cse.ogi.edu/DISC/projects/immunix/lexpo.ps.gz

[35] Bulba and Kil3r, “Bypassing StackGuard and StackShield,”Phrack Magazine, vol. 10, no. 56, May 2000. [Online]. Available:

http://www.phrack.org/show.php?p=56&a=5

[36] Vendicator. (2001, January) StackShield: A “stack smashing” technique protection tool for Linux. [Online]. Available:

http://www.angelfire.com/sk/stackshield/download.html

[37] T. Chiueh and F. Hsu, “RAD: A Compile-Time Solution to Buffer Overflow Attacks,” in Proc. of the 21st International

Conference on Distributed Computing Systems (ICDCS ’01), Mesa, AZ, April 2001, pp. 409–.

[38] H. Etoh. (2003, April) GCC extension for protecting applications from stack-smashing attacks. IBM Research. [Online].

Available: http://www.trl.ibm.com/projects/security/ssp/

[39] (2003, April) The OpenBSD Project. [Online]. Available: http://www.openbsd.org/

[40] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “Pointguard: Protecting pointers from buffer overflow vulnerabilities,” inProc.

of the 12th USENIX Security Symposium, Washington, D.C., August 2003, pp. 91–104.

[41] Various. OpenSSL. [Online]. Available: http://www.openssl.org/

34

[42] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflowdetector,” inProceedings of the 11th Annual Network and

Distributed System Security Symposium (NDSS 2004), February 2004, pp. 159–169.

[43] A. Snarskii. (1997) FreeBSD Stack Integrity Patch. [Online]. Available: ftp://ftp.lucky.net/pub/unix/local/libc-letter

[44] ——. (2000, April) libparanoia. [Online]. Available: http://www.lexa.ru/snar/libparanoia/

[45] A. Baratloo, T. K. Tsai, and N. Singh, “Libsafe: Protecting CriticalElements of Stacks,” Bell Labs, Lucent Technologies,

Murray Hill, NJ, Tech. Rep., December 1999. [Online]. Available: http://www.bell-labs.com/org/11356/libsafe.html

[46] A. Baratloo, N. Singh, and T. Tsai, “Transparent run-time defense against stack smashing attacks,” inProc. of the USENIX

Annual Technical Conference, San Diego, California, June 2000, pp. 251–262.

[47] T. Tsai and N. Singh, “Libsafe 2.0: Detection of Format String Vulnerability Exploits,” Avaya Labs, Avaya Inc., Basking

Ridge, NJ 07920, Tech. Rep. ALR-2001-019, August 2001. [Online]. Available: http://www.research.avayalabs.com/techreport/

ALR-2001-019-paper.pdf

[48] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and J. Lokier, “FormatGuard: Automatic protection from

printf format string vulnerabilities,” inProc of the 2001 USENIX Security Conference, Washington, D.C., August 2001, pp.

191–200.

[49] M. Frantzen and M. Shuey, “StackGhost: Hardware facilitated stack protection,” in Proc. of the 10th USENIX Security

Symposium, Washington, D.C., August 2001, pp. 55–66.

[50] L. Torvalds. (1998, Aug.) Reply to non-executable stack patch.[Online]. Available: http://old.lwn.net/1998/0806/a/linus-noexec.

html

[51] GNU Compiler Collection Internals. [Online]. Available: http://gcc.gnu.org/onlinedocs/gccint/Trampolines.html

[52] (2003, April) The OpenBSD 3.3. [Online]. Available: http://www.openbsd.org/33.html

[53] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer, “Architecture Support for Defending Against Buffer Overflow Attacks,” presented

at the Workshop on Evaluating and Architecting System dependability (EASY-2002), San Jose, California, U.S.A., October

2002.

[54] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi, “Enlisting Hardware Architecture to Thwart Malicious Code Injection,” in

Proc. of the International Conference on Security in Pervasive Computing (SPC-2003), Boppard, Germany, March 2003.

[55] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang, “Cyclone: A Safe Dialect of C,” inProc. of the 2002

USENIX Annual Technical Conference, Monterey, CA, June 2002, pp. 275–288.

[56] T. Austin, S. Breach, and G. Sohi. (1994, June) Safe C Compiler(SCC). [Online]. Available: http://www.cs.wisc.edu/∼austin/

scc.html

[57] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-SafeRetrofitting of Legacy Code,” inProc. of the ACM Symposium

on Principles of Programming Languages, Portland, OR, January 2002, pp. 128–139.

[58] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading: maximizing on-chip parallelism,” inProc. of the

22nd Annual International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 1995, pp. 392–403.

[59] T. Austin. (2001) SimpleScalar LLC. [Online]. Available: http://www.simplescalar.com/

[60] CERT Coordination Center. CERT coordination center statistics 1988-2002. [Online]. Available: http://www.cert.org/stats/

cert-stats.html

[61] ——. CERT coordination center incident and vulnerability trends. [Online]. Available: http://www.cert.org/present/

cert-overview-trends/

35

Hilmi Özdog̃anõglu is an Embedded Software Engineer at Broadcom Corporation. He received his masters degree from the school

of Electrical and Computer Engineering at Purdue University in 2004. He graduated with a Bachelors degree from Louisiana State

University in 2000. His research interests are Host-Based Computer Security Systems and Intrusion Detection Systems.

Carla E. Brodley is a professor in the Department of Computer Science at Tufts University. She received her bachelors degree from

McGill University in 1985 and her PhD in computer science from the University of Massachusetts in 1994. From 1994-2004, she

was on the faculty of the School of Electrical Engineering at Purdue University, West Lafayette, Indiana. Prof. Brodley’s research

interests include computer security, machine learning and knowledge discovery in databases. She has worked in the areas of intrusion

detection, anomaly detection in networks, hardware support for security, classifier formation, unsupervised learning and applications

of machine learning to remote sensing, computer security, and content-based image retrieval of medical images.

T. N. Vijaykumar joined the faculty of the School of Electrical and Computer Engineering in 1998 after completing his Ph.D. at

the University of Wisconsin-Madison. His research interests are in computer architecture, VLSI microarchitectures, processor and

memory hierarchy, and compiler optimizations. At Purdue, Vijaykumar investigates speculative threading, transient-fault tolerance,

and low-power techniques in high-performance microprocessors.

Benjamin A. Kuperman is a visiting assistant professor at Swarthmore College in Pennsylvania. He earned his masters and doctorate

from the Department of Computer Sciences at Purdue University in 1999 and 2004. While there, he was a researcher in the Center

for Education and Research in Information Assurance and Security (CERIAS) for 5 years and was affiliated with COAST before

that. His main areas of research are on host based computer security monitoring systems and OS level audit systems.

Ankit Jalote is a masters student in the Department of Electrical and Computer Engineering at Purdue University. He completed his

bachelors in Computer Science and Engineering from Indian Institute of Technology, Kanpur (India) in 2002. His research interests

are Computer Architecture and Security.

