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Abstract
Chip multiprocessors (CMPs), or multi-core processors, have be-
come a common way of reducing chip complexity and power con-
sumption while maintaining high performance.SpeculativeCMPs
use hardware to enforce dependence, allowing a parallelizing com-
piler to generate multithreaded code without needing to prove in-
dependence. In these systems, a sequential program is decomposed
into threads to be executed in parallel; dependent threads cause
performance degradation, but do not affect correctness. Thread de-
composition attempts to reduce the run-time overheads of data de-
pendence, thread misprediction, and load imbalance. Because these
overheads depend on the run times of the threads that are being
created by the decomposition, reducing the overheads whilecreat-
ing the threads is a circular problem. Static compile-time decom-
position handles this problem by estimating the run times ofthe
candidate threads, but is limited by the estimates’ inaccuracy. Dy-
namic execution-time decomposition in hardware has betterrun-
time information, but is limited by the decomposition hardware’s
complexity and run-time overhead. We propose a third approach
where a compiler instruments a profile run of the applicationto
searchthrough candidate threads and pick the best threads as the
profile run executes. The resultant decomposition is compiled into
the application so that a production run of the application has no in-
strumentation and does not incur any decomposition overhead. We
avoid static decomposition’s estimation accuracy problemby us-
ing actual profile-run execution times to pick threads, and we avoid
dynamic decomposition’s overhead by performing the decomposi-
tion at profile time. Because we allow candidate threads to span
arbitrary sections of the application’s call graph and loopnests, an
exhaustive search of the decomposition space is prohibitive, even
in profile runs. To address this issue, we make the key observation
that the run-time overhead of a thread depends, to the first order,
only on threads that overlap with the thread in execution (e.g., in a
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four-core CMP, a given thread can overlap with at most three pre-
ceding and three following threads). This observation implies that
a given thread affects only a few other threads, allowing pruning of
the space. Using a CMP simulator, we achieve an average speedup
of 3.51 on four cores for five of the SPEC CFP2000 benchmarks,
which compares favorably to recent static techniques. We also dis-
cuss experiments with CINT2000.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers, optimization; C.1.4 [Processor
Architectures]: Parallel Architectures

General Terms Algorithms, Performance

Keywords chip multiprocessor, decomposition, empirical search,
multi-core, thread-level speculation

1. Introduction
Architectures called single-chip multiprocessors (CMPs), or multi-
core processors, help reduce chip complexity and power consump-
tion while maintaining high performance. A CMP may be used as
a conventional multiprocessor to run multiple applications concur-
rently; however, an individual application may need to takeadvan-
tage of multiple cores for high performance because each core on
a CMP may be less powerful than a traditional uniprocessor. Par-
allelism within a single application can come from explicitly par-
allel sections, but it is difficult for programmers to parallelize ap-
plications manually. Although compilers are relatively successful at
parallelizing numerical applications, dependences that are not stati-
cally analyzable hinder compilers. To alleviate this problem,specu-
lativeCMPs [15, 30, 32, 33, 38, 39] exploit the parallelism implicit
in an application’s sequential instruction stream. Speculative CMPs
use hardware to enforce dependence, allowing a compiler to focus
on improving performance without needing to prove independence.
A sequential program is decomposed into threads for a speculative
CMP to execute in parallel; dependent threads cause performance
degradation, but do not affect correctness. The CMP uses predic-
tion to select and execute a sequence of threads while enforcing
correctness, such that the program’s output is consistent with that
of its sequential execution. The CMP employs data-dependence-
tracking mechanisms, keeps uncertain data in speculative storage,
rolls back incorrect executions, and commits data to main memory
only when speculative threads succeed. Thus, a speculativeCMP
provides the same programming interface as a uniprocessor while
supporting the safe, simultaneous execution of potentially depen-
dent threads – referred to as thread-level speculation (TLS).

Thedecomposition problemis to partition a program into spec-
ulatively parallel threads while optimizing run time. Thread de-
composition is the critical factor in determining the performance



of a program executed by TLS. The key factors contributing torun-
time overhead in TLS are inter-thread data dependence, inter-thread
control-flow misprediction, and inter-thread load imbalance. Data
dependence and misprediction cause roll backs and load imbalance
causes idling. The amount of run-time overhead caused by an in-
stance of these factors depends on the thread size. The penalty due
to a data-dependence violation or misprediction depends onhow
late in a thread’s execution the violation or mispredictionis de-
tected – the longer the thread, the later the potential detection, and
the larger the penalty. Similarly, the longer the threads, the larger
the potential load imbalance, and the larger penalty. Because these
overheads depend on the run times of the threads that are being
created by the decomposition, reducing the overheads whilecreat-
ing the threads is a circular problem. Static compile-time decom-
position handles this problem by estimating the run times ofthe
candidate threads, but is limited by the inherent inaccuracy of the
estimates and of predicting the run-time interaction (e.g., data de-
pendence) among threads. Dynamic execution-time decomposition
in hardware has better run-time information in that hardware can
measure actual run times instead of relying on estimates. Neverthe-
less, dynamic decomposition is limited by the decomposition hard-
ware’s complexity and run-time overhead of performing decompo-
sition during execution. It is limited also by lacking knowledge of
the overall program structure, which is useful in finding good de-
compositions, and by the difficulty of performing in hardware the
complex tradeoffs among the various overheads of TLS.

To address these limitations of the current decomposition
schemes, we propose a different approach where a compiler in-
struments a profile run of the application to perform anempirical
searchthrough candidate threads and pick the best threads (i.e.,
least execution times) as the profile run executes. As the profile run
proceeds, it uses the naturally occurring invocations of procedures
and loops to try out various candidate threads (e.g., each invocation
may try out a different candidate thread). The resultant decomposi-
tion is compiled into the application so that a production run of the
decomposed application has no instrumentation and does notincur
any decomposition overhead. Because we use actual profile-run
execution times to pick the threads, we avoid static decomposi-
tion’s estimation accuracy problem (barring any inaccuracies due
to differences between profile inputs and production inputs). We
avoid dynamic decomposition’s run-time overhead by performing
the decomposition at profile time, even though we evaluate trade-
offs among TLS’s various overheads during the decomposition.
Also, our search uses knowledge of the overall program structure.

Our approach has some similarities to loop versioning [3, 14]
and procedure cloning [6]. Whereas our approach chooses among
various candidate threads, those optimizations choose among var-
ious versions of loops and procedures. While those optimizations
are only locally applicable to loops and procedures, our approach
is more general and tries numerous levels of parallelism spanning
arbitrary sections of a program’s call graph and loop nests.Those
optimizations compile multiple static versions into the program and
choose among them at run time, but the number of versions is lim-
ited by code expansion. By contrast, our scheme examines candi-
date threads only during a profile run and uses only the best threads
in compilation for production runs, avoiding code expansion issues.
One may think that code expansion problems remain in the pro-
file run. Fortunately, speculative CMPs provide hardware support
to dynamically coalesce all the static threads of a procedure call or
loop into a single dynamic thread during execution without requir-
ing an explicit static version of that single thread (see Section 3).
Consequently, the compiler needs to generate only one version of
each procedure or loop. Our profile run compares that versionto
alternative executions, in which some calls or loops are treated as
single threads, via the hardware support. This dynamic ability ob-

viates creation of multiple static versions, avoiding codeexpansion
issues even in our profile run. Another paper [27] creates twover-
sions of loops – serial and parallel – in cases where the correct-
ness of the parallel version cannot be proved at compile time. The
parallel version is executed and then checked for correctness via
a run-time dependence test; if the test fails, then the serial version
is executed. Two key differences to our approach are: (i) [27] as-
sumes the parallel version is always faster than the serial version
and, therefore, there is no comparison between them. By contrast,
our scheme has many parallel versions (candidate threads) and has
to choose among them, for which we use empirical search. (ii)Be-
cause our hardware can always guarantee correctness with any par-
allel version, we do not need to perform any dependence tests.

Finally, because we allow candidate threads to span arbitrary
sections of the application’s call graph and loop nests, an exhaus-
tive search through the decomposition space is prohibitive, even
in profile runs. In addition, because our search uses the naturally
occurring invocations of procedures and loops to try out candi-
date threads, the number of invocations in a single run may not
be enough to try out all candidate threads. To address this issue, we
make the key observation that the run-time overhead of a thread de-
pends, to the first order, only on those threads that overlap with that
thread in execution (e.g., in a four-core CMP, a given threadcan
overlap with at most three preceding and three following threads).
We call this propertyspeculation localityand say that two threads
areindependent by separationif there are enough other threads be-
tween them to prevent them from executing at the same time. Spec-
ulation locality implies that, when our search replaces a candidate
thread with a better thread, the TLS overheads of only those threads
that overlap with the candidate thread will change. Consequently,
the search does not need to revisit other threads that are indepen-
dent by separation of the thread it just replaced, enabling pruning
of the search space.

Our main contributions are:

• We are the first to propose that decomposition for thread-level
speculation (TLS) be performed by a profile-timeempirical
searchthat is embedded into the program.1

• We show how to embed search code within an application to
find the most parallelism, with low profile run-time overhead
and while avoiding measurement-induced error.

• We identify properties calledspeculation localityandindepen-
dence by separationto prune the search.

• We give all TLS overheads equal priority, even those that static
approaches ignore (e.g., memory latency).

• Our results show an average speedup of 3.51 on four cores
for five SPEC CFP2000 benchmarks, compared to an average
speedup of 2.97 obtained with a recent static technique [16].
Empirical optimization produces results better than static ap-
proaches with less analysis effort and without the drawbacks of
dynamic decomposition.

In Section 2, we discuss related work, followed by an explana-
tion of the speculative execution model in Section 3. We discuss
our optimization system in Section 4 and our results in Section 5.
Section 6 concludes.

2. Related Work
Static decomposition techniques face the problem of makinggood
compile-time tradeoffs among run-time overheads. Findingopti-
mum program partitions in general is NP-complete [29], as isfind-

1 A related idea, adaptive speculative task parallelism, wasmentioned
in [19], but was considered beyond the scope of that paper.



ing thread-level parallelism [12], and the relation of overheads to
thread size means that traditional static scheduling algorithms [20]
are not appropriate. Consequently, a compiler uses heuristics [35]
or special graph-partitioning algorithms [16] to reconcile the con-
flicting demands of these constraints. Loops and procedure calls
commonly form threads, as in this paper and others [21]. Funda-
mentally, all static approaches suffer from the inherent inaccuracy
of predicting the run-time duration and interaction of speculative
threads. Simple profiling can help [16, 21], but the compilermust
ignore many run-time effects to simplify the analysis. Manual de-
composition [26, 31] is common due to the above difficulties.

Dynamic decomposition techniques implemented in hardware
inspect the instruction stream looking for loops [22, 34], procedure
calls [1], or cache-line access patterns [28]. Then the hardware cre-
ates threads from loop iterations, executes the code following a call
in parallel with the call, or takes advantage of cache behavior. An-
other method [5] looks ahead in the instruction stream whileex-
ecuting code and marks where the next thread should begin. The
look-ahead searches for instruction patterns that are known from
experience to be beneficial places to begin threads. Hardware tech-
niques cannot benefit from high-level knowledge of the program’s
structure or make complex tradeoffs among overheads.

Adaptive compilation systems [7, 37] compare various code
versions by executing them. The different versions utilizedifferent
or reordered compiler optimizations and are generally included
with the program at compile-time such that a run-time choice
can be made among them. In [37], the additional versions are
compiled on another processor while the main processor executes
the application, and are then dynamically loaded.

3. Speculative CMP Execution Model
We use the Multiscalar architecture [30] as an example to explain
a speculative CMP’s execution model. Our empirical search relies
on source code instrumentation and a hardware counter; the spe-
cific underlying architecture does not matter, provided that it has
several options for creating threads through which the search can
iterate. The primary difference among the architectures mentioned
in Section 1 lies in the cache protocol they use for managing spec-
ulative storage and detecting violations. Different cacheprotocols
impact performance, but do not change the compiler’s view ofthe
execution model [4, 11, 13, 15, 32].

Thread Execution A thread dispatcher (in hardware) fetches
threads from the sequential instruction stream and dispatches them
to processor cores. It uses prediction to decide which thread to dis-
patch next. A thread’s execution may be incorrect either because
the prediction was wrong, resulting in a control-dependence viola-
tion, or because an inter-thread data dependence was violated. The
CMP detects both types of violations and reacts by rolling back and
restarting threads as necessary [10, 13]. The oldest threadin exe-
cution (w.r.t. sequential program order) is always nonspeculative,
guaranteeing progress, while all younger threads are speculative.
A speculative thread keeps its uncertain data in speculative storage
until it becomes the nonspeculative thread and commits changes
to memory. A formal execution model can be found in Section 2
of [18]. The speedup achieved by TLS is reduced by various over-
heads, which we describe next.

General Per-Thread Overhead Although thread dispatch is effi-
cient, it remains a significant overhead for small threads (i.e., less
than twenty cycles). Decomposing a program into large threads re-
duces the significance of this overhead; however, very largethreads
(i.e., thousands of cycles) can overflow the speculative storage be-
cause they will include more writes to distinct memory locations.
An overflow completely stalls speculative execution, untilthe non-
speculative thread completes and allows the next thread to become

nonspeculative, freeing speculative storage. Techniquesexist to re-
duce the speculative storage required by a program [11, 18].

Data-Dependence and Control Violation Overhead True depen-
dences that cross thread boundaries may lead to data-dependence
violations and cause rollbacks, as in Figure 1. A data-dependence
violation is detected at the write reference to a memory location
that was read previously by a younger thread (w.r.t. sequential pro-
gram order). The reader and all younger threads are rolled back, as
in Figure 1. The run time of the rolled-back threads is overhead.

Only true memory dependences (read-after-write) cause viola-
tions. Anti (write-after-read) and output (write-after-write) depen-
dences are properly handled by buffering in the speculativestor-
age. CMP architectures can learn to synchronize dynamically any
frequently-encountered memory dependences that impede parallel
execution [23]; it is difficult to predict this synchronization during
decomposition. Furthermore, register dependences are specified by
the compiler, allowing the hardware to communicate register values
from one thread to another as appropriate [2]. Register-value com-
munication among processor cores can be a significant overhead
for programs with many small threads.

Thread mispredictions cause control-dependence violations.
They are detected when an older thread completes and its actual
successor differs from the predicted successor. The overhead is the
run time of the rolled-back, younger threads, as in Figure 1.This
situation is essentially identical to detecting a data-dependence vi-
olation at the very end of a thread.

Figure 1. Rollback due to a data or control dependence violation:Thread
numbers indicate sequential order. Thread 1 detects a violation in thread 2.
Thread 2 and the younger thread 3 are rolled back, followed bythe dispatch
of new threads on P2 and P3. Threads 2b and 3b may or may not be the
same as threads 2 and 3.

Load Imbalance Overhead Threads of unequal size can cause
load imbalance, as in Figure 2. The imbalance stems from an
architecture property: threads are dispatched to processor cores in
a cyclic order and a core does not receive a new thread until ithas
committed its current thread. Because threads commit in program
order, younger threads have to wait for older threads to commit. A
large thread preceding (in program order) a small thread causes
the small thread to wait until the large thread commits, idling
execution cycles. Although maintaining a cyclic dispatch order
simplifies the architecture by allowing the sequence of threads
to be determined easily for rollback operations, it resultsin load
imbalance. With more complicated hardware, it is possible to avoid
this overhead by dispatching out-of-order or executing multiple
threads per processor core.

While the above overheads are important for decomposition,
there is one other detail that is also relevant, namely thread coa-
lescing. The hardware supports dynamically coalescing thethreads
within a procedure call or loop into a single thread. Everything
beneath the call or loop on the dynamic call graph (i.e., all code
executed until the call’s return or loop’s exit) is“collapsed” into
the thread invoking the procedure or loop. The hardware ignores
thread boundaries (i.e., instructions that begin new threads) while
such a call or loop executes, but still executes the other instructions.
The alternative is to continue execution by beginning new threads
within the called procedure or loop. It is possible for a callto the



Figure 2. Load imbalance:Strict cyclic dispatch order in the architecture
leads to load imbalance. This overhead can be avoided by supporting com-
plex out-of-order thread dispatch or executing multiple threads per core.

same procedure to be collapsed into the calling thread for one call
site, but not for another. Programs containing many calls will have
small threads unless some calls are collapsed, thus this mechanism
is important for exploiting coarse parallelism.

4. Profile-Time Empirical Optimization
Thread decomposition is key to reducing the above overheads. Re-
call from Section 1 that our approach is to instrument a profile run
of the application such that it performs anempirical searchthrough
candidate threads and picks the best threads as it executes.The
resultant decomposition is compiled into the application so that
subsequent runs have no instrumentation or decomposition over-
head. We examine the factors one considers when finding candidate
threads and the decisions made by existing static and dynamic ap-
proaches. We examine three categories of candidate threads: loop
iterations (Section 4.1.1), procedure calls (Section 4.1.2), and ev-
erywhere else (Section 4.1.3). Next, we describe the decomposition
space – the variety of possible decompositions. Finally, wepresent
the design of our optimization system and explain our implementa-
tion.

4.1 Candidate Threads

4.1.1 Loop Iterations

Loop iterations are the most obvious part of a program from which
to create threads and many approaches to TLS focus on loops [8,
21, 24, 26, 31]. Loop iterations provide a run-time sequenceof pre-
dictable and naturally load-balanced threads, leaving dependence
as the primary overhead to potentially interfere with speculation.
Nevertheless, the decision of whether to speculate is not straight-
forward. Due to thread dispatch overhead, it may be better tocoa-
lesce all loop iterations into a single thread (i.e., serialize the loop)
if the loop is small with few iterations. Speculating on a nested loop
may interrupt the coarser parallelism of an outer loop. Manyloops
are not perfectly nested, which makes it hard to determine atwhich
granularity to speculate. The heuristic approach in [35] speculates
on all loops because its dominant heuristic is thread prediction. The
min-cut approach in [16] serializes some inner loops based on a
performance estimate, but does not always make correct decisions
because the compile-time estimation ignores several run-time ef-
fects (e.g, memory latency). Dynamic hardware approaches often
begin threads whenever a backward branch is taken, regardless of
nesting level.

4.1.2 Procedure Calls

Besides loop iterations, the other way to create large threads is to
coalesce all threads in the dynamic call graph beneath a procedure
call into a single thread, as described in Section 3. In this way, many
static threads are dynamically collapsed into the calling thread by
ignoring thread boundaries until the call returns. The two primary
benefits are executing multiple calls in parallel and preventing short
calls from introducing load imbalance into a sequence of larger
threads. The danger is that there is parallelism within the called

procedure. By collapsing the call, that parallelism is discarded
with the expectation that coarser parallelism will make up for the
loss; however, this is not always the case. A collapsed call may
introduce a large thread into a sequence of smaller threads,causing
load imbalance. Larger threads mean more work is rolled back
upon a violation and make speculative buffer overflow more likely.
Executing multiple calls in parallel is risky because dependences
through global data are often difficult to detect. Therefore, there
must be a high degree of confidence that collapsing a call will
improve performance. The heuristic approach in [35] collapses
only very small calls and library calls. The min-cut approach in [16]
collapses some larger calls based on a performance estimate, but
because the estimation views collapsing a call primarily asa way
of reducing load imbalance, the vast majority of the collapsed calls
are small and located in loops. Dynamic hardware approachesmay
execute a call in parallel with the code following the call. If the call
is larger than a threshold, then the hardware breaks it into additional
threads.

4.1.3 Elsewhere

There exist some places besides loops and procedure calls where
it may be beneficial to begin threads. Such places are normally
at points of control-flow convergence (post-dominators), or at the
ends of dependence chains within lengthy calculations, andare
found by the heuristics in [35] and the min-cut algorithm in [16].
Beginning threads there exploits fine-grain speculative parallelism.

4.2 Decomposition Space

As a default, the compiler assumes that it is good to speculate
on all loops and calls within a program. Therefore, our search
through candidate threads becomes, for each loopl of a program, to
decide whether or not serializingl improves performance (similar
to [36]) and, additionally, for each call sitec of a program, to decide
whether or not collapsingc improves performance. The search does
not begin threads elsewhere. Our goal is to exploit loop-level and
call-level speculation as aggressively as possible to achieve coarse-
grain parallelism. Whereas smaller threads sometimes madesense
in our previous work that focused on fine-grain speculation [16,
35], here they would cause significant load imbalance.

For each loop and procedure call of a program, our architecture
provides three threading options, shown in Figure 3, that welabel 0,
1, and 2. Option 0 (fine-grain parallel) executes as a set of threads,
Option 1 (serial) executes as a single thread that is coalesced with
the preceding and following threads, and Option 2 (coarse-grain
parallel) executes as a single thread that is coalesced withthe pre-
ceding thread only, beginning a new thread once the call returns or
the loop exits. If the set of call sites isC and the set of loops is
L, then there are3|C|+|L| possible program decompositions. Eval-
uating every solution is not feasible due to exponential complex-
ity, so finding a good solution requires an intelligent search of the
space. Note that other speculative architectures may provide differ-
ent threading options, or more, or fewer; the technique presented
in this paper can be adapted to them by varying the specific search
algorithm, while leaving the empirical search mechanism intact.

In the following discussion, we use an extended call graph that
also includes loops. The vertex setV is the procedures and loops
of a program, while the edge setE is the calls, where we treat
beginning a loop as a call. If one procedure calls another multiple
times, then there are multiple edges to the callee, such thatthe entire
graph has|E| = |C| + |L| edges. A program decomposition can
be represented on the graph by writing a base-3 numeric string of
length one next to each edge, where each digit indicates one of the
three threading options described above in Figure 3. We refer to the
concatenation of strings of all edges leaving a particular vertexv as
the decomposition for vertexv (i.e., for the call or loop represented



Figure 3. Options for threading a call:There are many threads using
Option 0, one thread using Option 1, and two threads using Option 2.

by v). A complete decomposition for allv ∈ V has |E| base-
3 digits, capable of representing the3|E| possible solutions. We
make two crucial observations that are the basis of our strategy for
pruning this exponential space.

OBSERVATION 1. In a speculative CMP capable of executingN
threads simultaneously, the violations described in Section 3 can
occur only between two threads that have fewer thanN −1 threads
separating them in program order. IfN − 1 or more threads
separate them, then the threads cannot execute simultaneously,
and therefore cannot cause a violation. We say that two threads
are independent by separationif there are enough other threads
between them to prevent their simultaneous execution.

OBSERVATION 2. It follows that the speculation overheads of
threads within a call or loop are most influenced by theN − 1
threads immediately preceding the call or first iteration, as well as
the threads within the call or loop. Additionally, the threads within
a call or loop most influence theN − 1 threads immediately fol-
lowing the return or last iteration. We call this propertyspeculation
locality, shown in Figure 4.

Figure 4. Principle of Speculation Locality:The influence of threads
before and after a call or loop decreases beyond theN threads in the
execution window. Here, the loop or call containsM threads and the
window isN = 4. Typically M > N .

STRATEGY 1. For each vertexv of the extended call graph, if
a decomposition is first found for all ofv’s children beforev’s
decomposition is determined, then it is not necessary to revisit the
decomposition ofv’s children after determiningv’s decomposition.

Strategy 1 is supported by induction on the graph.Base Case:A
trivial decomposition can be found for leaves of the graph because
they make no procedure calls and do not contain loops; i.e., their
solution string is a null string.Inductive Case:For a given vertex
v of the graph, we have, by hypothesis, a decomposition for each
child. Therefore, any edgee marked with Option 0 that leavesv
leads to a sequence of threads,s, that was deemed the best known
decomposition for that child; i.e., Option 1 or 2 may be better, buts

is the best under Option 0. Because of speculation locality,how we
mark other edges besidese that leavev haslittle to no effecton s.
If e is instead marked with Option 1 or 2, thens hasno effecton the
decomposition ofv because it is collapsed and its thread boundaries
are ignored at run time, as in Figure 5. Therefore, if we search for a
decomposition forv without revisiting the decomposition of any
of its children, it will not have a significant negative impact on
our final solution. We continue in this manner until we find the
decomposition for the root of the graph (i.e., the program’smain

procedure), and then concatenate the decomposition of eachvertex
to form an overall solution string.

Figure 5. Collapse and Serialization:Each extended call graph corre-
sponds to the code on the left:v0 represents procedure v0,v1 represents
the while loop, andv2 represents procedure v2. Thev0 → v1 edge rep-
resents entering the while loop and thev1 → v2 edge represents calling
v2 from the while loop. There are two edges but only five distinct base-3
solution strings (“00”, “01”, “02”, “1x”, “2x”), shown as figures (a) and
(b), instead of nine (32). In (a), the lower digit’s value matters. In (b), the
lower digit’s value does not matter and is marked with an “x” becausev1 is
collapsed intov0.

Due to the NP-complete nature of the problem and the use of
a locality property, there is no proof of optimality for Strategy 1,
but it suggests that a bottom-up2 approach yields a good solution.
A consequence of Strategy 1 is that instead of having to explore
3|E| possible solutions, the search space is pruned to an average
of |V |3βavg solutions, whereβavg is the average branching factor
of the graph (i.e., assuming on average that each vertex hasβavg

children). Furthermore, the bottom-up approach allows solutions to
be found for different procedures and loops concurrently. We now
discuss the design of our optimization system, including the spe-
cific search methods it employs to further prune the decomposition
space.

4.3 Design of the Optimization System

The original application that we seek to optimize along withour
instrumentation code constitute the optimization system.It com-
pares candidate threads by measuring the performance of vertices.
Recall from Section 1 that we use the natural invocation order of
vertices and the system has no control over this ordering. Weex-
plained our search strategy above and we describe the details of the
search in two parts, the overall search and the per-vertex search.
The overall search, discussed in Section 4.3.1, is coordinated sep-
arately from the searches for decompositions of particularvertices
and is responsible for following the bottom-up approach of Strat-
egy 1. Per-vertex searches (i.e., within a particular loop or proce-
dure) are discussed in Section 4.3.2 and may proceed concurrently
using one of several search methods.

2 Recursive calls are discussed below.



4.3.1 Coordinating Overall Search

The system coordinates the bottom-up search by maintainingthe
state machine in Figure 6 for each vertex. There are three possible
states for a vertexv:

• Not Ready (NR) – It is not yet time to determine the decom-
position atv. At least one ofv’s non-recursive children is not
Done. NR is the initial state of all non-leaf vertices.

• Ready (R) – A decomposition is currently being sought forv.
All of v’s non-recursive children areDone.

• Done (D) – A decomposition has been found forv, or v is a
leaf.

We do not want the system to wait on vertices that the program
never actually executes, such as error routines. Fortunately, for the
benchmarks we examine, nearly all such procedures are leaf calls,
and we optimize by putting leaves directly in theDone state so their
callers do not need to wait. Note that if a recursive call is collapsed,
it is always collapsed at the top level; collapsing further down the
recursion tree requires cloning the entire procedure, which we wish
to avoid.

Figure 6. State transitions: this figure shows the rules used to determine
when to change vertex state. We optimize by placing leaf nodes directly into
theDone state.

4.3.2 Search Per Extended-Call-Graph Vertex

Recall that the decomposition for a particular vertexv is the set of
base-3 solution strings of all edges leavingv. The major concern is
how many potential solutions need to be examined before settling
on a final solution. Fewer is better because if the search needs to
examineX solutions and the program invokesv only Y times,
whereX > Y , then it needs multiple runs of the program to find
the best solution. We wish to avoid this situation whenever possible
because the state of the search would need to be saved after each
run and loaded before the next run. Another reason for minimizing
the number of examined solutions is to provide some leeway such
that it can skip the first measurement (when caches will suffer cold
misses) and then obtain multiple samples for an average. Note that
it is usually unnecessary to find decompositions for the topmost
vertices; for example, consider that themain procedure is called
only once, but it is so high on the graph that any non-zero values
in its solution string would serialize large chunks of the application
and yield near-sequential performance.

We primarily discuss the following search per-vertex methods:
exhaustive, linearly-independent, control-flow, greedy,and hierar-
chical. We implement and evaluate only the greedy, hierarchical,
and (for very small cases) exhaustive methods because they are
most promising. We describe the others for completeness.

Exhaustive Search Exhaustive search requires checking3βv so-
lutions, whereβv is the branching factor ofv. This approach is
useful whenβv ≤ 3, but larger values will slow our search signif-
icantly. Vertices lower on the graph must complete before moving
on to higher vertices, so whereas aΘ(3n) algorithm might nor-
mally be acceptable for some small values larger than three,in this
case it is not acceptable because it impedes the overall search.

Linearly-Independent Search At the other extreme, a linearly-
independent search assumes that none of the digits in the solution
have anything to do with each other, and checks onlyβv solutions.
For example, if the strings1 = 0100 improves performance and
the strings2 = 0010 improves performance, then the combination
s3 = s1∨s2 = 0110 is assumed to improve performance. We have
observed that this assumption is not reasonable; such a combination
may decrease performance or show superlinear improvement.A
performance decrease occurs when the combination creates along
sequence of ones that unnecessarily serializes a large amount of
code. A superlinear improvement occurs when two neighboring
calls are brought into the same thread and the calls have data-
dependences between them; this effect can be surprising because
the dependence can be on a global variable accessed by distant
grandchildren of the calls, which is not discernible by looking at
the source code forv alone.

Exploiting Control-Flow Because exhaustive search and linear-
independence will not work in general, we next look for ways
to divide the search into subproblems. One way is to exploitv’s
control-flow structure in conjunction with independence bysepara-
tion. Consider the example in Figure 7a, where there are two mutu-
ally exclusive paths withinv. The extended call graph is shown in
Figure 7b. There are two calls tov1, so thev → v1 edge is dupli-
cated. The branching factor,βv , is 6, so the decomposition ofv has
36 = 729 possible solutions. The control flow ofv is shown in Fig-
ure 7c. Notice that the partial solutions for the left and right paths
are independent. Also, if an interior call (v1a, v2, v3) of the control
flow graph, shown in Figure 7c, is not collapsed, then it typically
represents many threads – possibly hundreds. Therefore, itis rea-
sonable to apply independence by separation across non-collapsed
calls, treating the partial solutions on either side as independent.
Instead of checking36 = 729 possible solutions, it is necessary
to check183, counting as in Table 1, or about 25% of the original
number.

Figure 7. An opportunity for pruning the search using both independent
paths and independence by separation.

Table 1. Counting Decompositions:The first column identifies the case
under consideration, the second column shows how we count the solutions,
and the third column shows the simplified numbers.

v3 = 0 32 + 32 + 3 21
v3 6= 0, v1a = 0, v2 = 0 3 + 3 + 2 ∗ 3 12
v3 6= 0, v1a 6= 0, v2 = 0 32 ∗ 22 + 3 39
v3 6= 0, v1a = 0, v2 6= 0 3 + 32 ∗ 22 39
v3 6= 0, v1a 6= 0, v2 6= 0 (3 ∗ 2 + 3 ∗ 2) ∗ 3 ∗ 2 72
total 183



Greedy-Local Search (Hill Climbing) Although exploiting control-
flow is useful, there are two problems: (i) reducing the number of
candidate solutions by1

2
or 1

4
is not enough to make the expo-

nential space manageable, and (ii) many procedures containlong
sequences of calls and loops that are executed unconditionally and
therefore lack any control flow to exploit. Local search algorithms,
which operate by maintaining a current solution and moving to
neighboring solutions, can significantly reduce the numberof so-
lutions considered. The most basic of these algorithms is greedy-
local search, sometimes called hill-climbing search, which always
moves to the best neighbor. To apply this technique, the search
begins with a solution string containing only zeros (i.e., speculate
on everything). The last digit is then varied, such that “...001” and
“...002” are considered. Whichever of these three solutions has the
least run time provides the last digit for the final solution.For ex-
ample, if “...002” was best, then the search moves on to considering
“...012” and “...022”, and so forth until all the digits havebeen se-
lected. The search could begin with the first digit, but either way
it is necessary to examine2βv + 1 solutions for aβv-digit string.
This algorithm can be surprisingly effective. For example,by ap-
plying greedy-local search to a particular procedure from SPEC
CPU2000 that hasβv = 8 and a simulated, sequential run time of
82,424 cycles, we found a decomposition that took 21,564 cycles
after examining2 ∗ 8 + 1 = 17 of 38 = 6, 561 potential solutions.
The ideal solution (as estimated by manual decomposition) takes
21,377 cycles, so we came within 1% of the ideal solution after
considering less than 0.3% of all solutions.

Two-Stage Hierarchical Search We wish to improve upon the
greedy method in an inexpensive way. The most significant limi-
tation of the method is that it is short-sighted; by startingwith the
finest-grain decomposition, it can reach a coarser granularity, but
not the coarsest. To see this effect, consider Figure 8a and suppose
that dependences are such that the calls can run in parallel with-
out significant speculation overhead. An obvious solution to try is
“22...22”, shown in Figure 8b, which places each call in a separate
thread. The greedy method, however, will rarely reach this string
on its final attempt because of load imbalance in the intermediate
steps. For example, the intermediate step “00...22...” likely suffers
some imbalance at the 0-2 transition, causing the greedy approach
to toss a few ones into the string with mixed results. Similarly, the
greedy method will often ignore coarser parallelism from group-
ing the calls, as in Figure 8c. Therefore, we perform a two-stage
search, with the initial solution as all 2s. The first stage (“merge”)
is a mesh search that scans the stringβv times while changing a
single 2 to a 1. The state ends early if nothing is changed during a
scan. At best, nothing changes during the first scan and it triesβv

additional solutions. At worst, it introduces a single 1 each pass for
an additional

Pβv

k=1
k = 1

2
βv(βv + 1) solutions. The second stage

(“divide”) is a greedy, single-scan search that tries a 0 at each posi-
tion, for an additionalβv attempted solutions. By contrast to greedy
search, which wasΘ(2βv + 1), hierarchical search isΩ(2βv + 1)
andO( 1

2
β2

v + 3

2
βv + 1).

Other Methods There are many possible search methods besides
those above. For example, we considered trying simulated anneal-
ing and genetic selection, but both of them required trying an un-
acceptably large number of solutions. Complex per-vertex search
methods impede the overall, bottom-up search, so we focus on
methods that are simple and effective.

4.4 Implementation

We use source transformations, described in Section 4.4.1,to con-
vert a program into the form that is most easily interfaced with our
instrumentation. Then we add additional code, described inSec-
tion 4.4.2, to measure and record the performance of procedures.

Figure 8. Two-stage merge & divide effect:(a) shows the original code.
(b) shows thread boundaries for a solution string of “22222222.” (c) shows
thread boundaries for a solution string of “12121212.”

We perform both the transformations and the instrumentation using
the Cetus compiler infrastructure [17]. Section 4.4.3 explains how
decompositions are varied at run time, and Section 4.4.4 explains
how measurement error is avoided.

4.4.1 Preliminary Transformations

Loops to Procedures We apply our technique by converting loop
bodies into procedures. When combined with the architecture’s
ability to coalesce threads (see Section 3), this transformation en-
ables trying many levels of parallelism without experiencing code
explosion from loop versioning. “Microtasking” loops is common
in other parallel programming models.

Single Return There is code that must be executed just before a
procedure returns. For procedures with multiple return statements,
it is inconvenient to add that code in multiple places. Therefore,
a procedure is transformed such that it has only a single return
statement. The final return statement is modified to return the value
of a new local variable; all other return statements are modified to
store a value to that local variable and then jump to the final return.

Nested Call Elimination The compiler needs to place code
around each procedure call, so calls that have the results ofother
calls passed as their arguments pose a problem: placing code
around such a call would encompass more than one call. There-
fore, it separate the calls using explicit temporary variables.

4.4.2 Measuring Performance

To measure the performance of a decomposition, the compilerin-
serts code at the beginning and end of each procedure. For example,
given procedureprocV:

procV ( . . . ) {
provV0 ( . . . ) ;
provV1 ( . . . ) ;

}

The compiler converts it to the following code:

procV ( ) {
s t a t i c i n t n e e d r e c o r d = 1 ;
s t a t i c uns igned char∗ v e c t o r = NULL;
uns igned long long b e g i n ;

/∗ one− t ime i n i t i a l i z a t i o n code ∗ /
i f ( v e c t o r == NULL)
{

/∗ a l l o c a t e a βv − length z e r o− f i l l e d a r r a y ∗ /
v e c t o r = t l s i n i t f u n c ( ‘ ‘ procV ’ ’ , procV ,

2 , & n e e d r e c o r d ) ;



/∗ s e t u p up ca l l−graph dependenc ie s∗ /
t l s c a l l g r a p h ( procV , procV0 ) ;
t l s c a l l g r a p h ( provV , procV1 ) ;

/∗ s e t to NR or R depend ing on c h i l d r e n∗ /
t l s c h e c k s t a t e ( procV ) ;

}

i f ( n e e d r e c o r d )
b e g i n = s imt ime ( ) ;

/∗ beg in t r a n s f o r m e d procedure ’ s code∗ /
TLS DECIDE ( 0 , procV0 ( . . . ) ) ;
TLS DECIDE ( 1 , procV1 ( . . . ) ) ;
/∗ end t r a n s f o r m e d procedure ’ s code∗ /

i f ( n e e d r e c o r d )
t l s r e c o r d ( procV , b e g i n ) ;

}

Our initialization code executes only once, during the invoca-
tion whose timing we discard anyway to avoid cold cache misses
and a potential timing error ifprocV transitions to theR state
while it is executing. Thevector array corresponds directly to
the solution string forprocV and contains only the values 0, 1,
and 2. WhileprocV is in stateR, vector contains the solution
string that is currently being measured. WhenprocV is in stateD,
vector contains the best solution found. Theneed record vari-

able is used to shut off the optimization mechanism onceprocV

has been optimized. While it is turned on, thesimtime call is used
to determine the number of cycles that have elapsed since thebe-
ginning of the program; the secondsimtime call is hidden within
tls record. The simulator for the CMP implementssimtime and
returns a well-defined value since all of the cores execute inlock-
step.

4.4.3 Changing Decompositions at Run Time

Call-site versioningis used to vary the decompositions. Recall from
Section 3 that whether a procedure executes in serial or in parallel
is a property of the call site;there is no need to create multiple
source-code versions of the called procedures themselves. An if

statement is placed around each call site to determine whether
the call should execute in serial or in parallel. The TLSDECIDE
macro used above is defined as follows:

# d e f i n e TLSDECIDE ( var , c a l l ) \
( ( v e c t o r [ va r ] == 0) ? c a l l : \
( ( v e c t o r [ va r ] == 1) ? c a l l : \

c a l l ) )

The decision is made by indexingvector with the lexical or-
der of the call in the procedure (e.g., for the first call, an index of
zero is used). The code forces three versions of the call intothe
application’s binary; the compiler’s back end looks for these triple
calls, marks the first with speculation option 0, the second with
speculation option 1, and the third with speculation option2. (Al-
ternative approaches are self-modifying code, or expanding the in-
struction set to include a conditional-speculation opcode, but those
were more difficult to add to our existing infrastructure.) The logic
that updatesvector is located intls record. Whenever enough
samples for a string have been recorded,tls record advances
the string to the next string to be measured. The next string de-
pends on which search method from Section 4.3.2 is active. When
tls record detects that the final string (the identity of which de-
pends on the search method) has been measured, it sets the string
to the best string, moves the procedure to stateD, moves callers
as necessary to stateR, and setsneed record to zero to disable
future measurements.

4.4.4 Avoiding Measurement-Induced Error

When timing a region of code executing on a speculative CMP,
code outside the timed region can affect the measurement. This be-
havior is contrary to what happens if the code is executed on a
sequential processor because code following the secondsimtime

call (within tls record) may cause a violation if there is no
thread boundary in between. Another problem, due to load im-
balance, is that the secondsimtime call may occur before all of
the code in the timed region has finished. To prevent these effects,
tls record uses the following code to wait until it is the nonspec-
ulative (“head”) thread to make the measurement. Thesimishead

call checks if it is executed by the head thread:

do {
end t im e = s imt ime ( ) ;

} wh i le ( ! s im ishead ( ) ) ;

c y c l e s = endt im e − b e g i n t i m e ;

5. Performance Evaluation on SPEC CPU2000
We evaluate our technique in detail using benchmarks from SPEC
CFP2000 and discuss similar experiments with SPEC CINT2000.
The programs are instrumented with the Cetus [17] compiler and
compiled with the Multiscalar GCC compiler at optimizationlevel
O2, which supports C programs and Fortran 77 programs via
f2c [9]. Results for some CFP2000 benchmarks from that subset
are not included due to current limitations of Cetus [17] (i.e., we
use the intersection of CFP2000 currently supported by bothcom-
pilers). Our search finds the decomposition by using thetrain data
set for the profile run’s input, but the final evaluation uses the ref
data set. Table 2 shows the parameters we use for the Multiscalar
simulator. Table 3 shows the serial instructions-per-cycle (IPC) for
each benchmark and the relative performance of the greedy and
hierarchical methods, taken as acycle ratio. Both the greedy and
the hierarchical method use exhaustive search whenβv ≤ 3. We
compare to the conservative approach from [35] and a more ad-
vanced static approach from [16] that used dependence-arc and
branch profiles. The greedy method yields the best improvement
on CFP2000. Both search methods, on average, improve over the
static methods.

Table 2. Simulator Configuration
CPUs 4 dual-issue, out-of-order
L1 i-cache 64KB, 2-way, 2-cycle hit
L1 d-cache 64KB, 2-way, 3-cycle hit,

32-byte block, byte-level
disambiguation

Rollback Buffer 64 entries
Reorder Buffer 32 entries
Load/Store Queue 32 entries
Function Units 2 Int, 2 FP, 2 Mem
Branch Predictor path-based, 2 targets
Thread Predictor path-based, 4 targets
Descriptor Cache 16KB, 2-way, 1-cycle hit
Shared L2 2MB, 8-way, 64-byte block,

12-cycle hit and transfer
L1/L2 Connect Snoopy split-transaction bus,

128-bit wide
Core to Core Latency 10 cycles
Memory Latency 300 cycles

Figure 9 shows the cause of our speedup in terms of how the
speculation overheads are reduced. Much of the speedup comes
from reduced load imbalance, as inapplu, art, andmgrid. The



Table 3. CFP2000 Baseline vs Improved Performance:These results were
obtained using cycle-accurate simulations of representative program re-
gions (e.g., skip data initialization and then time one billion instructions)
with theref data set as input.

SPEC Single [35]’s [16]’s Greedy Hier.
CFP Thread Speedup Speedup Speedup Speedup
2000 IPC
applu 0.48 1.98 2.11 3.37 3.21
art 0.19 2.06 2.43 3.00 3.00
equake 0.56 1.49 1.79 1.92 1.70
mgrid 0.35 5.41 5.54 6.09 6.09
swim 0.17 4.51 4.51 4.51 4.51
g. mean 2.72 2.97 3.51 3.39

swim benchmark is simple enough that all methods find a good
solution. Memory latency improves forapplu, but remains mostly
the same for the others. The overhead tradeoff is most evident for
equake in which load imbalance and memory latency get worse,
but dependence, misprediction, and dispatch overhead improves.

Table 4 shows that we improve the average thread size of the
applications. A larger average thread size helps amortize specula-
tion overheads and provides a coarser level of parallelism,which is
generally good. When increasing average thread size manually or
using static compiler analysis, it is easy to accidentally reduce per-
formance by serializing too much of the code or by serializing the
wrong parts; empirical optimization provides a safer way toreap
the benefits of large thread size.

Figure 9. SPEC CFP2000 relative impact of reduced overheads compared
to 100% of [35]’s overhead: orig is [35], mincut is [16], and greedy and hier
are our two search methods.

Table 4. Thread Size: We show the average instructions per thread for
each of the benchmarks, and then provide an overall average.

SPEC [35]’s [16]’s Greedy Hier.
CFP Insns/ Insns/ Insns/ Insns/
2000 Thread Thread Thread Thread
applu 36.7 46.2 296.0 223.3
art 15.7 19.3 27.4 27.4
equake 15.5 19.6 27.2 26.8
mgrid 113.9 115.4 160.6 160.6
swim 101.9 112.8 101.9 101.9
mean 56.7 62.7 122.6 108.0

To demonstrate that our transformations and instrumentation do
not substantially disturb the profile of the benchmarks, we apply all
transformations and insert the instrumentation, but run the bench-
marks natively. Specialsimtime andsimishead calls are linked
with the benchmarks, such that the first returns a random value and
the second returns true. Therefore, the decisions made by the sys-
tem have no effect and we can compare to the run time of the un-
modified benchmarks. The results are shown in Table 5.

Table 5. Native Run Time (1.6 GHz AMD Athlon, GCC 3.2 -O2, Linux
2.4, train Data Set, Mean of Five Runs) and Beta Values: Times were col-
lected using thetime(1) program with output redirected to files. Run times
using the hierarchical search method are comparable and notshown. Slow-
down is Orig. divided by Greedy.art is unusual in that the transformations
caused speedup; we verified that both versions of each benchmark produced
exactly the same output usingdiff(1).

SPEC CFP2K Orig. (s) Greedy (s) Slowdown βavg βmax

applu 24.02 38.20 0.63 1.98 15
art 76.45 46.45 1.65 2.42 30
equake 56.92 61.36 0.93 2.25 16
mgrid 28.38 39.89 0.71 1.93 7
swim 21.41 22.34 0.96 2.07 7

The same experiments with CINT2000 show that the hierarchi-
cal search generally performs better than greedy, but also thatsam-
pling error is a problem and leads to inconsistent performance im-
provement and degradation as compared to static decomposition,
shown in Table 6. Although for each candidate vertex decomposi-
tion the average of several invocations is taken, the searchalgorithm
may be varying a digit in the solution string that corresponds to a
call or loop that is not executed during every invocation. Waiting
for invocations that execute the code of interest is not feasible be-
cause it impedes the search and requires too many profile runs. This
sampling error is not significant in the numerical, CFP2000 bench-
marks because their procedures contain fewer branches. Basic so-
lutions to this problem are known [25], but would involve more ex-
pensive instrumentation that may disturb the profiling behavior to
an extent that renders the measurements meaningless for predict-
ing how the original, unmodified program will perform. Making
that instrumentation feasible is beyond the scope of this paper.

Table 6. CINT2000 Baseline vs Improved Performance:These results
were obtained using cycle-accurate simulations of representative program
regions (e.g., skip data initialization and then time one billion instructions)
with theref data set as input.

SPEC Single [35]’s [16]’s Greedy Hier.
CINT Thread Speedup Speedup Speedup Speedup
2000 IPC
bzip2 0.70 1.01 1.09 1.07 1.17
gzip 0.72 1.27 1.35 1.11 1.17
mcf 0.07 1.01 1.63 1.07 1.09
parser 0.51 0.87 1.24 1.20 1.18
vpr 0.63 1.38 1.09 1.38 1.38
g. mean 1.09 1.27 1.16 1.19

6. Conclusions
We presented the technique of using empirical search at profile time
to decompose a program into threads for execution on a speculative
CMP. The new method compares favorably against previous static
methods, improving speedup on four cores from 2.97 to 3.51 for
five benchmarks from SPEC CFP2000. Our technique can be ap-
plied to various speculative architectures because it is independent
of specific architecture parameters.
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