Speculative Thread Decomposition
Through Empirical Optimization *

Troy A. Johnson

Rudolf Eigenmann

T. N. Vijaykumar

School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907-2035

troyj@purdue.edu

Abstract

Chip multiprocessors (CMPs), or multi-core processorsehze-
come a common way of reducing chip complexity and power con-
sumption while maintaining high performan&@peculativeCMPs
use hardware to enforce dependence, allowing a paratiglcom-
piler to generate multithreaded code without needing teein-
dependence. In these systems, a sequential program is pesed
into threads to be executed in parallel; dependent threadsec
performance degradation, but do not affect correctnessabhde-
composition attempts to reduce the run-time overheadstafats
pendence, thread misprediction, and load imbalance. Bedhese
overheads depend on the run times of the threads that arg bein
created by the decomposition, reducing the overheads etab-

ing the threads is a circular problem. Static compile-tireeain-
position handles this problem by estimating the run timeshef
candidate threads, but is limited by the estimates’ inagurDy-
namic execution-time decomposition in hardware has bettier
time information, but is limited by the decomposition haette/s
complexity and run-time overhead. We propose a third ambroa
where a compiler instruments a profile run of the application

eigenman@purdue.edu

vijay@purdue.edu

four-core CMP, a given thread can overlap with at most three p
ceding and three following threads). This observation iegpthat

a given thread affects only a few other threads, allowingim of

the space. Using a CMP simulator, we achieve an averagelgpeed
of 3.51 on four cores for five of the SPEC CFP2000 benchmarks,
which compares favorably to recent static techniques. &k dik-
cuss experiments with CINT2000.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors—compilers, optimization; C.1Prdcessor
Architecture§ Parallel Architectures

General Terms Algorithms, Performance

Keywords chip multiprocessor, decomposition, empirical search,
multi-core, thread-level speculation

1. Introduction

Architectures called single-chip multiprocessors (CMBsmMulti-
core processors, help reduce chip complexity and powencops
tion while maintaining high performance. A CMP may be used as

searchthrough candidate threads and pick the best threads as thea conventional multiprocessor to run multiple applicasiaoncur-

profile run executes. The resultant decomposition is cadpiito
the application so that a production run of the applicatias o in-
strumentation and does not incur any decomposition ovedri&a
avoid static decomposition’s estimation accuracy problgnus-
ing actual profile-run execution times to pick threads, ardwoid
dynamic decomposition’s overhead by performing the deasinp
tion at profile time. Because we allow candidate threads &m sp
arbitrary sections of the application’s call graph and loepts, an
exhaustive search of the decomposition space is protebiéiven
in profile runs. To address this issue, we make the key obsenva
that the run-time overhead of a thread depends, to the fidgtr,or
only on threads that overlap with the thread in executiog. (& a

* This material is based upon work supported in part by the ddati
Science Foundation under Grants No. 9974976-EIA, 0103882-and
0429535-CCF. Any opinions, findings, and conclusions oomemenda-
tions expressed in this material are those of the authorglantbt neces-
sarily reflect the views of the National Science Foundation.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’07 March 14-17, 2007, San Jose, California, USA.
Copyright(© 2007 ACM 978-1-59593-602-8/07/0003. . . $5.00.

rently; however, an individual application may need to taklgan-
tage of multiple cores for high performance because eaah @or
a CMP may be less powerful than a traditional uniprocessar. P
allelism within a single application can come from explicipar-
allel sections, but it is difficult for programmers to paetilte ap-
plications manually. Although compilers are relativelgsessful at
parallelizing numerical applications, dependences tfeahat stati-
cally analyzable hinder compilers. To alleviate this pemb|specu-
lative CMPs [15[30137, 33."38..89] exploit the parallelism imilici
in an application’s sequential instruction stream. Spsterd CMPs
use hardware to enforce dependence, allowing a compil@ctesf
on improving performance without needing to prove indegeice.
A sequential program is decomposed into threads for a saibcIl
CMP to execute in parallel; dependent threads cause peafaren
degradation, but do not affect correctness. The CMP usekicpre
tion to select and execute a sequence of threads while @mjorc
correctness, such that the program'’s output is consistihttiat
of its sequential execution. The CMP employs data-depeareden
tracking mechanisms, keeps uncertain data in speculdtivage,
rolls back incorrect executions, and commits data to maimang
only when speculative threads succeed. Thus, a speculakirR
provides the same programming interface as a uniprocedsiter w
supporting the safe, simultaneous execution of poteptdgpen-
dent threads — referred to as thread-level speculationTLS

The decomposition problers to partition a program into spec-
ulatively parallel threads while optimizing run time. Thoede-
composition is the critical factor in determining the penfiance

of a program executed by TLS. The key factors contributingite
time overhead in TLS are inter-thread data dependence;thmead
control-flow misprediction, and inter-thread load imbai@nData
dependence and misprediction cause roll backs and loadantza
causes idling. The amount of run-time overhead caused by-an i
stance of these factors depends on the thread size. Theypdunal
to a data-dependence violation or misprediction dependsoan
late in a thread’s execution the violation or mispredictisrde-
tected — the longer the thread, the later the potential iete@and
the larger the penalty. Similarly, the longer the threalls, larger
the potential load imbalance, and the larger penalty. Becthese

viates creation of multiple static versions, avoiding cegpansion
issues even in our profile run. Another pagier [27] createsvisve
sions of loops — serial and parallel — in cases where the derre
ness of the parallel version cannot be proved at compile. fithe
parallel version is executed and then checked for correstn@a
a run-time dependence test; if the test fails, then thelseziaion
is executed. Two key differences to our approach arel (i) &7
sumes the parallel version is always faster than the seziaion
and, therefore, there is no comparison between them. Byasint
our scheme has many parallel versions (candidate threadd)ees
to choose among them, for which we use empirical searctB¢H)

overheads depend on the run times of the threads that arg bein cause our hardware can always guarantee correctness wigagan

created by the decomposition, reducing the overheads etab-
ing the threads is a circular problem. Static compile-tireeain-
position handles this problem by estimating the run timeshef
candidate threads, but is limited by the inherent inacguodiche
estimates and of predicting the run-time interaction (elgta de-
pendence) among threads. Dynamic execution-time decatiguos
in hardware has better run-time information in that hareéwean
measure actual run times instead of relying on estimateseie-
less, dynamic decomposition is limited by the decompasitiard-
ware’s complexity and run-time overhead of performing aepo-
sition during execution. It is limited also by lacking knaadge of
the overall program structure, which is useful in finding date-
compositions, and by the difficulty of performing in hardedhe
complex tradeoffs among the various overheads of TLS.

allel version, we do not need to perform any dependence tests
Finally, because we allow candidate threads to span ampitra
sections of the application’s call graph and loop nests xéiags-
tive search through the decomposition space is prohibigven
in profile runs. In addition, because our search uses thealigtu
occurring invocations of procedures and loops to try outdéan
date threads, the number of invocations in a single run may no
be enough to try out all candidate threads. To address Hhs,isve
make the key observation that the run-time overhead of adule-
pends, to the first order, only on those threads that overitiptiaat
thread in execution (e.g., in a four-core CMP, a given threzual
overlap with at most three preceding and three followingahs).
We call this propertyspeculation localityand say that two threads
areindependent by separatigfthere are enough other threads be-

To address these limitations of the current decomposition tween them to prevent them from executing at the same tinee-Sp
schemes, we propose a different approach where a compiler in ulation locality implies that, when our search replacesralictate

struments a profile run of the application to performeanpirical

thread with a better thread, the TLS overheads of only tHosats

searchthrough candidate threads and pick the best threads (i.e.,that overlap with the candidate thread will change. Coneetiy

least execution times) as the profile run executes. As tHégron
proceeds, it uses the naturally occurring invocations otgdures
and loops to try out various candidate threads (e.g., excication
may try out a different candidate thread). The resultanbogmsi-
tion is compiled into the application so that a production ofithe
decomposed application has no instrumentation and doésawt
any decomposition overhead. Because we use actual profile-r
execution times to pick the threads, we avoid static decainpo
tion’s estimation accuracy problem (barring any inacciescue
to differences between profile inputs and production inpuiée
avoid dynamic decomposition’s run-time overhead by penfog
the decomposition at profile time, even though we evaluaigetr
offs among TLS's various overheads during the decompasitio
Also, our search uses knowledge of the overall program tstreic
Our approach has some similarities to loop versionind [}, 14
and procedure clonin@l[6]. Whereas our approach chooseagamo
various candidate threads, those optimizations choos@@uver-
ious versions of loops and procedures. While those optimizs
are only locally applicable to loops and procedures, ouraggh
is more general and tries numerous levels of parallelismripg
arbitrary sections of a program’s call graph and loop né&tsse
optimizations compile multiple static versions into thegmam and
choose among them at run time, but the number of versionsis li
ited by code expansion. By contrast, our scheme examineh-can
date threads only during a profile run and uses only the bessdis
in compilation for production runs, avoiding code expansgsues.

the search does not need to revisit other threads that agpenel
dent by separation of the thread it just replaced, enablingipg
of the search space.

Our main contributions are:

e \We are the first to propose that decomposition for threadklev
speculation (TLS) be performed by a profile-tireenpirical
searchthat is embedded into the progréim.

We show how to embed search code within an application to
find the most parallelism, with low profile run-time overhead
and while avoiding measurement-induced error.

We identify properties calledpeculation localityandindepen-
dence by separatioto prune the search.

We give all TLS overheads equal priority, even those thaicsta
approaches ignore (e.g., memory latency).

Our results show an average speedup of 3.51 on four cores
for five SPEC CFP2000 benchmarks, compared to an average
speedup of 2.97 obtained with a recent static technigiue [16]
Empirical optimization produces results better than staf-
proaches with less analysis effort and without the drawbatk
dynamic decomposition.

In Sectiorl®, we discuss related work, followed by an explana
tion of the speculative execution model in Seciidn 3. Weudisc
our optimization system in Secti@h 4 and our results in e

One may think that code expansion problems remain in the pro- Sectiorl concludes.

file run. Fortunately, speculative CMPs provide hardwangpsut
to dynamically coalesce all the static threads of a proeedal or
loop into a single dynamic thread during execution witheafuir-
ing an explicit static version of that single thread (seeti6r@).
Consequently, the compiler needs to generate only oneoveosi
each procedure or loop. Our profile run compares that vetsion
alternative executions, in which some calls or loops aratéxa as
single threads, via the hardware support. This dynamidgtyloib-

2. Related Work

Static decomposition techniques face the problem of magoayl
compile-time tradeoffs among run-time overheads. Findipg-
mum program partitions in general is NP-compléte [29], dsib

1A related idea, adaptive speculative task parallelism, wantioned
in [19], but was considered beyond the scope of that paper.

ing thread-level parallelisni_[12], and the relation of dw=ads to
thread size means that traditional static scheduling dlgos [20]
are not appropriate. Consequently, a compiler uses hiegr{85]
or special graph-partitioning algorithnis[16] to recoadihe con-
flicting demands of these constraints. Loops and procedaiis ¢
commonly form threads, as in this paper and others [21]. &und
mentally, all static approaches suffer from the inhereatauracy
of predicting the run-time duration and interaction of sgative
threads. Simple profiling can help]16.121], but the compiherst
ignore many run-time effects to simplify the analysis. Malnde-
composition[[Z6L_31] is common due to the above difficulties.
Dynamic decomposition techniques implemented in hardware
inspect the instruction stream looking for loopsl[22, 34dqedure
calls [1], or cache-line access patteiing [28]. Then thewarel cre-
ates threads from loop iterations, executes the code fifpavcall
in parallel with the call, or takes advantage of cache befrain-
other method[I5] looks ahead in the instruction stream wxe
ecuting code and marks where the next thread should bega.
look-ahead searches for instruction patterns that are krfosm
experience to be beneficial places to begin threads. Haedwah-
nigues cannot benefit from high-level knowledge of the progs
structure or make complex tradeoffs among overheads.
Adaptive compilation system$1[7.J37] compare various code
versions by executing them. The different versions utitlifeerent
or reordered compiler optimizations and are generallyuithet!
with the program at compile-time such that a run-time choice
can be made among them. In_[37], the additional versions are
compiled on another processor while the main processoug®c
the application, and are then dynamically loaded.

Th

3. Speculative CMP Execution Model

We use the Multiscalar architectuie [30] as an example téaéxp
a speculative CMP’s execution model. Our empirical seaeties
on source code instrumentation and a hardware counterpthie s
cific underlying architecture does not matter, provided thhas
several options for creating threads through which theckeaan
iterate. The primary difference among the architecturestioeed

in Sectior1 lies in the cache protocol they use for managieg-s
ulative storage and detecting violations. Different captaocols
impact performance, but do not change the compiler’s viethef
execution model 14,11, 18.115.132].

Thread Execution A thread dispatcher (in hardware) fetches
threads from the sequential instruction stream and dibpatthem

to processor cores. It uses prediction to decide which thiedis-
patch next. A thread’s execution may be incorrect eitheabse
the prediction was wrong, resulting in a control-dependeriola-
tion, or because an inter-thread data dependence wasedolEte
CMP detects both types of violations and reacts by rollincktzand
restarting threads as necessand [10, 13]. The oldest tlineaxk-
cution (w.r.t. sequential program order) is always nonglaive,
guaranteeing progress, while all younger threads are Eiseu

A speculative thread keeps its uncertain data in specalatiwvage
until it becomes the nonspeculative thread and commitsggsan
to memory. A formal execution model can be found in Section 2
of [18]. The speedup achieved by TLS is reduced by various-ove
heads, which we describe next.

General Per-Thread Overhead Although thread dispatch is effi-
cient, it remains a significant overhead for small threads, (less
than twenty cycles). Decomposing a program into large tleee-
duces the significance of this overhead; however, very ldmgads
(i.e., thousands of cycles) can overflow the speculativeagtobe-
cause they will include more writes to distinct memory locas.
An overflow completely stalls speculative execution, utti# non-
speculative thread completes and allows the next threaeldorhe

nonspeculative, freeing speculative storage. Technigxissto re-
duce the speculative storage required by a prograivi [11, 18].

Data-Dependence and Control Violation Overhead True depen-
dences that cross thread boundaries may lead to data-demend
violations and cause rollbacks, as in Figlke 1. A data-degece
violation is detected at the write reference to a memorytlona
that was read previously by a younger thread (w.r.t. seéplgd-
gram order). The reader and all younger threads are rollek| ba
in Figure[d. The run time of the rolled-back threads is ovache

Only true memory dependences (read-after-write) cauda-vio
tions. Anti (write-after-read) and output (write-afterite) depen-
dences are properly handled by buffering in the speculatioe
age. CMP architectures can learn to synchronize dynariealy
frequently-encountered memory dependences that impead#égba
execution[[ZB]; it is difficult to predict this synchroniza during
decomposition. Furthermore, register dependences acdispdy
the compiler, allowing the hardware to communicate regisikies
from one thread to another as appropriale [2]. Registerevebm-
munication among processor cores can be a significant aagrhe
for programs with many small threads.

Thread mispredictions cause control-dependence vioktio
They are detected when an older thread completes and ital actu
successor differs from the predicted successor. The cadrisghe
run time of the rolled-back, younger threads, as in Fi§liréhis
situation is essentially identical to detecting a dataetej@nce vi-
olation at the very end of a thread.

Processors
Pz

Figure 1. Rollback due to a data or control dependence violatihread
numbers indicate sequential order. Thread 1 detects aiviola thread 2.
Thread 2 and the younger thread 3 are rolled back, followettidgispatch

of new threads on P2 and P3. Threads 2b and 3b may or may noebe th
same as threads 2 and 3.

Load Imbalance Overhead Threads of unequal size can cause
load imbalance, as in Figuld 2. The imbalance stems from an
architecture property: threads are dispatched to processes in

a cyclic order and a core does not receive a new thread uhtikit
committed its current thread. Because threads commit igrpmo
order, younger threads have to wait for older threads to cordm
large thread preceding (in program order) a small threadesau
the small thread to wait until the large thread commits,niglli
execution cycles. Although maintaining a cyclic dispatalen
simplifies the architecture by allowing the sequence ofatise
to be determined easily for rollback operations, it resinttoad
imbalance. With more complicated hardware, it is possibkvbid
this overhead by dispatching out-of-order or executing tiplel
threads per processor core.

While the above overheads are important for decomposition,
there is one other detail that is also relevant, namely thiem-
lescing. The hardware supports dynamically coalescinghtteads
within a procedure call or loop into a single thread. Evengh
beneath the call or loop on the dynamic call graph (i.e., aflec
executed until the call’'s return or loop’s exit) ‘isollapsed” into
the thread invoking the procedure or loop. The hardwarer&go
thread boundaries (i.e., instructions that begin new teewhile
such a call or loop executes, but still executes the othétictions.
The alternative is to continue execution by beginning newats
within the called procedure or loop. It is possible for a ¢althe

Processors

Figure 2. Load imbalanceStrict cyclic dispatch order in the architecture
leads to load imbalance. This overhead can be avoided bysimpcom-
plex out-of-order thread dispatch or executing multiple#us per core.

same procedure to be collapsed into the calling thread fercati
site, but not for another. Programs containing many callshaive
small threads unless some calls are collapsed, thus thisamismn
is important for exploiting coarse parallelism.

4. Profile-Time Empirical Optimization

Thread decomposition is key to reducing the above overhé&asls
call from SectioflL that our approach is to instrument a pafih
of the application such that it performs empirical searchthrough
candidate threads and picks the best threads as it exedutes.
resultant decomposition is compiled into the applicationtisat
subsequent runs have no instrumentation or decompositiers 0
head. We examine the factors one considers when findingdzedi
threads and the decisions made by existing static and dygrepai
proaches. We examine three categories of candidate thrieags
iterations (Sectiofi’41l.1), procedure calls (Sediion), and ev-
erywhere else (Secti@nZ.1.3). Next, we describe the deositign
space — the variety of possible decompositions. Finallypresent
the design of our optimization system and explain our imgeta-
tion.

4.1 Candidate Threads
4.1.1 Loop lterations
Loop iterations are the most obvious part of a program frorichvh

procedure. By collapsing the call, that parallelism is dised
with the expectation that coarser parallelism will make apthe
loss; however, this is not always the case. A collapsed cajl m
introduce a large thread into a sequence of smaller threadsing
load imbalance. Larger threads mean more work is rolled back
upon a violation and make speculative buffer overflow mdelyi
Executing multiple calls in parallel is risky because defmites
through global data are often difficult to detect. Therefdhere
must be a high degree of confidence that collapsing a call will
improve performance. The heuristic approach[in] [35] caiéap
only very small calls and library calls. The min-cut approac|1d]
collapses some larger calls based on a performance estibudte
because the estimation views collapsing a call primarilp agy

of reducing load imbalance, the vast majority of the colkapsalls

are small and located in loops. Dynamic hardware approaciags
execute a call in parallel with the code following the cdithie call

is larger than a threshold, then the hardware breaks it dddianal
threads.

4.1.3 Elsewhere

There exist some places besides loops and procedure cale wh
it may be beneficial to begin threads. Such places are ngrmall
at points of control-flow convergence (post-dominators)atathe
ends of dependence chains within lengthy calculations, aaed
found by the heuristics in_[35] and the min-cut algorithm[1&].
Beginning threads there exploits fine-grain speculativalfgism.

4.2 Decomposition Space

As a default, the compiler assumes that it is good to spezulat
on all loops and calls within a program. Therefore, our dearc
through candidate threads becomes, for eachlobp program, to
decide whether or not serializingmproves performance (similar
to [36]) and, additionally, for each call siteof a program, to decide
whether or not collapsingimproves performance. The search does
not begin threads elsewhere. Our goal is to exploit looptlend
call-level speculation as aggressively as possible teeaehioarse-
grain parallelism. Whereas smaller threads sometimes semse

to create threads and many approaches to TLS focus on 10bps [8in our previous work that focused on fine-grain speculatiog) [

2112426 311]. Loop iterations provide a run-time sequeriqee-
dictable and naturally load-balanced threads, leavingdgnce
as the primary overhead to potentially interfere with sjbetoon.
Nevertheless, the decision of whether to speculate is raight-
forward. Due to thread dispatch overhead, it may be betteode
lesce all loop iterations into a single thread (i.e., sex@the loop)
if the loop is small with few iterations. Speculating on ateddoop
may interrupt the coarser parallelism of an outer loop. Maps
are not perfectly nested, which makes it hard to determiménath
granularity to speculate. The heuristic approachiin [38csiates
on all loops because its dominant heuristic is thread ptiedicThe
min-cut approach in[16] serializes some inner loops based o
performance estimate, but does not always make correidesi
because the compile-time estimation ignores severaline-&f-
fects (e.g, memory latency). Dynamic hardware approacftes o
begin threads whenever a backward branch is taken, regardfe
nesting level.

4.1.2 Procedure Calls

Besides loop iterations, the other way to create large tisré&sato
coalesce all threads in the dynamic call graph beneath &guoe
callinto a single thread, as described in Sedfion 3. In tlaig wany
static threads are dynamically collapsed into the callhrgad by
ignoring thread boundaries until the call returns. The twionpry
benefits are executing multiple calls in parallel and préngrshort
calls from introducing load imbalance into a sequence ajdar
threads. The danger is that there is parallelism within tied

34)], here they would cause significant load imbalance.

For each loop and procedure call of a program, our architectu
provides three threading options, shown in Fidire 3, thdtbvel 0,
1, and 2. Option 0 (fine-grain parallel) executes as a setreétts,
Option 1 (serial) executes as a single thread that is caadesith
the preceding and following threads, and Option 2 (coaraéig
parallel) executes as a single thread that is coalescedhdthre-
ceding thread only, beginning a new thread once the caltiretor
the loop exits. If the set of call sites S and the set of loops is
L, then there ar8!“!*I-! possible program decompositions. Eval-
uating every solution is not feasible due to exponential et
ity, so finding a good solution requires an intelligent shastthe
space. Note that other speculative architectures mayqgealiffer-
ent threading options, or more, or fewer; the techniqueeres!
in this paper can be adapted to them by varying the specificlsea
algorithm, while leaving the empirical search mechanistadn

In the following discussion, we use an extended call graph th
also includes loops. The vertex Sétis the procedures and loops
of a program, while the edge sét is the calls, where we treat
beginning a loop as a call. If one procedure calls anothetiphel
times, then there are multiple edges to the callee, suclithantire
graph hagE| = |C| + |L| edges. A program decomposition can
be represented on the graph by writing a base-3 numerigsifin
length one next to each edge, where each digit indicatesfahe o
three threading options described above in Fiflire 3. We tefbe
concatenation of strings of all edges leaving a particutatexv as
the decomposition for vertex(i.e., for the call or loop represented

source threading options
code 0 1 2

(fine-grain) (serial) (coarse-grain)
Sl fcalll call

multiple no new
new threads threads

call

one new
thread

Figure 3. Options for threading a callThere are many threads using
Option 0, one thread using Option 1, and two threads usin@@pgt

by v). A complete decomposition for all € V has|E| base-
3 digits, capable of representing tB&' possible solutions. We
make two crucial observations that are the basis of oureglyeor
pruning this exponential space.

OBSERVATION 1. In a speculative CMP capable of executing
threads simultaneously, the violations described in $a€li can
occur only between two threads that have fewer than 1 threads
separating them in program order. IN — 1 or more threads
separate them, then the threads cannot execute simultalyeou
and therefore cannot cause a violation. We say that two ttgea
are independent by separatighthere are enough other threads
between them to prevent their simultaneous execution.

OBSERVATION 2. It follows that the speculation overheads of
threads within a call or loop are most influenced by tNe— 1
threads immediately preceding the call or first iteratios,veell as
the threads within the call or loop. Additionally, the thd=awithin

a call or loop most influence th& — 1 threads immediately fol-
lowing the return or last iteration. We call this propedpeculation
locality, shown in Figur&l.

TIT [T |T|T T |T
74‘ -3 22 -1 0 \‘ M-I M [M1 M#2|[M3 ..
potentially | within | potentially
- affect callee | calleeor | affected

e or loop loop by callee
e or loop
S high
£3
[}
é_ % low

Figure 4. Principle of Speculation LocalityThe influence of threads
before and after a call or loop decreases beyondNhéhreads in the
execution window. Here, the loop or call containg threads and the
window is N = 4. Typically M > N.

STRATEGY 1. For each vertexv of the extended call graph, if
a decomposition is first found for all afs children beforev’s
decomposition is determined, then it is not necessary tsitékie
decomposition of’s children after determining’s decomposition.

Strateg¥1L is supported by induction on the grdphise CaseA
trivial decomposition can be found for leaves of the graptelbse
they make no procedure calls and do not contain loops; heir, t
solution string is a null stringnductive Casefor a given vertex
v of the graph, we have, by hypothesis, a decomposition fdn eac
child. Therefore, any edge marked with Option 0 that leavas
leads to a sequence of threasdsthat was deemed the best known
decomposition for that child; i.e., Option 1 or 2 may be betiats

is the best under Option 0. Because of speculation locélity, we
mark other edges besideshat leavev haslittle to no effecton s.

If e is instead marked with Option 1 or 2, thehasno effecon the
decomposition of because itis collapsed and its thread boundaries
are ignored at run time, as in Figdie 5. Therefore, if we definca
decomposition for without revisiting the decomposition of any
of its children, it will not have a significant negative impam
our final solution. We continue in this manner until we find the
decomposition for the root of the graph (i.e., the prograna’sn
procedure), and then concatenate the decomposition ofveaiex

to form an overall solution string.

vO(...)
{

while (..)
{ v2(..); }

}

Figure 5. Collapse and SerializationEach extended call graph corre-
sponds to the code on the lefty represents procedure vB; represents
the while loop, andv, represents procedure v2. The — wv1 edge rep-
resents entering the while loop and the — v edge represents calling
v2 from the while loop. There are two edges but only five didtivase-3
solution strings (“00”, “01”, “02", “1x”, “2x"), shown as figres (a) and
(b), instead of nine3?). In (a), the lower digit’s value matters. In (b), the
lower digit’s value does not matter and is marked with an “gtause; is
collapsed intavg.

Due to the NP-complete nature of the problem and the use of
a locality property, there is no proof of optimality for Segy[d,
but it suggests that a bottomBigpproach yields a good solution.
A consequence of Stratefly 1 is that instead of having to explo
3!Zl possible solutions, the search space is pruned to an average
of [V|37e»s solutions, wheres,., is the average branching factor
of the graph (i.e., assuming on average that each verte¥hgs
children). Furthermore, the bottom-up approach allowstgmis to
be found for different procedures and loops concurrently. ndwv
discuss the design of our optimization system, includireygpe-
cific search methods it employs to further prune the decoitipos
space.

4.3 Design of the Optimization System

The original application that we seek to optimize along vathr
instrumentation code constitute the optimization systémom-
pares candidate threads by measuring the performancetifeger
Recall from Sectioll]1 that we use the natural invocation roofle
vertices and the system has no control over this orderingei¥e
plained our search strategy above and we describe thedlet#ile
search in two parts, the overall search and the per-vertaxcise
The overall search, discussed in Secfion3.3.1, is coaetinsep-
arately from the searches for decompositions of partictdatices
and is responsible for following the bottom-up approach w&iS
egy[. Per-vertex searches (i.e., within a particular looproce-
dure) are discussed in SectldnZ13.2 and may proceed cendyrr
using one of several search methods.

2Recursive calls are discussed below.

4.3.1 Coordinating Overall Search

The system coordinates the bottom-up search by maintathimg
state machine in Figufd 6 for each vertex. There are thregitpes
states for a vertex:

e Not Ready (M'R) — It is not yet time to determine the decom-
position atv. At least one ofv’s non-recursive children is not
Done. N'R is the initial state of all non-leaf vertices.

® Ready (R) — A decomposition is currently being sought for
All of v’s non-recursive children af»ne.

® Done (D) — A decomposition has been found foror v is a
leaf.

We do not want the system to wait on vertices that the program
never actually executes, such as error routines. Fortiyn&dethe
benchmarks we examine, nearly all such procedures aredéaf c
and we optimize by putting leaves directly in thene state so their
callers do not need to wait. Note that if a recursive call itapsed,
it is always collapsed at the top level; collapsing furthewd the
recursion tree requires cloning the entire procedure, kvivie wish
to avoid.

v is not a leaf v is a leaf

all non-recursive decomposition

@ children done e found

Figure 6. State transitions: this figure shows the rules used to determ
when to change vertex state. We optimize by placing leafsaidectly into
theDone state.

4.3.2 Search Per Extended-Call-Graph Vertex

Recall that the decomposition for a particular vertes the set of
base-3 solution strings of all edges leavind he major concern is
how many potential solutions need to be examined beforbngptt
on a final solution. Fewer is better because if the searchsneed
examine X solutions and the program invokesonly Y times,
whereX > Y, then it needs multiple runs of the program to find
the best solution. We wish to avoid this situation whenewssible
because the state of the search would need to be saved after ea
run and loaded before the next run. Another reason for miiimgi
the number of examined solutions is to provide some leewal su
that it can skip the first measurement (when caches will satitl
misses) and then obtain multiple samples for an average that

it is usually unnecessary to find decompositions for the tmgm
vertices; for example, consider that thein procedure is called
only once, but it is so high on the graph that any non-zeroeslu
in its solution string would serialize large chunks of thelagation
and yield near-sequential performance.

We primarily discuss the following search per-vertex mego
exhaustive, linearly-independent, control-flow, greeatyd hierar-
chical. We implement and evaluate only the greedy, hiereath
and (for very small cases) exhaustive methods because teey a
most promising. We describe the others for completeness.

Exhaustive Search Exhaustive search requires checkiiy so-
lutions, wheregs, is the branching factor of. This approach is
useful whens, < 3, but larger values will slow our search signif-
icantly. Vertices lower on the graph must complete beforeing
on to higher vertices, so whereassg3™) algorithm might nor-
mally be acceptable for some small values larger than timehkis
case it is not acceptable because it impedes the overatisear

Linearly-Independent Search At the other extreme, a linearly-
independent search assumes that none of the digits in thosol
have anything to do with each other, and checks ghlgolutions.

For example, if the string: = 0100 improves performance and
the stringsz = 0010 improves performance, then the combination
s3 = s1Vs2 = 0110 is assumed to improve performance. We have
observed that this assumption is not reasonable; such acaticn

may decrease performance or show superlinear improverient.
performance decrease occurs when the combination crelieg a
sequence of ones that unnecessarily serializes a largenarabu
code. A superlinear improvement occurs when two neighigorin
calls are brought into the same thread and the calls have data
dependences between them; this effect can be surprisirusec
the dependence can be on a global variable accessed bytdistan
grandchildren of the calls, which is not discernible by limgkat

the source code far alone.

Exploiting Control-Flow Because exhaustive search and linear-
independence will not work in general, we next look for ways
to divide the search into subproblems. One way is to expfsit
control-flow structure in conjunction with independenceskpara-
tion. Consider the example in Figue 7a, where there are tuto-m
ally exclusive paths withim. The extended call graph is shown in
Figure[Ib. There are two calls td, so thev — v; edge is dupli-
cated. The branching factat,,, is 6, so the decomposition ofhas
3% = 729 possible solutions. The control flow ofis shown in Fig-
ure[Ic. Notice that the partial solutions for the left anchtigaths
are independent. Also, if an interior cath(,, v2, v3) of the control
flow graph, shown in Figur 7c, is not collapsed, then it tgihic
represents many threads — possibly hundreds. Therefaseeia-
sonable to apply independence by separation across niapsed
calls, treating the partial solutions on either side as pedeent.
Instead of checking® = 729 possible solutions, it is necessary
to check183, counting as in TablEl 1, or about 25% of the original
number.
@ v(.){
if ()¢
vO(...);
v1(...);
} else {
v1(...);
v2(...);
}

V3(.):

Va(.);

} exit

Figure 7. An opportunity for pruning the search using both indepemden
paths and independence by separation.

Table 1. Counting DecompositionsFhe first column identifies the case
under consideration, the second column shows how we coerrsdiations,
and the third column shows the simplified numbers.

v3=0 3 +3°+3 21
v3 #0,v1a =0,v2=0 | 3+34+2%x3 12
v3# 0,010 Z0,v2=0 | 32%224+3 39
V3 # 0,010 =0,v2 #0 | 3+3%x%22 39
v3 # 0,010 0,02 #0 | (3%243%2)%x3%2 72
total 183

Greedy-Local Search (Hill Climbing) Although exploiting control-
flow is useful, there are two problems: (i) reducing the nundfe
candidate solutions bg or % is not enough to make the expo-
nential space manageable, and (ii) many procedures cdotain
sequences of calls and loops that are executed uncondliiamal
therefore lack any control flow to exploit. Local search aidons,
which operate by maintaining a current solution and moving t
neighboring solutions, can significantly reduce the nundfeso-
lutions considered. The most basic of these algorithmseasdy-
local search, sometimes called hill-climbing search, Wtdtways
moves to the best neighbor. To apply this technique, theckear
begins with a solution string containing only zeros (i.peaulate
on everything). The last digit is then varied, such thab01” and
“...002" are considered. Whichever of these three solstioas the
least run time provides the last digit for the final solutifor ex-
ample, if “...002" was best, then the search moves on to derisig
“..012" and “...022", and so forth until all the digits halseen se-
lected. The search could begin with the first digit, but eithay

it is necessary to examirgs, + 1 solutions for g3,-digit string.
This algorithm can be surprisingly effective. For examig,ap-
plying greedy-local search to a particular procedure fradrES
CPU2000 that hag, = 8 and a simulated, sequential run time of
82,424 cycles, we found a decomposition that took 21,564esyc
after examinin@ = 8 + 1 = 17 of 3% = 6, 561 potential solutions.
The ideal solution (as estimated by manual decompositiskgst
21,377 cycles, so we came within 1% of the ideal solutionrafte
considering less than 0.3% of all solutions.

Two-Stage Hierarchical Search We wish to improve upon the
greedy method in an inexpensive way. The most significarit lim
tation of the method is that it is short-sighted; by startivith the
finest-grain decomposition, it can reach a coarser gratylaut
not the coarsest. To see this effect, consider Figlire 8aupmbse
that dependences are such that the calls can run in paratfel w
out significant speculation overhead. An obvious solutmiry is
“22...22", shown in Figurgl8b, which places each call in zasefe
thread. The greedy method, however, will rarely reach ttiiags
on its final attempt because of load imbalance in the interated
steps. For example, the intermediate step “00...22. €ljlikuffers
some imbalance at the 0-2 transition, causing the greedyapip
to toss a few ones into the string with mixed results. Sirildhe
greedy method will often ignore coarser parallelism frorougp-
ing the calls, as in Figurg 8c. Therefore, we perform a tvagest
search, with the initial solution as all 2s. The first stagedfge”)

is a mesh search that scans the strigtimes while changing a
single 2 to a 1. The state ends early if nothing is changedduzi
scan. At best, nothing changes during the first scan andeg i
additional solutions. At worst, it introduces a single 1tepass for
an additionaEfj”:1 k = 18.(B, + 1) solutions. The second stage
(“divide™) is a greedy, single-scan search that tries a Gahgosi-
tion, for an additionals,, attempted solutions. By contrast to greedy
search, which wa® (23, + 1), hierarchical search (23, + 1)
andO(36; + 28, +1).

Other Methods There are many possible search methods besides
those above. For example, we considered trying simulatedain

ing and genetic selection, but both of them required tryingia-
acceptably large number of solutions. Complex per-verearch
methods impede the overall, bottom-up search, so we focus on
methods that are simple and effective.

4.4 Implementation

We use source transformations, described in SeEfionl 4etchn-
vert a program into the form that is most easily interfacethwur
instrumentation. Then we add additional code, describeSeic-
tion[LZ2, to measure and record the performance of proesdu

a b C
(a) v(;/_(_))(.{“); (b) v, (c) v,
vi(...); A A
V7(..); Vs v,
} v, A
V4 V4
V5 V5
V6 V6
V7 V7

Figure 8. Two-stage merge & divide effedn) shows the original code.
(b) shows thread boundaries for a solution string of “222222(c) shows
thread boundaries for a solution string of “12121212."

We perform both the transformations and the instrumentatsing
the Cetus compiler infrastructure]17]. Section4.4.3 ais how
decompositions are varied at run time, and Sedfion.4. ki
how measurement error is avoided.

4.4.1 Preliminary Transformations

Loopsto Procedures We apply our technique by converting loop
bodies into procedures. When combined with the architetstur
ability to coalesce threads (see Secfibn 3), this transftiom en-
ables trying many levels of parallelism without experigigccode
explosion from loop versioning. “Microtasking” loops isromon
in other parallel programming models.

Single Return There is code that must be executed just before a
procedure returns. For procedures with multiple returtestants,

it is inconvenient to add that code in multiple places. Tfae

a procedure is transformed such that it has only a singlerretu
statement. The final return statement is modified to retugvéfue

of a new local variable; all other return statements are fremtito
store a value to that local variable and then jump to the figtairn.

Nested Call Elimination The compiler needs to place code
around each procedure call, so calls that have the resutithef

calls passed as their arguments pose a problem: placing code
around such a call would encompass more than one call. There-
fore, it separate the calls using explicit temporary vdeab

4.4.2 Measuring Performance

To measure the performance of a decomposition, the comipiler
serts code at the beginning and end of each procedure. Fopéxa
given procedurerocV:

procV (...) {
provVvo (...);
provVl (...);
}
The compiler converts it to the following code:
procV () {
static int _needrecord = 1;
static unsigned chasr _vector = NULL;
unsigned long long_begin;

initialization code %/
NULL)

/+ one—time
if (_vector

/x allocate apg,—length zero-filled array =/
_vector tlsinit_func (‘‘procv’’, procV,
2, & .needrecord);

/x setup up callgraph dependenciesk/
tls_callgraph (procV, procV0);
tls_callgraph (provV, procVl);

/* set to NR or R depending on childrenx/
tls_.check state (procV);

}
if (_needrecord)

_begin = simtime ();
/x begin transformed procedure’s code/
TLS_DECIDE (0, procVO(...));
TLS_DECIDE (1, procV1l(...));

/x end transformed procedure’'s code/

if (_needrecord)
tls_.record (procV, _begin);

Our initialization code executes only once, during the aao
tion whose timing we discard anyway to avoid cold cache rsisse
and a potential timing error iprocV transitions to theR state
while it is executing. Thevector array corresponds directly to
the solution string foprocV and contains only the values 0, 1,
and 2. WhileprocV is in stateR, _vector contains the solution
string that is currently being measured. WhetocV is in stateD,
_vector contains the best solution found. Thesed_record vari-
able is used to shut off the optimization mechanism opoecv
has been optimized. While it is turned on, gietime call is used
to determine the number of cycles that have elapsed sindeethe
ginning of the program; the secosdmtime call is hidden within
tls_record. The simulator for the CMP implementsmtime and
returns a well-defined value since all of the cores executeci
step.

4.4.3 Changing Decompositions at Run Time

Call-site versionings used to vary the decompositions. Recall from
SectiorB that whether a procedure executes in serial oralleha

is a property of the call sitethere is no need to create multiple
source-code versions of the called procedures themsehres f
statement is placed around each call site to determine wheth
the call should execute in serial or in parallel. The TRECIDE
macro used above is defined as follows:

#define TLSDECIDE(var, call) \
((-vector[var] == 0) ? call :\
((-vector[var] == 1) ? call :\

call))

The decision is made by indexingector with the lexical or-
der of the call in the procedure (e.g., for the first call, ashei of
zero is used). The code forces three versions of the calltiveo
application’s binary; the compiler’s back end looks forglériple
calls, marks the first with speculation option 0, the secoritth w
speculation option 1, and the third with speculation op&ogAl-
ternative approaches are self-modifying code, or expanitia in-
struction set to include a conditional-speculation op¢cdé those
were more difficult to add to our existing infrastructuret)eTlogic
that updatesvector is located int1s_record. Whenever enough
samples for a string have been recordetls_record advances
the string to the next string to be measured. The next streag d
pends on which search method from Secfion%.3.2 is activenwh
tls_record detects that the final string (the identity of which de-
pends on the search method) has been measured, it setsrbe str
to the best string, moves the procedure to sfatenoves callers
as necessary to stafe, and setsneed_record to zero to disable
future measurements.

4.4.4 Avoiding Measurement-Induced Error

When timing a region of code executing on a speculative CMP,
code outside the timed region can affect the measuremeistb&h
havior is contrary to what happens if the code is executed on a
sequential processor because code following the sesbmtlime

call (within tls_record) may cause a violation if there is no
thread boundary in between. Another problem, due to load im-
balance, is that the secordmtime call may occur before all of
the code in the timed region has finished. To prevent thesetsff
tls_record uses the following code to wait until it is the nonspec-
ulative (“head”) thread to make the measurement. Sheishead

call checks if it is executed by the head thread:

do {
end_.time = simtime ();
} while (!simishead ());

cycles = endtime — begin_time;

5. Performance Evaluation on SPEC CPU2000

We evaluate our technique in detail using benchmarks froBeCSP
CFP2000 and discuss similar experiments with SPEC CINT2000
The programs are instrumented with the Cefu$ [17] compiter a
compiled with the Multiscalar GCC compiler at optimizatiewel

02, which supports C programs and Fortran 77 programs via
£2c [9]. Results for some CFP2000 benchmarks from that subset
are not included due to current limitations of Cetus! [178.(iwe

use the intersection of CFP2000 currently supported by taorin-
pilers). Our search finds the decomposition by usingithia data

set for the profile run’s input, but the final evaluation udesref
data set. TablEl2 shows the parameters we use for the Midtisca
simulator. Tabl€l3 shows the serial instructions-per&yt®C) for
each benchmark and the relative performance of the greedly an
hierarchical methods, taken agycle ratia Both the greedy and
the hierarchical method use exhaustive search wher< 3. We
compare to the conservative approach fronl [35] and a more ad-
vanced static approach frorh_]16] that used dependenceratc a
branch profiles. The greedy method yields the best improaeme
on CFP2000. Both search methods, on average, improve awer th
static methods.

Table 2. Simulator Configuration

CPUs 4 dual-issue, out-of-order
L1i-cache 64KB, 2-way, 2-cycle hit
L1 d-cache 64KB, 2-way, 3-cycle hit,

32-byte block, byte-level
disambiguation

Rollback Buffer 64 entries
Reorder Buffer 32 entries
Load/Store Queue 32 entries

Function Units
Branch Predictor
Thread Predictor
Descriptor Cache
Shared L2

2 Int, 2 FP, 2 Mem
path-based, 2 targets
path-based, 4 targets

16KB, 2-way, 1-cycle hit
2MB, 8-way, 64-byte block,
12-cycle hit and transfer
Snoopy split-transaction bug

L1/L2 Connect

128-bit wide
Core to Core Latency 10 cycles
Memory Latency 300 cycles

Figure[® shows the cause of our speedup in terms of how the
speculation overheads are reduced. Much of the speedupscome

from reduced load imbalance, asdpplu, art, andmgrid. The

Table 3. CFP2000 Baseline vs Improved Performanthese results were
obtained using cycle-accurate simulations of represeatatrogram re-
gions (e.g., skip data initialization and then time oneidaillinstructions)
with theref data set as input.

SPEC Single [B5]'s [L6]'s Greedy Hier.

CFP Thread | Speedup| Speedup| Speedup| Speedup
2000 IPC

applu 0.48 1.98 2.11 3.37 3.21
art 0.19 2.06 2.43 3.00 3.00
equake 0.56 1.49 1.79 1.92 1.70
mgrid 0.35 5.41 5.54 6.09 6.09
swim 0.17 4.51 4.51 4.51 451
g. mean 2.72 2.97 3.51 3.39

swim benchmark is simple enough that all methods find a good
solution. Memory latency improves fapplu, but remains mostly
the same for the others. The overhead tradeoff is most eviden
equake in which load imbalance and memory latency get worse,
but dependence, misprediction, and dispatch overheadiragr
Table[3 shows that we improve the average thread size of the
applications. A larger average thread size helps amortizewsa-
tion overheads and provides a coarser level of paralleligmch is
generally good. When increasing average thread size nigraral
using static compiler analysis, it is easy to accidentabjuce per-
formance by serializing too much of the code or by seriafjzime
wrong parts; empirical optimization provides a safer wayeap
the benefits of large thread size.

‘I]]]] Function Units [[]Memory Latency N Thread Dispatch []Load Imbalance [} Misprediction [l Dependence‘
100%
90%-
80% T}
0% |
60%
50%
40%
30%-
20%
10%-

To demonstrate that our transformations and instrumemntai
not substantially disturb the profile of the benchmarks, pmyaall
transformations and insert the instrumentation, but renbénch-
marks natively. Speciadimtime andsimishead calls are linked
with the benchmarks, such that the first returns a randone\aid
the second returns true. Therefore, the decisions madeshyyt
tem have no effect and we can compare to the run time of the un-
modified benchmarks. The results are shown in T@ble 5.

Table 5. Native Run Time (1.6 GHz AMD Athlon, GCC 3.2 -02, Linux
2.4,train Data Set, Mean of Five Runs) and Beta Values: Times were col-
lected using theime (1) program with output redirected to files. Run times
using the hierarchical search method are comparable arghoain. Slow-
down is Orig. divided by Greedyrt is unusual in that the transformations
caused speedup; we verified that both versions of each bemklproduced
exactly the same output usidg ££ (1).

SPEC CFP2K]| Orig. (s) | Greedy (s)| Slowdown | Bavg | Bmax
applu 24.02 38.20 0.63| 1.98 15
art 76.45 46.45 1.65 2.42 30
equake 56.92 61.36 0.93 2.25 16
mgrid 28.38 39.89 0.71| 1.93 7
swim 21.41 22.34 0.96 2.07 7

The same experiments with CINT2000 show that the hierarchi-
cal search generally performs better than greedy, but hégsam-
pling error is a problem and leads to inconsistent performance im-
provement and degradation as compared to static decongposit
shown in Tablgl6. Although for each candidate vertex decampo
tion the average of several invocations is taken, the sedgahithm
may be varying a digit in the solution string that correspotala
call or loop that is not executed during every invocation.itivlg
for invocations that execute the code of interest is notiliéade-
cause itimpedes the search and requires too many profileThiss
sampling error is not significant in the numerical, CFP2060dh-
marks because their procedures contain fewer branchei 8as
lutions to this problem are knowhR5], but would involve ra@x-
pensive instrumentation that may disturb the profiling bérao
an extent that renders the measurements meaningless thctpre
ing how the original, unmodified program will perform. Magin
that instrumentation feasible is beyond the scope of thiepa

Ot T T T T PR ' " " JEHTMPT”EMHEL Table 6. CINT2000 Baseline vs Improved Performanddiese results
I A - é 3 é «3 ERE A were obtained using cycle-accurate simulations of reptatiee program
g_ < E 5 § g O % :{- % % 2 2 aa 3 g g i regions (e.g., skip data initialization and then time onkoli instructions)
35 3 28 T st d 3838232 z235 0% with theref data set as input.
&340 &< ég.aﬁ-@gg-““gg“
A< g 2 5 & "o SPEC | Single B5T's [Bls | Greedy Hier.
CINT Thread | Speedup| Speedup| Speedup| Speedup
Figure 9. SPEC CFP2000 relative impact of reduced overheads compared | 2000 IPC
to 100% of [35]'s overhead: orig i5185], mincut [S116], andtgdy and hier bzip2 0.70 1.01 1.09 1.07 1.17
are our two search methods. gzip 0.72 1.27 1.35 1.11 1.17
mcf 0.07 1.01 1.63 1.07 1.09
parser 0.51 0.87 1.24 1.20 1.18
vpr 0.63 1.38 1.09 1.38 1.38
Table 4. Thread Size: We show the average instructions per thread for |_9-Mean 1.09 127 116 119

each of the benchmarks, and then provide an overall average.

SPEC B5]'s [L6]'s | Greedy Hier.
CFP Insns/ | Insns/ Insns/ | Insns/
2000 Thread | Thread | Thread | Thread
applu 36.7 46.2 296.0 223.3
art 15.7 19.3 27.4 27.4
equake 155 19.6 27.2 26.8
mgrid 113.9 115.4 160.6 160.6
swim 101.9 112.8 101.9 101.9
mean 56.7 62.7 122.6 108.0

6. Conclusions

We presented the technique of using empirical search ateptiofie

to decompose a program into threads for execution on a saeul
CMP. The new method compares favorably against previotis sta
methods, improving speedup on four cores from 2.97 to 3.51 fo
five benchmarks from SPEC CFP2000. Our technigue can be ap-
plied to various speculative architectures because itdispendent

of specific architecture parameters.

References

[1] H. Akkary. Dynamic MultiThreaded ProcessoPhD thesis, Portland
State University, June 1998.

[2] S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. The Anatoohy
the Register File in a Multiscalar Processor. Aroceedings of the
27th International Symposium on Microarchitectupages 181-190,
November 1994.

M. Byler et al. Multiple Version Loops. IrProceedings of the
International Conference on Parallel Processjnmpges 312-318,
August 1987.

M. Cintra, J. F. Martinez, and J. Torrellas. ArchiteetuSupport

for Scalable Speculative Parallelization in Shared-Megmdulti-
processors. IfProceedings of the 27th International Symposium on
Computer Architecturepages 13-24, June 2000.

L. Codrescu and D. S. Wills. On Dynamic Speculative Threa
Partitioning and the MEM-Slicing AlgorithmJournal of Universal
Computer Sciences(10):908-914, 2000.

[6] K. Cooper, M. Hall, and K. Kennedy. A Methodology for Pesture
Cloning. Computer Language49(2):105-117, April 1993.

[7] P. Diniz and M. Rinard. Dynamic Feedback: An Effectivecfigique
for Adaptive Computing. InProceedings of the Conference on
Programming Language Design and Implementatiopages 71-84,
May 1997.

[8] Z.-H. Du et al. A Cost-Driven Compilation Framework fop&u-
lative Parallelization of Sequential Programs.Piroceedings of the
Conference on Programming Language Design and Implemnientat
pages 71-81, June 2004.

S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schryer. A
Fortran to C Converter. Technical report, AT&T Bell Labanags,
March 1995.

[10] M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for
Dynamic Reordering of Memory Referencd&EEE Transactions on
Computerspages 552-571, May 1996.

[11] M. J. Garzaran et al. Tradeoffs in Buffering Memoryt8téor Thread-
Level Speculation in Multiprocessors. Rroc. of the 9th IEEE Symp.
on High-Performance Computer Architectufeebruary 2003.

[12] M. Girkar and C. D. Polychronopoulos. Extracting Tdskvel
Parallelism. ACM Transactions on Programming Languages and
Systemsl7(4):600-634, July 1995.

[13] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. SohieS8pative
Versioning Cache. IfProc. of the 4th IEEE Symposium on High-
Performance Computer Architectyngages 195205, February 1998.

3

—

[4

fla.aer

[5

—_

9

—

[14] R. Gupta and R. Bodik. Adaptive Loop Transformations fo
Scientific Programs. ItEEE Symposium on Parallel and Distributed
Processingpages 368-375, October 1995.

[15] L. Hammond, M. Willey, and K. Olukotun. Data SpeculatiS8upport
for a Chip Multiprocessor. IProceedings of the 8th International
Conference on Architectural Support for Programming Laaggs
and Operating Systempages 58—69, October 1998.

[16] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-
Cut Program Decomposition for Thread-Level Speculatiom. |
Proceedings of the Conference on Programming Languagegbesi
and Implementationpages 59-70, June 2004.

[17] T. A. Johnson et al. Experiences in Using Cetus for SetioeSource
Transformations. IfProceedings of the Workshop on Languages and
Compilers for Parallel Computingpages 1-14, September 2004.

[18] S. W. Kim et al. Reference ldempotency Analysis: A Framek
for Optimizing Speculative Execution. Froc. of the Symposium on
Principles and Practice of Parallel Programminpages 2-11, 2001.

[19] B. Kreaseck, D. Tullsen, and B. Calder. Limits of TasasBd
Parallelism in Irregular Applications. IRroc. of the International
Symposium on High Performance Computi@gtober 2000.

[20] Y.-K. Kwok and I. Ahmad. Static Scheduling AlgorithmerfAllo-

cating Directed Task Graphs to MultiprocessoSCM Computing
Surveys31(4):406-471, 1999.

[21] W. Liuetal. POSH: ATLS Compiler that Exploits Prograrmgture.
In Proceedings of the Symposium on Principles and Practice of
Parallel Programming March 2006.

[22] P. Marcuello, A. Gonzalez, and J. Tubella. Speculativdtithreaded
Processors. IfProceedings of the International Conference on
Supercomputingl998.

[23] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. iSoh
Dynamic Speculation and Synchronization of Data Depereenc
In Proceedings of the 24th International Symposium on Compute
Architecture pages 181-193, June 1997.

[24] K. Olukotun, L. Hammond, and M. Willey. Improving the ffar-
mance of Speculatively Parallel Applications on the HydMFC
In Proceedings of the International Conference on Supercdimgpu
pages 21-30, June 1999.

[25] Z. Pan and R. Eigenmann. Rating Compiler Optimizatifors
Automatic Performance Tuning. Proceedings of Supercomputing
(SC) November 2004.

[26] M. K. Prabhu and K. Olukotun. Exposing Speculative Hate
Parallelism in SPEC2000. IRroceedings of the Symposium on
Principles and Practice of Parallel Programmingune 2005.

[27] L. Rauchwerger and D. Padua. The LRPD Test: Specul&ive-
Time Parallelization of Loops with Privatization and Retiic
Parallelization. InProceedings of the Conference on Programming
Language Design and Implementatiggages 218-232, June 1995.

[28] E. Rotenberg et al. Trace Processors.Ptoceedings of the 30th
International Symposium on Microarchitectui2ecember 1997.

[29] V. Sarkar and J. Hennessy. Partitioning Parallel Rrogr for Macro-
Dataflow. InProceedings of the Conference on LISP and Functional
Programming pages 202—-211, 1986.

[30] G. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalao&ssors.
In Proceedings of the 22nd International Symposium on Compute
Architecture June 1995.

[31] J. G. Steffan.Hardware Support for Thread-Level Speculatid?hD
thesis, Carnegie-Mellon University, April 2003.

[32] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A
Scalable Approach to Thread-Level Speculation. Ploc. of the
27th International Symposium on Computer Architectp@ges 1—
12, June 2000.

[33] J.-Y. Tsai and P.-C. Yew. The Superthreaded Architectiihread
Pipelining with Run-Time Data Dependence Checking and @bnt
Speculation. IrProc. of the International Conference on Parallel
Architecture and Compiler Techniqugmges 35-46, October 1996.

[34] J. Tubella and A. Gonzalez. Control Speculation in Muteaded
Processors through Dynamic Loop Detection.Phoceedings of the
4th IEEE Symposium on High-Performance Computer Architect
February 1998.

[35] T. N. Vijaykumar and G. S. Sohi. Task Selection for a Nadalar
Processor. IfProceedings of the 31st International Symposium on
Microarchitecture December 1998.

[36] M. J. Voss and R. Eigenmann. Reducing Parallel Overhi&ough
Dynamic Serialization. IfProceedings of the International Parallel
Processing Symposiympages 88-92, 1999.

[37] M. J. Voss and R. Eigenmann. High-Level Adaptive Pragra
Optimization with ADAPT. InProc. of the Symposium on Principles
and Practice of Parallel Programmingages 93-102, 2001.

[38] E. Waingold et al. Baring It All to Software: Raw MachmelEEE
Computer 30(9):86-93, 1997.

[39] V. Zhang, L. Rauchwerger, and J. Torrellas. HardwameSpec-
ulative Run-Time Parallelization in Distributed Shareaiory
Multiprocessors. IrProceedings of the 4th IEEE Symposium on
High-Performance Computer Architecturgages 162-173, February
1998.

	Introduction
	Related Work
	Speculative CMP Execution Model
	Profile-Time Empirical Optimization
	Candidate Threads
	Loop Iterations
	Procedure Calls
	Elsewhere

	Decomposition Space
	Design of the Optimization System
	Coordinating Overall Search
	Search Per Extended-Call-Graph Vertex

	Implementation
	Preliminary Transformations
	Measuring Performance
	Changing Decompositions at Run Time
	Avoiding Measurement-Induced Error

	Performance Evaluation on SPEC CPU2000
	Conclusions

