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Abstract---Process variations are a manufacturing phenomenon
that result in some parameters of the transistors in a real chip to be
different from those specified in the design. One impact of these
variations is that the affected circuits may perform faster or slower
than the design target. Unfortunately, only a small fraction of chips
speed up whereas the vast majority incur slow downs. While die-to-
die variations have been addressed by clock binning, within-die
variations are increasing in importance with scaling. Clock binning
in the presence of within-die variations results in slow clock speeds
for dies with many components that can operate at higher clock
speeds. A recent paper addressing within-die variations proposes
variable-latency functional units and register file so that the fast
instances of these components take fewer clock cycles to operate
than the slower instances. However, in pipeline stages where the
instances are interdependent, the fast instances would be held up
by the slow instances. Also, variable latency may complicate tim-
ing-critical instruction scheduling.

Instead of varying the number of clock cycles, we advocate
varying the clock speed. Our scheme, called Shapeshifter, main-
tains high clock speeds during low-ILP program phases by using a
narrower pipeline of only the faster instances, and reduces the
clock speed only in the high-ILP phases which use all the instances.
Shapeshifter simply turns off the slow instances, removing them
from any interdependence among all the instances. Also, Shape-
shifter requires minimal additions to the pipeline because almost
all pipelines already support varying the clock speed for power
management purposes. Using simulations, we show that Shape-
shifter performs better than clock binning and the variable-latency
approach.

1 INTRODUCTION

Technology scaling has led to an increased number of smaller
and faster on-chip transistors in successive technology generations,
allowing improved microprocessor performance. However, one
negative effect of technology scaling is process variations which
are a manufacturing phenomenon that result in some parameters of
the transistors in a real chip to be different from those specified in
the design. These variations typically occur in parameters such as
the gate length, threshold voltage, and oxide thickness. One impact
of the variations is that the affected circuits may perform faster or
slower than the design target. While faster circuits are the positive
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outcome of process variations which enables some of the chips to
be clocked faster than the intended speed, the negative outcome of
slower circuits lower the clock speed well below the target (e.g., as
much as 30%). Unfortunately, all the critical paths in the chip have
to be sped up for a faster clock whereas even one slow critical path
slows down the clock. Therefore, only a small fraction of chips
speed up whereas the vast majority incur slow-downs. As scaling
continues, process variations are expected to increase (as transistors
get smaller, variations are more likely and increase in relative mag-
nitude), threatening to eat away the benefits of scaling. Therefore, it
is important to address the negative impact of process variations.

Until recently, process variations have caused mostly die-to-die
variations and not much within-die variations. In this scenario, tran-
sistors on one die do not deviate much from each other but may
deviate from those on another die and from the target speed. Die-to-
die variations have been addressed by clock binning which deter-
mines the clock speed of each individual die (or a set of dies) allow-
ing faster dies to be clocked at higher speeds rather than clocking
all the dies at the worst-case speed. Clock binning is a simple and
effective solution; it is simple because it does not require modifying
the microarchitecture or system software in any way. However,
continued scaling is now resulting in increased within-die varia-
tions where some components of a die deviate from the other com-
ponents and from the target speed. Because clock binning varies the
clock speed of the whole die and because the slowest component
determines the die’s clock speed, clock binning in the presence of
within-die variations would result in slow clock for dies with many
components that can operate at higher clock speeds. One may think
that because architects have recently stopped deepening processor
pipelines, future-generation pipelines would have more slack to
absorb within-die variations. However, while pipeline depths have
stagnated, clock speeds continue to increase, though at a slower rate
than before — at a rate allowed by faster transistors every genera-
tion. Thus the same pipeline in later generations is clocked faster.
Therefore, there is no increase in the slack and process variations
will continue to be a problem.

There have been some proposals to address within-die variation.
Previous work [22, 33] has proposed forward body biasing (FBB)
the slow components to bring them to the same speed as the faster
components so that the die can be clocked faster. While the previ-
ous papers use coarse-grain FBB requiring one or two bias voltages
for the whole die, a recent paper [31] proposes to apply multiple
fine-grain bias voltages to different sections of a die. While coarse-
grain FBB may be practical, fine-grain FBB requiring many, pre-
cisely-controlled bias voltages is hard to implement. Unfortunately,



while low within-die variations can be tackled by coarse-grain
FBB, scaled technologies will have significant within-die variations
which would require the hard-to-implement fine-grain FBB.

While FBB is a circuit-based approach, there are two architec-
ture-based schemes to address within-die variations. The first
scheme [20] proposes variable-latency functional units and register
file to accommodate both fast and slow instances of these compo-
nents in the same die. In this scheme, if one of the ALUs of a pro-
cessor is slow then that ALU is set at testing time to operate at two-
cycle latency (with optional pipelining) while the rest operate at the
usual one-cycle latency. Because only one of the ALUs is slow, per-
formance does not degrade much. However, there are two short-
comings: First, this approach works because functional units and
registers have independent, redundant instances of components
(e.g., ALUs) so that one instance’s latency does not affect those of
the others. However, in stages that have interdependent, redundant
components (e.g., the select trees in the issue queue and depen-
dence check in the renamer, as we explain later), the slowest
instance slows down even the faster instances due to the interdepen-
dence (such stages are not targeted by [20]). Thus, the entire stage
becomes slow and if the stage is involved in a tight pipeline loop
(e.g., select-wakeup loop in the issue stage) then the stage would
prevent back-to-back issue of dependent instructions causing sig-
nificant performance loss. Second, while the paper carefully avoids
complexity by restricting the combinations of coupling any fast reg-
ister port to any fast functional unit, variable-latency functional
units may complicate the instruction scheduler which is often a
clock-critical component in an out-of-order issue processor. The
second scheme, ReCycle [32], proposes applying the well-known
circuit-level technique of time borrowing to the entire pipeline
where slower stages borrow time from faster stages so that the
clock speed remains high. Unfortunately, pipeline loops [4, 5, 17,
21] severely limit time borrowing, as we explain in Section 4.

Instead of varying the number of clocks, we advocate varying
the clock speed. Our key idea is to keep the clock fast when the
slower instances are not in use and to slow down the clock dynami-
cally only when all the instances, including the slower ones, are
used. We call our scheme as Shapeshifter which is based on the key
observation that because instruction-level parallelism (ILP) varies
within and across programs, all the instances are needed only in the
high-ILP phases while fewer instances suffice for low-ILP phases.
Consequently, Shapeshifter maintains higher clock speeds during
the low-ILP phases by using only the faster instances (i.e., narrower
pipeline), and reduces the clock speed only in the high-ILP phases
which use all the instances. Shapeshifter addresses both the short-
comings of the variable-latency approach. First, because Shape-
shifter turns off the slower instances in low-ILP phases, these
instances are removed from any interdependence with the faster
instances, allowing the faster instances to remain fast. Second, the
key mechanism used by Shapeshifter is varying the clock speed,
support for which is already present in almost all processors for the
purpose of power management. However, Shapeshifter does add
hardware to detect phases and to decide the clock speed and the
appropriate number of component instances to use. Fortunately,
these additions are well off the pipeline critical path.

Though Shapeshifter dynamically reconfigures the pipeline to
achieve its end, Shapeshifter’s novelty is not in dynamic reconfigu-
ration which is a well-explored topic but in the idea that pipeline
width can be traded off for clock speed to alleviate process varia-

tions. Having said that, there are some differences from previous
reconfiguration work. Most of those papers trade-off performance
for power or energy where either only one of the pipeline width [4,
26, 15, 18] or clock speed [27] is changed while the other is kept
constant, or both width and clock speed are increased or decreased
together and are not traded-off for each other [26]. In contrast,
Shapeshifter trades-off pipeline width for clock speed. Previous
work on clustered microarchitecture [6] improves performance by
trading-off pipeline width (i.e., number of clusters) for communica-
tion latency (more clusters implies longer inter-cluster communica-
tion latencies). Clustering and process variations are orthogonal
issues with no straightforward implications that one’s solutions are
applicable to the other. Because logic is much more susceptible to
process variations than wires [8], trading off pipeline width for
computation latency (i.e., clock speed) instead of communication
latency is more appropriate for process variations. Moreover, that
work does not (intend to) capture performance opportunities due to
process variations across clusters. Finally, the dynamic trade-off of
pipeline width for communication latency does not exist in conven-
tional, non-clustered processors whereas Shapeshifter’s trade-off is
applicable to clustered as well as non-clustered processors.

Our simulation results using SPEC2000 benchmarks show that
the variable-latency approach [20] improves upon clock binning by
4%, and Shapeshifter achieves a significantly better improvement
of 11% over clock binning,

The rest of the paper is organized as follows. Section 2 provides
a qualitative characterization of process variations. Section 3
describes Shapeshifter in detail. In Section 4 we discuss the inter-
play between time borrowing and pipeline loops. Section 5
describes our experimental methodology. We present our results in
Section 6 and draw some conclusions in Section 7.

2 PROCESS VARIATIONS: A QUALITATIVE
CHARACTERIZATION

There are two types of within-die process variations: random
variations due to noise in the fabrication system and systematic
variations due to spatial correlation among the transistors in a cir-
cuit as dictated by layout and lithography. Previous work [9, 1, 23]
uses probabilistic models to analyze the factors affecting within-die
variations. Here, we summarize the qualitative implications of rele-
vance to architects.

The impact of within-die variations depends on the tightness of
circuit timing and the length and number of critical paths in the cir-
cuit. Slack in the timing makes variations less likely to affect circuit
speed. However, the impact of the length and number of critical
paths is a little more involved. For long critical paths, the positive
and negative random variations tend to cancel each other so that the
circuit speed is affected primarily by systematic variations (i.e.,
spatial correlation). But for short critical paths, both random and
systematic variations affect circuit speed. In such paths, the effects
of random variations of the transistor threshold voltage (V) do not
cancel out because the delay is inversely proportional to the differ-
ence between the supply voltage, V44, and V,, causing positive V;
variations to affect the delay differently than negative V, variations.
We note that in processors with high clock speeds, pipelines are
deep and therefore, critical paths are not long (e.g., around 12-14
FO4). Therefore, the case of not-long critical paths is more impor-
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Figure 1. Shapeshifter

tant than that of long critical paths. Consequently, we model both
random and systematic variations in our simulations.

Next, if the number of critical paths is large then the chances of
at least one of the critical paths being affected is high (e.g., RAM
and CAM circuits as in register files, rename table, and issue queue,
have many critical paths because of their many wordlines and bit-
lines being similarly critical). Consequently, if we consider the
speed distribution of the instances of the circuit under within-die
variations, then the distribution shifts from the nominal target speed
because every instance of the circuit is likely to be affected. Also,
because almost all instances are affected similarly (i.e., the variabil-
ity across the instances is small), the spread of the distribution is
thin. Therefore, Shapeshifter which relies on speed variability
amongst instances of components (i.e., using faster instances for
high-speed clock) would not be effective for such circuits.

Finally, if the number of critical paths is small then not every
instance is likely to be affected (e.g., logic circuits have fewer criti-
cal paths than RAM and CAM circuits). Consequently, the distribu-
tion does not shift as much from the nominal speed as the previous
case of many critical paths. Also, because some instances are
affected more than the others, the distribution spreads out more than
the previous case. For such circuits, both slow and fast instances
would exist and Shapeshifter can use the fast instances in low-ILP
program phases to maintain high clock speed. this category of cir-
cuits includes decode, rename dependence check logic, select trees,
ALUs, FPUs, structures where individual entries can be turned on
or off such as individual registers (but turning off individual issue-
queue entries is not straightforward, as we explain in Section 3.3).
Thus, Shapeshifter can cover most of the pipeline (for the rest, we
lose clock speed if the circuit falls below the nominal speed). We
explain the exact coverage details in Section 3.3.

3 SHAPESHIFTER

As mentioned in Section 1, our key idea for accommodating
slow instances of components is to keep the clock fast when the
slower instances are not in use and to slow down the clock dynami-
cally only when all the instances, including the slower ones, are
used. We base our scheme, called Shapeshifier, on the key observa-
tion that because the amount of instruction-level parallelism (ILP)
varies within and across programs, all the instances are needed only
in the high-ILP phases while fewer instances suffice for low-ILP
phases. Consequently, Shapeshifter maintains higher clock speeds
during the low-ILP phases by using only the faster instances (i.c.,
narrower pipeline), and reduces the clock speed only in the high-
ILP phases which use all the instances. Figure 1 illustrates the idea
(sample_interval, and time blocks are explained later).

Shapeshifter detects phase changes by monitoring the changes in
ILP. Upon detecting a new phase, Shapeshifter determines the pipe-
line configuration — i.e., the number of instances of each compo-
nent and the clock speed — that would be appropriate for the new
phase. This determination involves Shapeshifter’s key trade-off of
pipeline width versus clock speed. The processor remains in a pipe-
line configuration until a new phase is detected. To enable dynamic
reconfiguration, Shapeshifter’s pipeline components are modified
so that slower instances can be turned off while allowing the faster
instances to operate at high clock speed by removing any interde-
pendence between the slower and faster instances. The other part of
the reconfiguration is the clock speed change which is common in
current processors. Clock speed change incurs PLL settling-time
overhead (typically 10-20 microseconds [27, 16] or 30,000-60,000
cycles at 3 GHz). Transmeta Crusoe [14] allows discrete frequency
steps of multiples of 30 MHz with 20 microseconds PLL settling
time, while Intel XScale allows continuous frequency scaling.

We next describe the steps of phase detection, configuration
determination, and pipeline modification.

3.1 Phase Detection

Program phases defined on the basis of ILP are characterized by
two aspects: ILP magnitude (counted in instruction commit rate)
and phase length (counted in number of instructions or cycles).
Because we are interested in ILP changes that are large enough to
warrant adding or removing instances of pipeline components, our
phase detector need not detect small ILP changes. Also, because
changing the clock speed incurs PLL settling-time overhead, our
phase detector need not detect short phases where the PLL over-
head would overwhelm the benefits of pipeline reconfiguration.
Finally, because Shapeshifter detects phases at runtime, we need a
scheme that is simple enough to be implemented in hardware. Pre-
viously-proposed hardware schemes for on-line phase detection
monitor dynamic branch counts [5] and instruction working sets
[13, 28, 15] to detect phase changes. In contrast, Shapeshifter needs
to detect phases on the basis of ILP changes. Consequently, the pre-
vious schemes are not directly applicable.

Keeping these arguments in mind, we propose a phase detector
that looks for a change of /LP_delta or more in the commit rate. By
analyzing SPEC2K programs, we found that changes of about 0.5
or more in the commit rate denote a new sustained phase prompting
addition or removal of component instances whereas changes of
about 0.1 or less in the commit rate occur even within a phase.
Accordingly, choosing ILP delta from the range of 0.2-0.8 works
well in practice. Such a choice acts as a low-pass filter that prevents
changes smaller than /LP_delta from triggering pipeline reconfigu-
ration. Because we are not interested in changes in the instanta-
neous commit rate, our detector samples the average commit rate of
instructions over some time block (e.g., 100,000 cycles). Because
we are not interested in short phases, a change in commit rate of
just one time block is insufficient to qualify as a phase. Accord-
ingly, the detector declares a new phase only if the commit rate of
each of sample interval consecutive time blocks changes by
ILP delta or more as compared to the running average commit rate
of the current phase (e.g., sample_interval = 10). In Figure 1, we
see that as the commit rate changes by ILP delta or more for the
sample_interval time blocks, phase changes are detected. By
adjusting the value of sample_interval, we can control the length of
the phases being detected.



To implement this detector, we need latches to hold the total
number of instructions committed in a time block and the current
phase, the number of time blocks in the current phase; and a shared
divider to compute both the average commit rate per time block and
the average commit rate of the current phase. The divider can be
quite slow because of the large time scales involved (e.g, a division
could take hundreds of cycles). As such, the divider should be opti-
mized for area and power at the cost of speed. We also need a sub-
tractor to determine whether the difference between the time-block
average and phase average lies within /LP delta. Alternatively,
because the average phase length for most programs is in hundreds
of millions of cycles (Section 6.1.2), all of these calculations can be
done in software to avoid hardware cost. However, because phase
detection occurs every 100,000 cycles though phases changes are
much less frequent, there may be some overhead.

Finally we note that our phase detector merely counts and com-
pares the number of committed instructions per cycle, does not put
pressure on the clock by requiring slow operations to fit within the
clock period. and is well off the pipeline’s critical path.

3.2 Determining Appropriate Pipeline Configuration: Novel
Trade-off of Pipeline Width versus Clock Speed

Upon detecting a new phase, Shapeshifter chooses the best con-
figuration for this phase from among the set of configurations
allowed by the pipeline.

If we assume that each pipeline stage can allow anywhere from
one to its maximum number of component instances and that each
stage’s number is independent of those of the others, then there
would be a combinatorial explosion in the number of configura-
tions. Also, some combinations are not useful. For instance, with
the asymmetric configuration of four decoders and three renamers,
the front-end would be constrained by the rename stage anyway,
and using more decoders would mean introducing some buffering
which may complicate the front-end. To avoid the combinatorial
explosion and the useless configurations, we restrict the set of con-
figurations to a few configurations. First, within the front-end (fetch
through rename) we allow only symmetric stages (i.e., all front-end
stages have the same width); similarly for the back-end (issue
through write-back). Second, even across the front-end and the
back-end, we allow only symmetric configurations with widths of
two, three, and four each (denoted as 2-2, 3-3, and 4-4). We do
allow one asymmetric configuration of 3-2 which does not need any
extra buffering because the front-end and the back-end are already
separated by the issue queue’s buffering. We found that other asym-
metric configurations (e.g., 4-3, 3-4, 2-3) perform close to the ones
in our above set, and therefore do not include them in our set. Also,
we do not consider /-1 as it performs close to 2-2. We describe the
details of implementing our configurations in Section 3.3.

To determine the best configuration, we make the key observa-
tion that the configurations differ in the clock frequency and the
pipeline width (we use pipeline width in a broad sense to include
front-end and back-end widths) which determines the instruction
commit rate. Consequently, we would like to compare the product
of the clock frequency and the commit rate (performance = commit
rate x clock frequency) of the different configurations to choose the
best. This comparison would allow us to perform the novel trade-
off of pipeline width versus clock speed. However, the commit rate
is not a simple function of the pipeline width (i.e., the relationship

between the commit rate and pipeline width varies from one pro-
gram or phase to another). As such, it is hard to guess the actual
commit rate that will be achieved by each of the configurations in
the new phase. The only exception is that if the current commit rate
is extremely low (e.g., 0.1) then the commit rate will remain mostly
unchanged irrespective of the configuration; such low commit rates
are typically the result of high cache miss rate which does not
change with pipeline width. In most other cases where the commit
rate is moderate or high, the commit rate will change with the con-
figuration. Trying out every configuration and comparing the
resulting commit rates would incur performance loss by delaying
the deployment of the best configuration and by incurring the PLL
overhead for every configuration change. Also, performing these
trials on the fly may increase complexity.

We avoid these issues by using pre-computed gross estimates of
commit rates that would be achieved by the various configurations.
We back up these estimates by a safety net of occasionally perturb-
ing the current configuration to correct any bad configuration
choices made due to inaccuracies in the estimates.

3.2.1 Pre-Computed Gross Commit Rate Estimates

We wish to pre-compute gross estimates of the typical commit
rates that would be achieved by the new phase in all the allowed
configurations. However, estimating the commit rate of an arbitrary
phase using an arbitrary configuration is difficult if no further infor-
mation were available. Fortunately, the commit rates of a given
phase using different configurations fall within a small neighbor-
hood (e.g., within 30%). Accordingly, we use the current configura-
tion’s commit rate in the just-begun new phase to locate the
neighborhood where the other configurations’ commit rates are
likely to fall. The commit rate for the current configuration is the
commit rate averaged over the last sample_interval time blocks at
the end of which the new phase has been detected. Note that these
time blocks still use the current configuration as the next configura-
tion is yet to be decided.

However, using a single percentage for the entire range of possi-
ble commit rates, to estimate a phase’s commit-rate degradation on
going from a wider configuration to a narrower one, would result in
loose estimates. The actual degradation depends on the amount of
instruction-level parallelism in the phase. For instance, a high-ILP
phase will likely lose a larger fraction of commit rate on going from
4-4 to 3-3 than a low-ILP phase; the low-ILP phase does not need a
wide pipeline anyway and therefore does not degrade as much.
Consequently, we partition the current commit rate into ranges
(e.g., less than 0.5, 0.5-1, 1-1.5, 1.5-2, and greater than 2) and pro-
vide a separate estimate for each range. These estimates are not spe-
cific to any program and are based on the gross average commit-
rate degradation over al/l SPEC2K programs (using train inputs)
experienced by each of our configurations while running similar-
ILP phases (i.e., their commit rates fall within the same range). We
assume that the degradation is the same for all the commit rates
within a range. Because our assumptions may result in inaccurate
estimates for some phases, we provide a back-up safety net of peri-
odic sampling in Section 3.2.2.

An obvious way to provide these pre-computed estimates would
be by using a table indexed by the current commit-rate’s range.
Each row would hold the estimated commit rates and the clock fre-
quencies for the various configurations. Table 1 shows an example
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Figure 2. Estimate table examples

with only the commit rate estimates (we show only one row for
clarity). The clock frequencies are observed quantities, not esti-
mates, and are determined at the time of testing (as explained in the
beginning of Section 3.3). Then, Shapeshifter would compare the
products of the estimated commit rate and the clock frequency of
each configuration and choose the configuration with the best prod-
uct. However, we can greatly optimize both the table and the pro-
cess of choosing the best configuration. Because the commit rate
estimates are known at design time and the clock frequencies at
testing time, the comparison of the products in a given row can be
done at testing time. Therefore, the best configuration for each row
can be determined at testing time. This optimization has two impli-
cations. First, the configuration identifier can be simply looked up
during execution without computing and comparing commit-rate
and clock-frequency products. Second, the table becomes a small
read-only structure where each row holds just the configuration
identifier, and not the commit rate estimates for all the configura-
tions. Table 2 shows the optimized version of Table 1 assuming the
frequencies for 4-4, 3-3, 3-2, and 2-2 are 1.0, 1.15, 1.3, and 1.35,
respectively. Note that the best configuration for a commit-rate
range may be different in different chips because of differences in
the chips’ clock frequencies for the same configuration.

It may seem that a narrow configuration may artificially reduce
the commit rate, so that looking up the estimate table using only the
commit rate may lead us to an incorrect row and result in us choos-
ing a narrow configuration when a wider configuration may be bet-
ter. In practice, however, our commit-rate ranges are large enough
that all our configurations’ commit rates fall within the same range,
allowing the index to be independent of the current configuration.

3.2.2 Safety Net

As mentioned before, our estimates may be inaccurate because
they are averages that are binned into ranges and may not match a
given program’s behavior. We found that in practice the inaccura-
cies are usually minor. Nevertheless to correct any bad configura-
tion choices made due to inaccuracies, we use a safety net of
periodically perturbing the current configuration (i.e., try out a dif-
ferent configuration). Such perturbations degrade performance if
the current configuration is appropriate and needs no change, and
incur the PLL overhead for changing clock speeds. Therefore, we
trigger perturbations infrequently so that the PLL overhead for a
perturbation and a revert back is about 0.5% of execution time (e.g.,
if the PLL overhead is 20 microseconds then for a 2.5 GHz clock
speed, the perturbation should occur once every 20 million cycles).
Fortunately, because our phases are typically hundreds of millions
of cycles, our safety net despite being triggered infrequently can
correct the configuration for most of the cycles in a phase.

At every safety net trigger, Shapeshifter alternately tries out a
configuration that is one step narrower or one step wider than the
current configuration (i.e., one row above and below the current
row in the estimate table). Thus, even in the rare case that the cur-
rent configuration is many steps away from the best configuration,
Shapeshifter will eventually reach the best configuration. Shape-
shifter compares the commit rate of the trial configuration for
sample_interval time blocks to that of the current configuration’s
last sample_interval time blocks, and stays in the trial configuration
if it is better. While our phase detection scheme uses the commit
rate averaged over the entire current phase (Section 3.1), the safety
net uses only the last sample_interval time blocks’ commit rate of
the current configuration. We incorporated this difference because
we use the safety net not only for correcting major mistakes in our
configuration choices but also for making minor adjustments to the
configuration in response to any local ILP changes in the current
phase. Because such changes span much fewer time blocks than a
phase, averaging over all the time blocks of the current phase would
overwhelm the contribution of such local changes and prevent the
safety net from detecting such changes.

3.3 Enabling Dynamic Reconfiguration

The remaining issue is the detail of how the pipeline reconfig-
ures itself. We assume that at testing time the clock speed of each
chip is determined by clock binning which can be extended to
determine the clock speed at which each component operates cor-
rectly (described in detail in Section 3.4). Using this information,
the narrower configurations simply turn off the slower components.

3.3.1 Restricting the combinations of turned-off components
across stages: reducing reconfiguration complexity

Allowing any combination of components across stages to be
turned off (e.g., way 1 of decode, way 3 of rename, and way 2 of
EX) would increase testing time (Section 3.4) and would compli-
cate the pipeline due to a subtle issue in the routing of instructions
in the narrower configurations. The fast components of all the
stages may not be aligned across the stages. For instance, the fast
decoders’ (select trees’) way numbers may be different from those
of the fast renamers (functional units). Consequently, we would
need shifters at the end of every stage to route instructions from a
fast way in one stage to a fast way in the next stage. Because any of
the ways in a stage could be fast, we would need a n-to-n crossbar
at the end of every stage for an n-wide pipeline.

We avoid these crossbars by using an observation and by
restricting the combinations of turned-off ways. We observe that
because the front-end and back-end are decoupled naturally by the
issue queue (i.e., instructions from any front-end way can be issued
to any back-end way), there is no need for crossbars to route
instructions from the front-end to the back-end. Therefore, cross-
bars are needed only within each of the front-end and back-end —
e.g., between decode and rename, and between issue (select) and
functional units (issue and EX are separated by register read but
because we do not distinguish among register ports, our routing
choice is from a fast select way to a fast functional unit).

Nevertheless, because this requirement still implies large cross-
bars, we propose restrictions which altogether eliminate the cross-
bars. In the front-end, we allow n™ decode way to feed only either
the n-1" or n™ rename way, requiring only a 2-to-1 multiplexor at



the end of each decode way. This restriction implies that a fast
decode way is not clocked fast if neither of the two allowed rename
ways are as fast (even if some other rename way is as fast). The
front-end requires no other modifications. In the back-end, how-
ever, we disallow all flexibility and restrict the n'" issue way to feed
only the n'™ functional unit, treating the two as an atomic unit
whose frequency is the lower of the two components’ frequencies
(and hence the two are enabled or disabled together). We constrain
the back-end more than the front-end because the back-end is more
timing critical and may not have the timing slack to allow any mul-
tiplexor. We note that the front-end multiplexor is optional and
removing it results in about 2% clock frequency loss.

We note that the variable-latency approach [20] adds latches to
pipeline the extra latency of every slow component. Also, time bor-
rowing [32] adds extra latches to create “nop” donor stages. Such
latches may increase area and power. In contrast, because we vary
the clock speed and do not deepen the pipeline except for the above
2-to-1 multiplexors, we need significantly fewer extra latches.

Finally, if a pipeline resource is shared by two pipeline ways,
then we simply accept that the two ways cannot be faster than the
shared resource. This approach is simple yet effective as shown by
our evaluations which use 4 issue ways where a pair of pipeline
ways share an FP unit (which is the most common example of
resource sharing in real processors).

The above restrictions greatly simplify Shapeshifter’s pipeline
reconfiguration. Back-end reconfiguration amounts to a binary on/
off decision for each way irrespective of the number of back-end
stages, where each way can be turned off simply by not issuing any
instruction to that way. Front-end reconfiguration amounts to set-
ting the 2-to-1 muxes in the decode stage and providing the correct
increment to the PC incrementor in the fetch stage (for narrow con-
figurations, the increment is smaller than the full pipeline width).

3.3.2 Handling dependence among off and on components
within a stage

While the above restriction simplifies pipeline reconfiguration,
turning off a component instance in a stage raises the following
issue about the other instances in the stage. A stage where the com-
ponent instances are independent of each other (e.g., decode and
EX), going from wider to narrower configurations and vice versa
by turning off and on the slower instances is straightforward. For
stages where the instances are interdependent, extra care is needed
which we explain for each such stage. While the rename ways are
independent in the table lookup, correcting the source tags for
dependencies among the instructions fetched in the same cycle
introduces interdependence among the rename ways (i.e., the n'h
way may use the destination tag from any of way 7 through way »-
1). Similarly, the select trees in the issue stage are interdependent
because trees / through n-/ have to communicate their selection
choices to the n'™ tree so that it does not select an instruction already
selected by the other ways. In the variable-latency paper which var-
ies the number of clocks to accommodate slower instances of com-
ponents [20], a slow rename/select way would hold up the faster
way due to this interdependence. To turn off a slow way in a nar-
rower configuration so that the slow way does not hinder the faster
ways’ operation due to the interdependence, we modify each way to
provide a NULL output whenever the way is turned off (NULL des-
tination tag in rename and NULL select choice in issue). The

NULL output is not affected by process variations because it
involves no circuitry and at the same time satisfies the interdepen-
dence so that the faster ways can proceed without being held up.

In register read and write stages, we turn off slow registers in the
high-clock-speed configurations by leveraging rename and remov-
ing them from the free pool of physical registers. In slow clock-
speed configurations we turn on all registers. The variable-latency
paper differentiates between slow and fast ports for the same regis-
ter. The paper optimizes for speed by recognizing that an instruc-
tion reads two registers using two ports and each register read could
be directed to the faster port for that register. In contrast, we do not
differentiate between slow and fast ports for simplicity and turn off
a register if any of its ports is slow. For all our configurations
except 4-4 we turn off slow registers up to 20% of the registers.

The variable-latency paper applies its approach to floating-point
units in addition to integer units. We apply our approach to only
floating-point adders (in narrow configurations, one of our two
adders is turned off if it limits the clock speed). However, we argue
that floating-point multiplies and divides have enough ILP or are
rare enough that their latency can be increased by one cycle to cre-
ate timing slack to absorb the effects of any variations. We found
that this extra one cycle results in less than 0.5% degradation.

Because we focus on process variations in the pipeline, we do
not address process variations in caches. We assume that caches use
other schemes such as [19, 2] to handle variations so that caches run
at the nominal speed. In addition, there are a few pipeline stages
that we do not address in our paper, such as the wakeup logic in the
issue queue and the load-store queue. Wakeup can become slow due
to a slow issue-queue entry. However, while we turn off slow regis-
ters by leveraging register renaming, turning off an issue-queue
entry is not easy because there is no rename for issue. Furthermore,
issue queue insertion and compaction would no longer be simple
and sequential, and would need to skip over slow entries. While we
do not rule out the possibility that these problems can be solved, we
simply assume that variations in wakeup are not addressed. Apart
from wakeup, we do not address the load-store queue whose rela-
tive area is small enough that the chance of being affected by pro-
cess variations is low. However, unlike caches we do not assume
that wakeup and the load-store queue operate at the nominal speed.
Instead, we assume that they are affected by variations and that they
constrain the clock speed for all our configurations.

We end this discussion with an important yet subtle difference
between [20] and Shapeshifter. The cause of this difference is that
issue associates a static priority order among the select trees. This
priority is hard-wired into the select trees in which a lower-priority
tree is prevented from selecting an instruction already selected by a
higher-priority tree. This static prioritization greatly simplifies the
arbitration among the select trees. The select tree order imposes an
ordering among the functional units and register ports because each
select tree is tied statically to a functional unit which is tied stati-
cally to a pair of register ports. Thus, if there are » instructions to
issue (7 < maximum issue width) then the instructions are issued to
the top » units in the priority order. In the variable-latency paper,
this priority order implies that instructions would be issued to the
highest-priority unit even if the unit happens to be slow while other
faster units remain idle (e.g., in low-ILP cycles where fewer
instructions than the maximum width are issued). In contrast,
Shapeshifter turns off the slow units in the narrower configurations
even if these units have a higher priority than the faster units so that
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only the faster units are used in low-ILP phases (because of our
back-end routing restriction, a select way and the corresponding
functional unit are turned on or off together). While turning off a
slow unit is easy, dynamically assigning low priority to whichever
units happen to be slow (known only at test time) is hard to fit in
fast clocks (which is why static prioritization is used).

3.4 Testing

As mentioned in Section 3.3, we assume that at testing time the
clock speed of each chip is determined by clock binning which can
be extended to determine the clock speed for correct operation of
each component. A typical test involves scanning in a test pattern,
clocking at a given speed for some cycles, and scanning out the
result for comparison against the gold standard. While testing for
each individual component’s speed would considerably increase
testing time requiring more testers to maintain the production rate,
the pipeline reconfiguration restrictions from Section 3.3.1 greatly
reduce Shapeshifter’s testing combinations and thereby testing
time. Because our configurations run entire (front-end or back-end)
way at the same clock speed, we need to test the speeds of entire
ways instead of various combinations of individual components.
Furthermore, only a few speeds need to be tried similar to conven-
tional speed binning (the range of speeds is pruned based on the idle
leakage current in IDDQ test). While multiple ways can be tested in
parallel for the same clock speed (parallel testing is common today:
scan in patterns for all the ways and clock the ways in parallel, and
scan out results), such testing verifies that each way works correctly
in isolation but does not cover the circuits involved in interdepen-
dence among the ways (e.g., inter-way bypass circuits or the inter-
dependence circuits in renaming and select logic described in
Section 3.3.2). To cover the interdependence circuits at the few test
speeds, we need to run additional tests. Because the number of
pipeline configurations is only a few (e.g., 4-4, 3-3, 3-2, and 2-2)
and because only the interdependence circuits need to be tested in
the additional tests, the additional testing will likely add only a little
to the overall testing time. However, all our tests — of front-end
and back-end ways and of interdepedence circuits — can use exist-
ing scan chains and do not need any additional hardware.

4 INTERPLAY BETWEEN TIME BORROWING AND
PIPELINE LOOPS

Tiwari et al. [32] propose ReCycle to address process variations
by using the well-known time borrowing technique in the whole
pipeline where fast stages donate time to slow stages. The recipient
stage’s clock is skewed to arrive later while the donor stage’s clock
is skewed to arrive earlier so that the overall clock speed is not
slowed down.

We make two key observations about time borrowing. The first
is that there is an interplay between time borrowing and pipeline

loops [4, 5, 17, 21] which, shown in Figure 3, carry information
involved in a dependence. ReCycle assumes that “time borrowing
can be applied as long as the donor and recipient stages are in the
same loop”. This condition is unclear and may be insufficient in
nested loops (most loops are nested, as seen in Figure 3). As stated,
the condition allows a recipient stage from an inner loop and a
donor stage from an outer loop because both stages are in the same
outer loop. However, because the donor stage is not in the recipi-
ent’s inner loop, such borrowing may not satisfy timing for the
loop-back path of the inner loop. For instance, in Figure 3, borrow-
ing from Reg Read to donate to Issue, which are both in loop 8, may
not satisfy timing for loop-back path 3. While producer instructions
exit Issue at a rate slower than the nominal clock rate due to bor-
rowed time, information for consumer instructions would have to
enter Issue at the nominal rate, which is impossible.

As such, time borrowing can be applied only if the set of loops
enclosing the recipient is a subset of the set of loops enclosing the
donor. This condition is more stringent than that of ReCycle which
seems to allow borrowing if some, but not all, of the loops enclos-
ing the stages is the same (i.e., if the two sets have a non-null inter-
section). Our condition implies that no borrowing can occur from
outside a loop to inside the loop, which, in turn, implies that time
borrowing cannot benefit single-stage loops (e.g., loops 2, 3, and 5)
because borrowing would be limited from the stage to itself which
is pointless. ReCycle avoids this problem by using a pipeline model
where single-stage loops take one cycle for the stage and another
for loop-back wire delay. In this model, time slack from the short
loop-back wires can be donated to the stage. However, this model
precludes back-to-back issue of dependent instructions, a key
requirement for high instruction commit rate in the face of the fre-
quent dependencies in sequential code. As such, high-performance
pipelines cram the delays of both the stage and the loop back wire
in one cycle. These tight single-stage loops often limit the clock
speed, and when affected by variations slow down the clock. Con-
sequently, time borrowing cannot alleviate a major part of the prob-
lem, as we briefly show in Section 6.1.1. However, if future
pipelines give up back-to-back issue for some reason then time bor-
rowing may be feasible in single-stage loops.

Our second observation about time borrowing is that it requires
the recipient stage to be wave-pipelined, as also briefly noted by
ReCycle. Because the latency of the recipient stage is longer than a
clock period, instructions enter the stage at a rate faster than that at

TABLE 3. SYSTEM PARAMETERS
Decode Width 4
Issue Width 4 Int + 2 FP
Issue Queue 32-entry Int, 16-entry FP
Reorder Buffer 128 entries
LSQ 64 entries
Physical Registers 256
L1 i-cache 64KB, 2-way, 32Bblock, 2-cycle
L1 d-cache 64KB, 2-way, 32Bblock, 2-cycle
L2 cache 2 MB, 8-way, 128B block, 13-cycle
Functional Units 4 Int+2 FP
Branch Predictor 2-level hybrid, 8K entries
Mispredict Penalty 9 cycles
Memory Latency 300 cycles




TABLE 4. BENCHMARKS

Program | IPC || Program | IPC || Program | IPC || Program | IPC
mef 0.1 applu 0.7 || equake 1.3 eon 1.8
ammp 0.3 mgrid 0.7 apsi 1.4 mesa 2.0
art 0.4 twolf 0.9 || facerec | 1.5 crafty 2.1
lucas 0.4 parser 0.9 bzip 1.6 fma3d 2.3
swim 0.4 galgel 1.0 vortex 1.7 || sixtrack | 2.5
perlbmk | 0.6 gap 1.0 gcc 1.7
vpr 0.6 || wupwise | 1.1 gzip 1.7

which they are processed by the stage, requiring more than one
instruction to be present simultaneously (i.e., wave-pielined) in the
stage. Because any stage may end up being a recipient, all stages
have to be designed to be amenable to wave pipelining. This
requirement, however, is hard to satisfy in practice because wave
pipelining requires timing control that is significantly more precise
than normal pipelining. In fact, process variations introduce timing
uncertainties making wave pipelining even harder. In view of these
limitations, we take the route of changing the pipeline width and
speed to address process variations.

5 METHODOLOGY

5.1 Architectural Simulation

We extend SimpleScalar 3.0 [4] to simulate a high-performance,
out-of-order processor in 50 nm technology. Table 3 shows the
baseline parameters for the simulated processor, which are similar
to those of the Alpha 21264 [9]. Shapeshifter addresses decode,
rename, select, register file, and functional units (all the relevant
stages in both integer and floating-point pipelines). Recall from
Section 3.3 that though Shapeshifter does not address wakeup and
LSQ, we do account for variations in these components in deciding
the clock speed for each configuration. Like [19], we found LSQ to
be the least affected component due to its small area. As mentioned
in Section 3.3, we assume that caches use other schemes such as
[19, 2] to handle variations so that caches run at the nominal speed.

Table 4 shows the benchmarks and their IPCs for the baseline
processor. We evaluate the entire SPEC2K suite. For each program,
we use ref inputs, fast-forward the first 2 billion instructions and
then execute the next 2 billion instructions. We do not use Sim-
Points [12] because the 100-million instruction intervals prescribed
by SimPoints are not long enough to capture the phase behavior of
the programs.

To generate the commit rate estimate tables (Section 3.2.1), we
profile the benchmarks using frain inputs to obtain the average
IPCs for our pipeline configurations. The estimates are shown in
Table 5 in which the rows represent IPC ranges while the columns
show the average IPC values for each configuration normalized to
the 4-4 baseline. By combining these numbers with the configura-
tions’ clock frequencies (known at testing time for each chip), we
find the best configuration for each IPC range for each chip.

5.2 Modeling Process Variations

We model both the random and systematic components of on-
die variations for each stage of the pipeline. We use projections
from [9] to estimate the total number of critical paths (V) in the
simulated processor. Based on real processor data, the projections

estimate N, to be 1000 (including L1 and L2 caches) for 100 nm
technology. Assuming that the number of transistors per processor
and the processor pipeline depth would keep increasing with tech-
nology generations, the projections suggest that N, would increase
beyond 1000 for post-100-nm generations. However, we note that
the diminishing returns from ILP, increased complexity of scaling
processor resources, and increased power dissipation has led to chip
multiprocessors where processor complexity (both the number of
transistors and pipeline depth) has stopped scaling in post 100-nm
generations. Consequently, we assume N, to stay unchanged at
1000 from 100 nm to 50 nm technology. N, for each pipeline stage
is assumed to be proportional to the number of transistors in that
stage [21, 19]. We further assume that the number of transistor per
stage is roughly proportional to the area of the stage. This assump-
tion is common and reasonable because high-performance proces-
sors are area-optimized and do not have much area slack. We
calculate the N, for each stage by using the area estimates from the
Alpha 21264 floorplan file in Hotspot [29]. We distribute each
stage’s N, into individual components within that stage (such as
between wakeup and select in issue queue) on the basis of area
breakdown. We assume a pipeline depth of 13 FO4, consistent with
the 3 GHz clock speed for the current 70 nm technology.

We obtain the following parameters for process variations from
the ITRS 2006 roadmap [3]. Like [21, 19, 20, 32], we assume equal
contribution from systematic and random variations in gate length
(Lefp), thus keeping 6,,4/1 = Ogys/p = 0.03. We capture the effect of
gate length on the (random and systematic) threshold voltage (V)
variations using the gate-length-to-delay curves from [20, 12]. In
addition, we account for the effect of random dopant variations on
V, by modeling V, as a normal random variable, similar to [2, 20].
We set the nominal V, for 50 nm technology to be 300 mV and its
variability (35) to be 42% exactly as per the ITRS 2006 roadmap
for 45 nm [3]. (V, variability is much higher than L. variability as
shown in the ITRS roadmap.) To simplify our analysis, we ignore
the spatial correlation effects of systematic variations and assume
that all the components within a stage are equally affected by sys-
tematic variations (this correlation is too weak across stages to have
much impact). This assumption is conservative because more accu-
rately varying correlation with distance would enhance within-stage
component variability, creating more opportunity for Shapeshifter.

Using the above-mentioned parameters, we generate 100 test
chips, each with a unique profile for gate lengths and threshold
voltages. We then use the delay curves to calculate the critical path
delays in each pipeline stage. Finally, we use the FMAX methodol-
ogy [9] to obtain the frequency of each pipeline configuration for
each individual chip. We found that increasing the number of chips
beyond 100 does not have a significant impact on the average clock
frequencies for different configurations. Consequently, we use 100
chips in our architectural simulations.

TABLE 5. COMMIT RATE ESTIMATE TABLE

IPC Interval Normalized IPC
4-4 3-3 32 2-2
0.0t0 0.5 1.00 0.96 0.93 0.91
0.5t0 1.0 1.00 0.95 0.91 0.87
1.0to 1.5 1.00 0.92 0.85 0.78
1.5t02.0 1.00 0.89 0.79 0.73
>2.0 1.00 0.83 0.69 0.63
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Figure 4. Frequency distribution of pipeline stages for different configurations

6 RESULTS

Section 6.1 analyzes the frequency of Shapeshifter’s configura-
tions. Section 6.2 compares Shapeshifter with other schemes in
terms of performance. Section 6.3 shows the time breakdown of
pipeline configurations for different programs and Section 6.4 ana-
lyzes the sensitivity of Shapeshifter to phase detection thresholds.

6.1 Analysis of Frequency and Phase Behavior

6.1.1 Pipeline frequencies

In this section, we analyze the frequency distribution of Shape-
shifter’s pipeline configurations. Because the maximum operable
frequency of the pipeline depends on the operable frequencies of
the individual stages. we first discuss the frequency distributions
for the individual stages.

Figure 4 (a through c) shows the frequency distribution for the
front-end (decode + rename), integer ALU and register file stages,
respectively. In the interest of space, we do not show distributions
for all the pipeline stages. We obtain these distributions by simulat-
ing process variations in 10,000 randomly-generated chips (while
we need 10,000 chips to capture the distribution, the 100 chips
mentioned in Section 5.1 are enough to capture the average). For
each graph, the X-axis represents frequencies normalized to the
nominal frequency under no process variations. The Y-axis shows
probability distributions of the stage’s maximum operable frequen-
cies as percentage of total number of chips. The maximum fre-
quency is that of the stage and not of the whole chip. For each stage,
we show multiple distributions — one with all the instances of the
stage’s components, and others with a fastest subset of instances
(e.g., top 3 and top 2 instances in Figure 4(a,b) and top 80% in
Figure 4(c)).

The frequency distribution for each stage shifts away from the
nominal frequency as we increase the number of instances in the
stage to include slower instances. For example, in going from 2-
way to 4-way front-end, the mean frequency decreases from 0.83 to
0.7. Note that because we show fastest subsets and not random sub-
sets, our distributions get narrower with fewer instances instead of
wider as would be the case with random subsets (as discussed in
Section 2 and shown in [9]).

Using the frequency distributions for individual pipeline stages
and the FMAX model, we show the frequency distribution for the
entire processor in Figure 5. Like Figure 4, the X-axis in Figure 5
represents frequencies normalized to the nominal frequency under
no process variations and the Y-axis shows probability distributions
of maximum operable frequencies in terms of percentage of total

number of chips. We show separate distributions for our base con-
figuration of clock binning, the variable-latency scheme (VarLat)
from [20], 3-3, 3-2, and 2-2 configurations. Note that clock-bin-
ning’s frequency, like 4-4’s, is constrained by the slowest pipeline
component and thus 4-4 (not shown) and clock binning have identi-
cal distributions. Similar to [20], we set the slower functional units
and the slowest 20% of registers to take one extra cycle in 3-3, 3-2,
and 2-2. Based on the probability distributions of Figure 5, Table 6
shows the mean frequencies for the various schemes and pipeline
configurations.

The narrower Shapeshifter configurations exhibit significant fre-
quency improvements over clock binning. On average, the normal-
ized frequencies of clock binning, 3-3, 3-2, and 2-2 are 0.65, 0.74,
0.77, and 0.79, respectively (Table 6). Thus, 3-3, 3-2, and 2-2
achieve 13%, 18%, and 21% improvements in frequency over clock
binning, respectively. As discussed in Section 3.2, the frequency
advantage for narrower configurations is due to the shutdown of
slower pipeline components.

VarLat shows only 6% frequency improvement over clock-bin-
ning (Table 6). VarLat’s improvement is less than that of 3-3
because VarLat does not address variations in rename, integer issue,
and FP issue, and these stages constrain VarLat’s frequency (we
assume that caches do not constrain VarLat’s frequency, as we do
for Shapeshifter). In contrast, 3-3 shuts down slower components in
these stages. Note that our VarLat results are different from those in
[20] in which the authors assume that components other than the
functional units and register file do not have variations, overstating
the speedups achieved by addressing only these components.

For each of the configurations, the number of chips operable at
or beyond the nominal frequency is negligible. Accordingly, the
mean frequencies for clock binning, 3-3, 3-2, and 2-2 are 35%,
26%, 23%, and 21% worse than the ideal case of no process varia-
tions (Table 6). These numbers show the severity of the problem.
Specifically, the frequency for even the narrowest configuration is
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considerably less than the nominal value. This observation suggests
that any technique (including Shapeshifter), barring for a no-varia-
tion process, is likely only to mitigate the problem and not solve it
entirely. However, by mitigating the problem, Shapeshifter tries to
prevent process variations from eating away the benefits of scaling.

The frequency distribution of 3-2 is closer to 2-2 than to 3-3.
This trend arises because the back-end has more critical paths than
the front-end and thus the back-end limits the frequency more often
than the front-end. As 3-2 is similar to 2-2 but different from 3-3 in
terms of the back-end, the frequency distribution of 3-2 is closer to
that of 2-2 than to that of 3-3.

In the case of ReCycle [32], our simulations show that pipeline
stages with single-stage loops (rename, issue, and EX) limit the
clock speed in 70% of the simulated chips. Because time borrowing
cannot alleviate such loops (Section 4), ReCycle achieves an aver-
age frequency improvement of only 3.1% over clock binning
(Table 6), even under the ideal assumption that enough slack is
available for time borrowing to make the other stages non-critical in
the remaining 30% chips. We do not show ReCycle in Figure 5
because it is close to clock binning.

While frequency differences between configurations create
opportunity for Shapeshifter, switching configurations according to
phases is desirable only if the phases are long enough so that the
performance benefit of phase switching amortizes the PLL over-
head. Next, we characterize our programs based on phase behavior.

6.1.2 Phase characterization

Table 7 shows the phase behavior of the programs. For each pro-
gram, we show the number of phases and the average phase length
in terms of millions of cycles for the baseline 4-4 configuration. We
use sample_interval = 10 and ILP_delta = 0.5 for phase detection.

Most of the programs have a small number of long phases. 9 of
the 26 programs have only one phase while 12 of the remaining 17
programs have average phase lengths of more than 100 million
cycles. In contrast, the PLL overhead is ~ 20 microseconds [27, 14]
or 60000 cycles for a 3 GHz clock frequency. Thus, program phases
are usually long enough to amortize the PLL overhead.

6.2 Performance

In this section, we compare the performance of Shapeshifter
against other schemes and analyze the relationship between Shape-
shifter performance and the amount of ILP in each program.

Figure 6 compares the performance of variable-latency [20]
(VarLat), 3-way, Shapeshifter, and perfect-phase schemes. The X-
axis in the graph lists the benchmarks in order of increasing ILP to
show performance trends. The performance of each scheme is given

TABLE 7. PHASE CHARACTERIZATION

Pro- | No. of | Avg. Phase Pro- | No.of | Avg. Phase
gram | Phases | Length (10 gram | Phases |  ength (10°
cycles) cycles)
mcf 1 18250.0 wupwise 7 252.0
ammp 8 938.0 equake 6 249.2
art 1 5389.0 apsi 10 140.4
lucas 1 5226.9 facerec 209 6.4
swim 1 5090.9 bzip 23 54.7
perlbmk 9 362.1 vortex 11 109.7
vpr 12 287.6 gce 3 382.5
applu 20 140.5 gzip 1 1170.0
mgrid 21 133.6 eon 1 1120.2
twolf 1 2195.7 mesa 17 58.5
parser 98 21.6 crafty 1 975.6
galgel 222 8.8 fma3d 1 856.2
gap 13 149.3 sixtrack 2 405.5

in terms of Instructions Per Second (IPS) normalized to the IPS of
the base clock-binning scheme. VarLat uses one extra cycle for
slow components as described in Section 6.1.1 and Shapeshifter
uses sample_interval = 10 and ILP_delta = 0.5, as before. We
explain 3-way and perfect-phase next. One simple option to address
variations is to achieve higher clock speeds by statically (i.e., per-
manently) turning off the slower components. This option is a com-
peting alternative to Shapeshifter and shows the need for
Shapeshifter’s dynamic reconfiguration. 3-way is such a scheme
that always stays in the 3-3 configuration. Note that 3-way has the
same frequency as 3-3 in Table 6. perfect-phase is a hypothetical
scheme which provides an upper bound on Shapeshifter’s perfor-
mance. While inaccuracies in commit-rate estimates may cause
Shapeshifter to switch to a sub-optimal configuration for a program
phase, perfect-phase uses a priori knowledge to accurately decide
the optimal configuration for each program phase. Furthermore,
unlike Shapeshifter, perfect-phase instantaneously switches to the
optimal configuration without incurring any PLL overhead.

The rightmost bars of Figure 6 show the normalized mean IPS
for different schemes. Caution is in order while looking at these
means. The normalized mean for a scheme is not the harmonic
mean of all the other bars shown in the graph for that scheme, but
rather it is the harmonic mean of that scheme’s IPS (over all the
benchmarks) divided by the harmonic mean of clock-binning’s IPS.

Shapeshifter significantly outperforms clock binning and
improves performance over VarLat and 3-way in most of the bench-
marks. On average, VarLat, 3-way, and Shapeshifter have speedups
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of 3.9%, 5.3%, and 11%, respectively, over clock-binning. VarLat
performs worse than Shapeshifter in most of the benchmarks
because VarLat’s frequency is significantly worse than those of the
narrower Shapeshifter configurations, as shown in Table 6. Also,
these configurations are better than VarLat in giving higher priority
to faster functional units, as discussed in Section 3.3.2.

While there are some exceptions, the performance gains of
Shapeshifter over both clock binning and VarLat generally increase
as the amount of ILP in benchmarks decreases (towards the left end
of the graph). This trend occurs because narrower and faster Shape-
shifter configurations lose less IPC in low-ILP programs than in
high-ILP programs. As expected, the two lowest ILP benchmarks,
mcf and ammp, show the maximum improvements of 16% and 17%
over clock-binning, respectively.

While 3-way suffers IPC loss in comparison with clock-binning,
the net performance of 3-way is better than that of speed-binning in
most of the programs. We found that going from clock binning to 3-
way decreases the harmonic mean of the IPC by 8%. However the
13% frequency advantage of 3-way over clock-binning (Table 6)
results in a net speedup of 5%. This speedup is higher than that of
VarLat which, unlike 3-way, is not applicable to all pipeline stages
that may be susceptible to process variations. However, 3-way’s
speedups being considerably lower than those of Shapeshifter high-
light the advantage of Shapeshifter’s dynamic approach.

3-way’s speedup may suggest that 3-way should be preferred
over clock binning. However, 3-way performs significantly worse
than clock-binning in 4 high-ILP benchmarks (sixtrack, fma3d,
mesa, and galgel). These programs require all the pipeline compo-
nents due to their high ILP. In contrast to 3-way, Shapeshifter
dynamically switches to the 4-4 configuration in these benchmarks
to perform close to or better than clock-binning.

Shapeshifter performs reasonably close to perfect-phase in most
of the benchmarks. On average, Shapeshifter performs within 1.7%
of perfect-phase. The performance gap is due to imperfections in
choosing the best configurations and the PLL overhead. Bench-
marks with frequent short phases (such as facerec and galgel, as
seen in Table 7) exhibit larger performance gaps. There are two
main reasons for this trend: (1) PLL overhead is relatively more
substantial in short phases and may overwhelm the performance
advantage of configuration switches. (2) The safety net mechanism
is rarely invoked for short phases, thus preventing any bad configu-
rations from being corrected. Nevertheless, the performance gap is
still small indicating the high accuracy of the estimate table.

6.3 Execution Time Breakdown

In this section, we analyze Shapeshifter’s ability to adapt the
pipeline width according to program behavior. We show execution
time breakdowns for different programs and relate them to the pro-
grams’ ILP. We expect narrower (wider) pipeline configurations to
dominate the execution time of lower-ILP (higher-ILP) programs.

Figure 7 shows the time spent by programs in different Shape-
shifter configurations. Like Figure 6, the X-axis lists the bench-
marks in the order of increasing ILP. For each program, going from
bottom to top, the portions of the stacked bar represent the times
spent in 4-4, 3-3, 3-2, 2-2, and PLL overhead, respectively, as per-
centages of execution time for the runs shown in Section 6.2.

For low-ILP benchmarks (at the left end of the graph), execution
time is dominated by 3-2 and 2-2. By adapting to narrower configu-
rations for low-ILP programs, Shapeshifter is able to achieve sig-
nificant performance advantages over clock-binning (Figure 6).

Going from low-ILP to high-ILP programs (from left to right in
Figure 7), the relative contribution of 4-4 to the runtime increases
and that of 2-2 (and 3-2) decreases. For high-ILP benchmarks (such
as fma3d and sixtrack), most of the time is spent in 4-4, as expected.

It is worth noting that most of the benchmarks spend more time
in 3-2 than in 2-2. This trend arises because 3-2’s frequency is very
close to that of 2-2 (Table 6) and 3-2 has an IPC advantage over 2-
2, making 3-2 usually better than 2-2, even in low-ILP programs.

Because of long phases, the time lost due to the PLL overhead is
negligible. Averaging across all the benchmarks, the PLL overhead
is only 0.6% of the total execution time. Also, recall from
Section 3.2.2 that the safety net is triggered only every 20 million
cycles, thereby limiting the safety net’s PLL overhead to 0.5%.
Only two programs, galgel and facerec incur PLL overheads of
more than 1%. As shown in Table 7, both these programs have large
number of phases, resulting in more frequent PLL switching.

Finally, though some programs have just one phase (e.g., mcf
and crafty in Table 7), they use multiple configurations (Figure 7),
because of the following two reasons: (1) Figure 7 shows average
distribution over all our simulated chips where the optimal configu-
ration for a given phase may be different from one chip to another
(because the clock speed differences may work out that way). (2)
Our safety-net’s perturbations can result in multiple configurations.

6.4 Sensitivity Analysis

We analyze the sensitivity of Shapeshifter’s performance to
phase detection thresholds and the use of safety net. We vary
ILP delta as 0.3, 0.5 (default), and 0.7, and sample_interval as 10
(default), 30, and 100. We found that performance is mostly insen-
sitive to these variations (within 2% of each other across all pro-
grams). To isolate the impact of the safety net, we run Shapeshifter
with and without the safety net. On average, removing the safety
net degrades performance by only 0.2%. However, for perlbmk,
removing the safety net results in 6% degradation. The commit
rates for some phases in perlbmk are significantly different from the
estimates of Table 5, resulting in sub-optimal configuration choices.
Removing the safety net leaves these choices unchecked.

7 CONCLUSIONS

Process variations result in a vast majority of microprocessor
chips to perform slower than the design target and are a serious



impediment to improving performance through technology scaling.
While clock binning is effective against die-to-die variations,
applying clock binning to chips with within-die variations results in
slow clock for dies with many components that can operate at
higher clock speeds. We proposed a novel scheme, called Shape-
shifter, which maintains high clock speeds during low-ILP program
phases by using a narrower pipeline of only the faster instances of
components, and reduces the clock speed only in the high-ILP
phases which use all the instances. Shapeshifter is based on the key
observation that because instruction-level parallelism (ILP) varies
within and across programs, all the instances are needed only in the
high-ILP phases while fewer instances suffice for low-ILP phases.
While previous approaches are limited to a few stages of the pipe-
line, Shapeshifter can be applied to the entire pipeline. Also, Shape-
shifter requires minimal additions to the pipeline because almost all
pipelines already support varying the clock speed for power man-
agement purposes. Our simulation results using SPEC2000 bench-
marks showed that while the previous variable-latency approach
achieves 4% performance improvement over clock binning, Shape-
shifter achieves a significantly better improvement of 11%.
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