
REACTIVE

ASSOCIATIVE

CACHES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Brannon Batson

In Partial Fulfillment of the

Requirements for the Degree

of

Masters of Science in Electrical Engineering

May 2000

- ii -
To my family

- iii -

ng

nk

rs of

hers,
ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Prof. T. N. Vijaykumar, for spending lo

hours in our common pursuit to make this project successful. I would also like to tha

Prof. Babak Falsafi and Prof. Cheng-Kok Koh for their invaluable service as membe

my advisory committee. I am grateful to have had all three of these professors as teac

advisors, mentors, and friends.

- iv -

..vi

..vii

.viii

..1
..2
....5
.....7
...10

1
..11
..12
..13
..14
.14
..16
.17
18
20

...21
22
23
24
TABLE OF CONTENTS

Page

LIST OF TABLES ..

LIST OF FIGURES ...

ABSTRACT...

CHAPTER 1. INTRODUCTION ..
1.1 Critical Path Analysis of Direct-Mapped and Set-Associative Caches
1.2 Multi-Probe Caches ...
1.3 Reactive Associative Caches ..
1.4 Thesis Roadmap ...

CHAPTER 2. REACTIVE ASSOCIATIVE CACHE ...1
2.1 Basic Organization ..

2.1.1 Data side...
2.1.2 Tag side ..
2.1.3 Cache miss ...
2.1.4 Probe0 hit latency..

2.2 Way Prediction ..
2.2.1 PC-based way-prediction ..
2.2.2 Access-prediction table and block way-number table
2.2.3 XOR-based way-prediction..

2.3 Selective Displacement and Feedback ...
2.3.1 Victim list: selective displacement...
2.3.2 Feedback with misprediction counters and the inhibit list...................
2.3.3 Uninhibiting to accommodate dynamic program behavior..................

- v -

7
..27
28
.28
..29
...30
..31
.32
.33
..34
..35
..35
..37

..41
.42
...44
...47
.49

.51

...53
Page

CHAPTER 3. QUALITATIVE COMPARISON..2
3.1 Issues Common to Multi-Probe Caches ..

3.1.1 Complications due to pipeline timing ..
3.1.2 Performance metrics ...

3.2 Statically-Probed Caches...
3.2.1 Hash-rehash cache...
3.2.2 Column-associative cache..
3.2.3 Sequential multicolumn cache ..
3.2.4 Parallel multicolumn cache...
3.2.5 Group-associative cache...

3.3 Dynamically-Probed Caches ...
3.3.1 Predictive sequential-associative cache..
3.3.2 Reactive-associative cache ...

CHAPTER 4. QUANTITATIVE ANALYSIS ...41
4.1 Hit time of the reactive-associative cache ...
4.2 Methodology...
4.3 Base performance of the reactive-associative cache.....................................
4.4 Comparison between the reactive-associative and prior schemes................
4.5 Effect of filtering and feedback on probe0 and overall miss rates

CHAPTER 5. CONCLUSIONS ...

REFERENCES ...

- vi -

...38

...42

....43

...44

.....46

..49

..50
LIST OF TABLES

Table Page

Table 3.1 Qualitative comparison of previous schemes and the r-a cache..................

Table 4.1 Cache hit times (ns)...

Table 4.2 Hardware parameters for base system..

Table 4.3 Benchmarks and inputs. ..

Table 4.4 Reactive-associative miss rates compared to set associative caches.........

Table 4.5 Initial probe (p0) and overall (ov) miss rates for various cache schemes. ...

Table 4.6 Effect of filtering and feedback on probe0 and overall miss rates

- vii -

.....3

.....4

.....8

...12

14

17

...19

..30

.31

.32

33

..36

....45

..47
LIST OF FIGURES

Figure Page

Figure 1.1: A direct-mapped cache..

Figure 1.2: A n-way set-associative cache...

Figure 1.3: A reactive associative cache ..

Figure 2.1: The reactive-associative cache. ...

Figure 2.2: Implementation of probe0 way# multiplexor. ..

Figure 2.3: Pipeline timing of way-prediction..

Figure 2.4: PC-based way-prediction structures..

Figure 3.1: Decision tree for the hash-rehash algorithm...

Figure 3.2: Decision tree for the column-associative algorithm..................................

Figure 3.3: Decision tree for a n-way sequential multicolumn cache (SMC)

Figure 3.4: Decision tree for a n-way parallel multicolumn cache (PMC)...................

Figure 3.5: Decision tree for a 2-way predictive sequential associative cache (PSA)

Figure 4.1: Base performance of the reactive-associative cache.

Figure 4.2: Comparison of reactive associativity to previous schemes

- viii -

hes.

 in

hierar-

rate.

s, set-

e (r-a

. The

array

r most

a way

naly-

cache

 Incor-

 array.

s,

cache

emes

s,

s and

ly

anism

ibit
ABSTRACT

Batson, Brannon. M.S.E.E., Purdue University, May, 2000. Reactive Associative Cac
Major Professor: Babak Falsafi.

The growing gap between processor speeds and memory speeds is resulting

increasingly expensive cache misses, underscoring the need for sophisticated cache

chy techniques. Increasing the associativity of the cache is one way to reduce its miss

While set-associative caches typically incur fewer misses than direct-mapped cache

associative caches have slower hit times. We propose the reactive associative cach

cache), which dynamically provides associativity in response to application demand

r-a cache employs a novel multi-probe organization which uses a direct-mapped data

and a set-associative tag array. It is accessed like a regular direct-mapped cache fo

accesses, but it also has the ability to be accessed like a set-associative cache (using

prediction), when it is necessary to alleviate direct-mapped line contention. Circuit a

sis indicates that a r-a cache has a hit latency comparable to that of a direct-mapped

for all direct-mapped accesses and all correctly predicted set-associative accesses.

rectly predicted set-associative accesses will incur an additional probe into the data

Prior multi-probe cache organizations have suffered from poor initial-probe miss rate

and therefore require many secondary probes, which increases average hit time and

demand for cache bandwidth over that of a direct-mapped cache. Furthermore, a r-a

does not require cache block swapping, as in statically-probed multi-probe cache sch

such as column associative and group associative. A r-a cache uses two mechanism

selective displacement and feedback, to reduce pressure on the prediction resource

achieve low initial-probe miss rates. Selective displacement refers to the notion of on

displacing conflicting cache blocks to set-associative positions. The feedback mech

allows the r-a cache to measure the ‘predictability’ of certain instructions and to proh

- ix -

y r-a

redic-

ped
associative displacement for unpredictable accesses. Simulations show that a 4-wa

cache, using modest prediction resources, will outperform column associative and p

tive sequential associative, as well as achieve 1%-11% speedups over a direct-map

cache on a subset of the SPEC95 benchmark suite.

- 1 -

ys-

teadily

eeds

 has

che

r (and

n

over-

cture.

vel

-chip,

e high

tion

ant

s (and

e are

cuit

from

ation,

ch

e opti-

s that

 hits).
1. INTRODUCTION

One of the fundamental limitations of the performance of modern computer s

tems is the rate at which memory requests can be serviced. While processors have s

improved in computational performance by several orders of magnitude, memory sp

have not kept pace. This rift, as well as the concept of locality of memory reference,

motivated the development of memory hierarchies, in which small and fast SRAM ca

memories are used to satisfy most requests. Successive levels of increasingly large

slower) caches are used to gradually insulate the nimble processor from slower mai

memory DRAMs. The direct relationship between memory system performance and

all system performance has made cache design a relevant issue in computer archite

The performance of the memory system is particularly important in the first le

of cache (L1) that is accessed by the cpu. In modern processors, the L1 cache is on

and split between an instruction cache (L1 icache) and a data cache (L1 dcache). Th

locality and regular access patterns of instruction streams have made the L1 instruc

cache perform relatively well, but the L1 data cache of most systems still is a signific

performance bottleneck. There are three major reasons that this is the case: (1) load

therefore data cache accesses) are in the critical path of program execution, so ther

few techniques which can hide the latency of a load operation; (2) for a variety of cir

reasons, it is difficult to increase the number of cache ports to satisfy all the requests

the processor; and (3) as the wire delays start to dominate intra-processor communic

the time to retrieve a cache block from the next level in the hierarchy is growing, whi

makes misses in the data cache increasing more expensive. In this thesis, we examin

mizations to improve the performance of the L1 data cache.

The traditional measures of a cache are its miss rate (the percent of accesse

are not satisfied by the cache), and the hit latency (the time it takes to service cache

- 2 -

omes

itical

the

h

 struc-

r than

k to

re-

 drastic.

roff,

s (on

he has

nately

 nec-

sti-

d

ta

 time

 direct-

hemes,

loser

use of

iefly

iative

d

f these

1.1
The miss rate indicates how often the next level in the hierarchy is accessed, so it bec

more important as the L2 access latency increases. The hit latency is often in the cr

(circuit) path of processor execution, so it can figure prominently in the clock cycle of

cpu. The simplest form of a L1 dcache is a direct-mapped organization, in which eac

cache block address is mapped to a single possible location in the cache array. This

ture allows for fast hit times, and also achieves respectable miss rates, usually lowe

15% for typical integer applications. Set associative caches allow a given cache bloc

reside in more than one place (way) within the array, which increases occupancy of

used data, and therefore decreases the miss rate. The decrease in miss rate can be

For a subset of the SPEC95 benchmark suite [1] (including vortex, gcc, li, perl, go, t

m88ksim, swim, and fpppp) with an 8k L1 dcache, a 2-way set associative cache ha

average) 32% fewer misses than a direct-mapped cache. A 4-way set-associative cac

41% fewer misses than a direct-mapped cache. This decrease in miss rate is unfortu

accompanied by an equally drastic increase in hit latency, due to the additional logic

essary to implement the associativity. Using the cache analysis tool CACTI [2], we e

mate that an 8k 2-way set associative cache is 53% slower than an 8k direct-mappe

cache. This creates a major trade-off between hit latency and miss rate in the L1 da

cache. In Section 1.1, we examine more closely the circuit issues that control the hit

of direct-mapped and associative caches. The large increase in hit latency between

mapped and a set-associative caches has motivated interest in multi-probe cache sc

which have a hit-latency close to that of a direct-mapped cache, but with miss rates c

to an associative cache. These schemes have failed to garner industry attention beca

fundamental problems with respect to performance and bandwidth utilization. We br

examine these issues in section 1.3. In section 1.4, we introduce the reactive assoc

cache, which addresses the major problems with multi-probe caches.

1.1 Critical Path Analysis of Direct-Mapped and Set-Associative Caches

In this section we will examine the circuit differences between a direct-mappe

and set-associative cache as it pertains to the access time of the cache. Knowledge o

differences is critical to understanding the components of cache access time. Figure

- 3 -

cache,

lay

rams

ys are

to

se a

ked

ntly

ble

ray

. As

h

lifiers

 the
and Figure 1.2 are generic representations of a direct-mapped and a set-associative

respectively. For the purposes of this discussion, we ignore the word multiplexing de

and the output drivers, as they are common to all organizations. Also, though our diag

do not indicate as much, both the set-associative and direct-mapped tag & data arra

subject to squaring optimizations, which optimize the width and height of the arrays

minimize the access delay. Furthermore, it is uncommon for today’s processors to u

single array larger than 8kb, so 16kb and larger data banks are, in general, sub-ban

(split into two or more smaller arrays). However, these sub-banks are not independe

accessible, and therefore act like a single array (caches with independently accessi

banks are referred to asmulti-banked, or simplybanked, caches). In this thesis, when we

speak of a single array or a single bank, we do so with the understanding that the ar

may be sub-banked, but acts as though it were a single array.

In the direct-mapped cache (Figure 1.1), each set holds a single cache block

soon as the address becomes available, the appropriate word line is activated, whic

causes the bitlines take on the value stored within that cache block. The sense amp

detect transitions in the bitlines and immediately make this cache block available on

column muxes & sense amps

Word
Lines

Address
Decoder

TAG INDEX
Cache Block Address

TAG SIDE DATA SIDE

tag
compare

column muxes & sense amps

Hit/Miss Output Data Bus

Fig. 1.1. A direct-mapped cache

- 4 -

ed to

f the

e hit.

cache

 this

o

s to

xcept

tion.

rdline

e val-
output data bus. In parallel with the data cache probe, the tag array is similarly access

provide the tag of the stored cache block. This stored tag is compared to the tag bits o

original address, and if they match, the Hit/Miss signal is asserted to indicate a cach

By the time the hit is signalled, the data bus should already contain the value of the

block (as the critical path is, in general, through the tag path). As mentioned earlier,

organization allows for extremely fast access times, which in turn enables fast clock

cycles. However, because each address maps to exactly one line in the cache, no tw

addresses with the same set bits can reside in the cache at the same time. This leadhot

spots(frames with high line contention), which cause thrashing, andholes(under utilized

cache lines), which waste cache space.

The set-associative cache (Figure 1.2) works in a somewhat similar manner, e

that multiple cache blocks can reside in a single set, which alleviates most line conten

When the address becomes available, the appropriate wordline is activated. This wo

is shared by each associative way-bank. In each way-bank, the bitlines will take on th

Word
Lines

Address
Decoder

TAG INDEX
Cache Block Address

Hit/Miss

TAG SIDE DATA SIDE

Way 0 Way 1 Way n-1 Way 0 Way 1 Way n-1

Output Way Multiplexor

Output Data Bus

tag
compare

tag
compare

tag
compare

column muxes
and sense amps

Fig. 1.2. A n-way set-associative cache

- 5 -

s on

The

ache

obed

ed

o gener-

lines

 out-

dition

te the

 to

s typi-

 tag

-asso-

crease

tive

acies

ped

ncies,

rea

y to

es

ache

the
ues of the cache block stored in that way. The sense amplifiers will detect transition

the bitlines and produce logic level values at the inputs to the output way multiplexor.

tag array is also divided into separate way banks, holding the tag information for the c

blocks in corresponding ways of the data array. Each way bank in the tag array is pr

in parallel to produce inputs to the n tag comparators (which will compare these stor

tags to the tag bits of the address). The results of these tag comparisons are used t

ate the select lines for the output way multiplexor on the data side. Once these select

are available, the output way multiplexor will output the correct cache block onto the

put data bus. The set associative cache introduces significant critical path delay in ad

to the delays associated with a direct-mapped cache: (1) The time it takes to propaga

way select lines from the tag comparators to the output multiplexor, and (2) The time

switch the multiplexor and provide the results on the data bus. Note that the data bu

cally carries a large RC load, and while the evaluation on this bus is overlapped with

compare in a direct-mapped cache, it is in the critical path of cache access for a set

ciative cache. Thus, a set-associative cache can be expected to have a significant in

in hit latency over a direct-mapped cache. This has lead designers to explore alterna

associative organizations, such as multi-probe caches. Further discussion of the intric

of tag and data-side cache timing can be found in [3].

1.2 Multi-Probe Caches

The large increase in hit latency of a set-associative cache over a direct-map

cache has motivated research in alternative caches that have direct-mapped hit late

but with increased associativity to allow for lower miss rates. Most research in this a

has been in what we refer to collectively asmulti-probe caches. The initial concept behind

these organizations is to maintain a direct-mapped type cache, but provide the abilit

sequentially probe different locations within the cache, and therefore allow any given

cache block to be placed in multiple locations. While multi-probe schemes allow for

direct-mapped hit latencies on the initial probe into the cache, any subsequent prob

require one or more additional cycles of hit latency, as well as stalling access to the c

by other memory operations. In this thesis, we will refer to the initial probe as probe0,

- 6 -

n a

).

 as

uen-

in

 to

h limi-

l-

e. The

oca-

. To

found

uitry

ghly

two

rage

ith

ect-

dic-

ay-

s the

tial

 PSA

redic-

onflict

ictor.

antly
subsequent probe as probe1, and so on. Most multi-probe organizations will check i

static location on the initial probe into the cache (usually the direct-mapped location

These organizations are referred to asstatically-probed caches. We refer to caches that

employ way-predictors (i.e. probe0 is not necessarily to the direct-mapped location)

dynamically-probed caches.

Statically-probed caches include hash-rehash [4], column-associative [5], seq

tial & parallel multicolumn [6], and group-associative [7]. In Section 3, we will analyze

detail the differences between these organizations. At this point, however, it suffices

point out the fundamental problems shared by all statically-probed caches. One suc

tation is that since the initial probe is always to the direct-mapped location, the initia

probe miss rate is always at least as large as the miss-rate of a direct-mapped cach

probe0 miss rate increases as more blocks are displaced from their direct-mapped l

tions, as there are fewer blocks that can be reached on the first probe into the cache

decrease the probe0 miss rate, all of the statically-probed caches will swap a block

on a subsequent probe with the direct-mapped location. Unfortunately, dedicated circ

to support cache block swapping is impractical for caches, which use regular and hi

optimized circuitry. A modest implementation of cache block swapping would require

reads and two writes (using an extra intermediate cache block), which increases ave

hit time and degrades valuable L1 bandwidth. Furthermore, we will show that even w

cache block swapping, the initial-probe miss rate is still nominally larger than the dir

mapped miss rate.

To increase the probability of a first probe hit without block swapping, the pre

tive sequential associative cache [8] (PSA cache) proposed using way-prediction. W

prediction has been previously used for low-power purposes in icaches [9], but PSA i

first attempt to apply it to dcaches to create a low-latency multi-probe cache. The ini

probe can hit in any way in the set as long as the way-prediction is correct. Thus the

cache’s probe0 miss rate is dependent only on the prediction accuracy of the way-p

tor. The PSA cache predicts all accesses, even those that would have not produced c

misses in a direct-mapped cache, and without regard to the performance of the pred

Therefore, the PSA cache has poor initial-probe miss rates, which are usually signific

- 7 -

alled

rm

ive

both

not

ictive

tion.

ch

t of a

 con-

 probe

n the

 of a

asso-

re

y of

 side.

e each

paral-

ed

n line

posi-

ws

r it is
worse than direct-mapped miss rates. Each probe0 miss requires the cache to be st

until probe1 completes. This can actually cause a system with a PSA cache to perfo

worse than one with a direct-mapped cache, if there is limited L1 bandwidth. Predict

sequential associative and reactive-associative, which we introduce in this thesis, are

considered dynamically-probed caches.

1.3 Reactive Associative Caches

Statically-probed caches have been around for nearly fifteen years, but have

gained industry acceptance, due to the requirement for cache block swapping. Pred

sequential associative is similarly fated, due to its heavy increase in bandwidth utiliza

We suggest a new dynamically-probed scheme called reactive-associative (r-a), whi

does not require cache block swapping, and has a bandwidth demand similar to tha

direct-mapped cache.

The r-a cache employs a novel organization in which the data array is direct-

mapped, but the tag array is set-associative (as shown in Figure 1.3). The data side

tains a single data array, like in a direct-mapped cache, which can support only one

at a time. The data side does not require tag match information from the tag array o

initial probe, and therefore the critical path though the data side is equivalent to that

direct-mapped cache. The tag side contains equivalent logic to the tag side of a set-

ciative cache (Figure 1.2). Specifically, the tag array is divided into way banks that a

probed in parallel for a given set (from the cache block address). The critical-path dela

the tag side of a set-associative cache is comparable to that of a direct-mapped tag

This is because the set-associative tag array contains two or more way banks that ar

smaller and faster than a direct-mapped tag array; since the way banks are probed in

lel, the tag array of an associative cache is actually faster than that of a direct-mapp

cache, which offsets the increase in other logic.

Most accesses proceed just as though it were a direct-mapped cache, but whe

contention is detected, the appropriate cache bocks are placed into set-associative

tions. The initial probe location is controlled by a way selection multiplexor, which allo

either the direct-mapped way or a way prediction to be selected depending on whethe

- 8 -

et-asso-

e ini-

be

addi-

array

t this

I.

ura-

ptimi-

etry

 the

ional
a direct-mapped or set-associative access, respectively. The advantage of using a s

ciative tag array is that the location of the cache block is determined by the end of th

tial cache probe, which simplifies pipeline timing, requires at most one additional pro

on a probe0 miss (even for highly associative r-a caches), and eliminates superfluous

tional probes if the block is not in the cache. The idea of using a set-associative tag

with a direct-mapped data array was proposed initially in [6]. However, we show tha

is actually a feasible alternative by performing critical path circuit analysis with CACT

As can be seen in Figure 1.3, the reactive-associative cache is asymmetric in config

tion. However, cache designers routinely apply separate squaring and sub-banking o

zations to tag and data arrays, so architectural symmetry rarely maps to circuit symm

even for traditional direct-mapped or set-associative caches. It is for this reason that

asymmetrical organization of the reactive-associative cache is unlikely to create addit

floor planning problems.

column muxes & sense amps

Word
Lines

Address
Decoder

Set Associative TAGSet Associative INDEX
Cache Block Address

Overall Hit/Miss

TAG SIDE DATA SIDE

Way 0 Way 1 Way n-1

tag
compare

tag
compare

tag
compare

column muxes
and sense amps

Output Data Bus

Probe0 Hit/Miss

Fig. 1.3. A reactive associative cache

predicted
way #

direct mapped
way #

way
sel

way
sel

- 9 -

ache

. In

 hit

ciative

as per-

most

 set-

allel).

from

 (and

so-

g

dic-

ing

r-a

-

o

s-

rlier

offset

iminat-

tate

. This

dic-

, in

uce
Since the data output path is decoupled from the tag comparison path, the r-a c

can support initial probe hit latencies comparable to those of a direct-mapped cache

Section 4.1, we show that for 16k and larger cache sizes, the difference between the

latency of a r-a cache and a direct-mapped cache is less than 0.8%. Using a set-asso

tag array does not impact hit time, in general, because a set-associative tag array h

formance comparable to that of a direct-mapped tag array (as mentioned earlier, in

cases, a set-associative tag array is faster than a direct-mapped tag array, since the

associative array is divided into smaller and faster way banks that are probed in par

While the organization of the r-a cache is interesting, the true novelty comes

the displacement/prediction subsystems. The r-a cache will only displace conflicting

blocks to set associative positions, therefore relieving what would be line contention

thrashing) in a direct-mapped cache. Conflicting cache blocks are detected using a

called victim list, which tracks recent L1 dcache misses. By only displacing conflictin

blocks, we relieve pressure on the way-predictor, which now must only track way pre

tion information for displaced (contentious) cache blocks. The notion of only displac

certain blocks is referred to asselective displacement. Furthermore, we determined that in

each application, there are a group of instructions that have poor predictability. The

cache employs afeedback mechanism which will measure the dynamic prediction accu

racy per individual (or groups of) instructions. Instructions with poor predictability are

prohibited from accessing displaced cache blocks (i.e. the cache blocks are forced t

reside in their direct-mapped positions). By limiting the candidates for associative di

placement, the r-a cache will have a higher overall miss rate, in general, than the ea

multi-probe cache schemes. However, this performance disadvantage is more than

by the increased performance due to have a much lower probe0 miss rate and by el

ing the need for costly block swapping.

The way predictor uses a prediction handle, which is some function of system s

that correlates to data access patterns, and is available prior to the effective address

prediction handle is used to index into a prediction table, which allows for a way pre

tion. Predictive sequential associative recommended the use of XOR way prediction

which the source register contents are logically XORed with the offset value, to prod

- 10 -

ich

gical

all in

hich

., the

he

risk

he

ts.

. The

ile

hen

cache

ions

f pre-

che,

 when

, we

inst

ection
an approximation of the data address (this is similar in flavor to zero-cycle loads, wh

were proposed in [10]). Unfortunately, it is unlikely that this method could be used

because of the strict timing constraints of cache accesses. For XOR prediction, the lo

operation would have to be performed, and a way prediction table lookup completed,

the time of a normal address computation. For r-a, we suggest using PC prediction, w

is a weaker prediction handle that correlates the address of the memory operation (i.e

PC value) to the way prediction. Since the PC is available many cycles earlier than t

memory request is dispatched, there is plenty of time for table lookups, and there is no

of compromising the critical path of cache accesses.

We evaluated the performance of several multi-probe caches on a subset of t

SPEC95 benchmark suite including applications of varying associativity requiremen

For these benchmarks, the geometric mean of the direct-mapped miss rates is 7.9%

initial probe miss-rate mean for the PSA cache (using XOR prediction) is 16.6%, wh

the initial probe miss-rate mean for the r-a cache (using XOR prediction) is 7.3%. W

using the more implementable, but somewhat weaker, PC prediction scheme, the r-a

achieves a respectable initial-probe miss rate mean of 8.7%. Execution time simulat

with these benchmarks show that a 4-way associative r-a cache, using 1184 bytes o

diction storage, achieves 1%-11% speedups over a system with a direct-mapped ca

and 1%-7% speedups over a system with a predictive sequential associative cache,

the bandwidth to the L1 dcache is limited.

1.4 Thesis Roadmap

In Section 2, we develop the reactive associative cache in detail. In Section 3

describe the other multi-probe cache schemes, and do a qualitative comparison aga

reactive associative. In Section 4 we provide a thorough performance analysis using

SPEC95 benchmarks on an out of order simulator. We present our conclusions in S

5.

- 11 -

ed

at

a

tion at

ted

ks

d

y, as

e 2.1.

t either

ion

 the

d to be

is pre-

lock

llel

d of

che

e1)

forma-

t the
2. REACTIVE ASSOCIATIVE CACHE

The r-a cache employs a physical organization similar to that of a direct-mapp

cache, but allows cache blocks to reside in set-associative positions. Only blocks th

cause persistent conflict misses are displaced. Low hit latency is achieved by using

direct-mapped data path. Since a direct-mapped data array can probe only one loca

a time, associative cache blocks are found using a way prediction. Incorrectly predic

associative accesses will require an additional probe into the data array. Cache bloc

residing in their direct-mapped positions can be found via conventional direct-mappe

indexing, without the need for a way prediction.

2.1 Basic Organization

The r-a cache uses a set-associative tag array and a direct-mapped data arra

can be seen in Figure 1.3. A more conceptual view of the cache can be seen in Figur

The r-a cache simultaneously accesses the tag and data arrays for the first probe, a

the direct-mapped location or a set-associative position provided by the way-predict

mechanism. If the first probe hits, the access is complete and the data is returned to

processor. A probe0 miss occurs for one of three reasons: (1) the access is predicte

direct-mapped, but the block is actually in a set-associative position, (2) the access

dicted to be set-associative, but the way-prediction provided is incorrect, or (3) the b

is not resident in the cache at all. Since the tags for all the ways are checked in para

during probe0, the actual location of the cache block is correctly determined by the en

probe0, even if the initial prediction is incorrect. Therefore, on a probe0 miss, the ca

block can be retrieved from the correct way with only one additional probe (called prob

into the data array. The tag array would not need to be accessed again, as the tag in

tion was verified during the initial probe (therefore, an overall hit signal is generated a

- 12 -

che

ith an

)

t-asso-

d (3)

data

way

 to a
end of probe0, just like in a conventional cache). Of course, if the block is not in the ca

at all, then this additional probe is unnecessary, and we can proceed immediately w

L2 cache access.

Thus there are three possible paths through the cache for a given address: (1

probe0 is predicted to be a direct-mapped access, (2) probe0 is predicted to be a se

ciative access and the prediction mechanism provides the predicted way-number, an

probe0 is mispredicted but obtains the correct way-number from the tag array, and the

array is probed with the correct position in probe1.

2.1.1 Data side

The data side of a conventional n-way set-associative cache (Figure 1.2) has n

banks, each of which is a separate array. The r-a cache uses one data bank, similar

Fig. 2.1. The reactive-associative cache.

tag set-associative indexblock offset

v tag v tag

probe0-hit

==? ==?

predicted way number

probe0 way# mux

probe0 d-m/
probe0 predicted/

encoder

probe1?

set

direct-mapped

probe1-hit

 address

way number

data array

tag array

concat

way #i

way #0

way #n-1

cache block

probe1

way #0 way #n-1

way#

probe0 hit mux

- 13 -

ining

aring

ad out

socia-

s cor-

er

ssocia-

tion

nated

e

way-

obe1.

ive

tag

quent

 &

ny tag

e

ay is

llel.

/Miss

that

robe0

, and
direct-mapped cache (Figure 1.1). This single data array may be thought of as conta

the traditional data bank for each set-associative way, placed one below another, sh

bit lines (see Figure 1.3). Thus, the blocks belonging to a set in the r-a cache are spre

in the data array, placed at a stride equal to the number of sets in a traditional set-as

tive cache (Figure 2.1).

To index into the data array for probe0 direct-mapped accesses, the index bit

responding to a conventional set-associative cache are concatenated with a few low

order bits from the conventional set-associative tag field, called thedirect-mapped way

number for the address. For probe0 set-associative accesses, the conventional set-a

tive index is concatenated with the predicted way number provided by the way-predic

mechanism. For probe1 accesses, the conventional set-associative index is concate

with the correct way-number obtained during probe0. Thus, the set is identified by th

conventional set-associative index, but the block within the set is determined by the

number output of the multiplexorprobe0 way# mux, as shown in Figure 2.1. The select

input to the multiplexor is set to probe0 direct-mapped, probe0 set-associative, or pr

The select forprobe0 way# mux is set to probe0 direct-mapped or probe0 set-associat

by the way prediction hardware prior to the initial probe. If probe0 fails (but there is a

match in an alternate way during probe0), then the mux is set to probe1 for the subse

cache access, so that the correct way will be supplied to index the data array.

2.1.2 Tag side

The r-a cache tag side is similar to that of a set-associative cache (Figure 1.2

Figure 1.3). Much like conventional set-associative caches, the r-a cache uses as ma

banks in the tag array as the associativity of the cache, with each entry containing th

usual valid and other state bits and the conventional set-associative tag. The tag arr

accessed using the conventional set-associative index, probing all the banks in para

The difference between the r-a tag side and the set-associative tag side is in the Hit

signals that are generated. Both will generate an overall hit signal (that will indicate

the cache block is resident in any of the n ways), but the r-a cache also generates a p

hit signal. The probe0 hit signal indicates that the cache block is indeed in the cache

- 14 -

l hit

ulti-

ay

ed to

es not

h is

lly is

nti-

so-

nal

r than

socia-

e

ilable.
the initial probe prediction was accurate. If the probe0 hit signal is low, and the overal

signal is high, then a probe1 must be performed. The probe0 hit signal is created by m

plexing (byprobe0 hit mux) the tag match signal generated by the comparator for the w

number of the initial data probe, as in Figure 2.1.

Although the r-a cache uses prediction to probe the data array, data is return

the processor only after ascertaining that the prediction is correctso there is no increase

in speculation over a system with a direct-mapped cache. However, the r-a cache do

preclude optimistically returning the data before the tag match is confirmed [11], whic

not possible in a conventional set-associative cache.

2.1.3 Cache miss

On an overall miss, the cache block is retrieved from the L2 cache, and usua

placed in its direct-mapped location in L1. However, if the cache block address is ide

fied as avictim (a persistently conflicting cache block), then it will be placed into an as

ciative position. The associative position can be selected using any of the conventio

replacement algorithms such as LRU, random, etc.

2.1.4 Probe0 hit latency

As discussed in Section 1.1, set-associative caches are fundamentally slowe

direct-mapped caches. However, our critical path analysis indicates that a reactive as

tive cache is comparable in speed to a direct-mapped cache for the initial probe, if w

assume that the prediction information is available prior to the cache access. In

Section 2.2, we show how way-prediction can be done before the data address is ava

probe0 way# muxprobe0 d-m/
probe0 predicted/
probe1?

probe1 way#

direct-mapped

predicted
probe0 way#

probe0 way#

probe0 d-m/
probe0 predicted/
probe1?

on
e-

ho
t e

nc
od

in
g

one level of
pass gates

predicted
probe0

probe1

way #
way#

Fig. 2.2. Implementation of probe0 way# multiplexor.

d-m
probe0
way#

- 15 -

intro-

 set-

robe0

than

circuit-

gnal

t the

al

one-

ed

to that

se the

h also

apped

dress

 cycle

 set-

m all

way-

tional

t-
Compared to a conventional direct-mapped cache of equal size, the r-a cache

duces the extra multiplexorprobe0 way# muxin the data array index path (Figure 2.1).

Note that this multiplexor always chooses one out of three inputs, irrespective of the

associativity of the r-a cache. The multiplexor select signal to choose between the p

direct-mapped, probe0 way-predicted, and probe1 way numbers is available earlier

the data address because the signal comes from the way-prediction mechanism. A

level optimization to exploit this fact is to generate a one-hot encoding of the select si

to set up the multiplexor select path well before the data address is available, so tha

multiplexor adds only its propagation delay, and not any delay due to the select sign

itself, to the data array index path.

Probe0 way# muxcan be implemented as a single level of pass gates using the

hot encoding of the select signal, as shown in Figure 2.2. In the case of direct-mapp

probe0, the data array index path propagates through one extra pass gate, compared

of a conventional direct-mapped cache. In the case of way-predicted probe0, becau

predicted way number is available earlier than the address, the data array index pat

propagates through one extra pass gate, compared to that of a conventional direct-m

cache. Some or all of this pass gate delay may be further folded into the data array ad

decode tree or the address-compute pipeline stage. Probe1 may incur a whole extra

to account for theprobe1 way# encoder(Figure 2.1) and the pass gate.

The tag side does not incur any extra delay because it uses the conventional

associative index directly from the address and not throughprobe0 way# mux (Figure 2.1).

Using the multiplexorprobe0 hit mux(Figure 2.1), the probe0 hit signal is generated by

selecting the tag match for the probe0 way-number from among the tag matches fro

the banks of the tag array. Note that the probe0 way-number (either direct-mapped

number or predicted probe0 way-numbers) is the select forprobe0 hit mux,and is avail-

able no later than the address. While the tag array is being accessed with the conven

set-associative index, the probe0 way-number is sent, in parallel, toprobe0 hit muxselect.

A one-hot encoding of this select input toprobe0 hit muxallows the multiplexor select

path to be set up well before the tag match signals reachprobe0 hit mux. Thus, the probe0-

hit signal incurs extra delay of only one pass gate, compared to a conventional direc

- 16 -

ch

cache.

m-

s a

must

 the

e dis-

hit

rict

ra-

 with

h-

ion

ss

d

 pre-

an

pos-

on.

ing

cause

allel

ay-

m-
mapped cache hit signal. Assuming that the select lines forprobe0 hit mux& probe0 way#

mux are set up early, as we mentioned earlier, there are no additional transistor swit

delays in the critical path of the probe0 access in excess of those in a direct-mapped

The overall-hit signal (probe1 hit signal) incurs extra delay of one OR gate, co

pared to a conventional direct-mapped cache hit signal.

2.2 Way Prediction

For each access to an r-a cache, there must be a prediction as to whether it i

direct-mapped or a set-associative access. If it is a set-associative access, we also

predict the associative way that the block is in. Perhaps confusingly, we refer to both

above predictions as being performed by the way prediction hardware. In the hit tim

cussion above (Section 2.1.4), we indicated that the r-a cache has a direct-mapped

latency if the way predictions are available prior to the cache access. Clearly, this st

timing constraint limits the possible prediction criteria to those available prior to gene

tion of the cache block address. Icache way-prediction techniques can be combined

branch prediction, but dcaches do not interact directly with control flow, so those tec

niques cannot be used directly.

We examine two handles that can be used to perform way prediction: instruct

PC of the memory reference; and XOR, which is an approximation of the data addre

formed by XORing the register value with the instruction offset (proposed in [10], an

used in [8]). These two handles represent the two extremes of the trade-off between

diction accuracy and early availability in the pipeline. PC is available much earlier th

the XOR approximation but the XOR approximation is more accurate because it is im

sible for PC to disambiguate different data addresses touched by the same instructi

Other sources for way-prediction are possible, some of which are explored in [8].

Figure 2.3 shows a generic out-of-order processor pipeline and the pipeline tim

of both PC-based and XOR-based way-prediction with respect to cache access. Be

the instruction PC is available early in the pipeline, way-prediction can be done in par

with the pipeline front end processing of memory instructions so that the predicted w

number andprobe0 way# mux select input are ready well before the data address is co

- 17 -

often

that

tion

m

at the

e

che

y of

sm

s with

ock
puted. The XOR scheme would require obtaining the contents of a physical register (

obtained from a register-forwarding path), performing the bitwise XOR operation on

value with the offset, and using the result to index into a prediction table. The predic

table entry will then provide the way prediction for cache access. This entire algorith

must complete within the time to compute a full add (for the address computation) to

avoid delaying cache access. Note that the prediction table must have more entries th

L1 dcache, or must be highly associative, since the XORed values will experience th

same line contention problems in the prediction table as their counterparts do in the

dcache. Thus, the prediction table alone will have a significant access time.

2.2.1 PC-based way-prediction

PC-based way-prediction tracks memory access behavior to associate the ca

blocks with the PCs of the instructions that access the blocks, by exploiting the localit

reference within one cache block on a per-instruction basis. The prediction mechani

tracks the instructions that access displaced blocks and associates the instruction PC

the way-number of the displaced blocks. If the instruction accesses the displaced bl

Fig. 2.3. Pipeline timing of way-prediction.

fetch decode reg

rename

dispatch issue execute retire

APT/

access

BWT

access

inhibit

way-prediction information/

predicted way-number,probe0 way# mux select

PC

loads/
stores

PC-based way prediction

listPC
Scheme

XOR
Scheme

cache

access

compute reg XOR offset

CPU
Pipeline

address

compute

cache

access

XOR-based way prediction

lookup way-prediction

predicted way-number,
probe0 way# mux select

- 18 -

re-

This

 a glo-

ion

 an

ck

an

 by

and

ons.

xed

a

oor

the

on-

ced

at it

ion

Thus

flict-

ng

tions

sit

 way-
again (i.e., the instruction exhibits locality of reference within the cache block), the p

diction mechanism returns the associated way-number, which results in a probe0 hit.

kind of locality can be expected from (1) an instruction that accesses the same data

throughout program execution, such as an instruction accessing static globals using

bal pointer register (e.g., register $29 in MIPS, register $30 in Alpha), (2) an instruct

that accesses the same data for a period of time during program execution, such as

instruction accessing stack frame variables within a function invocation using the sta

pointer (the stack pointer changes infrequently within a function invocation), and (3)

instruction that accesses the different words in a cache block, such as an instruction

accessing successive array elements within a cache block.

2.2.2 Access-prediction table and block way-number table

Figure 2.4 depicts the way-prediction scheme showing all the structures used

the mechanism. At this point in the discussion, only the access-prediction table (APT)

the block way-number table (BWT) are of interest, as they perform the actual predicti

A naive implementation of a PC-based prediction might use a single array, inde

by PC, which provides a way prediction for that instruction. However, we found that

direct correlation from PC to way is problematic (as we describe below) and yields p

prediction accuracy. We solve the major problems with a level of indirection through

APT.

When a block is displaced to a set-associative position, it may cause further c

flicts, in which case it is replaced from the cache. The r-a cache places a block repla

from a set-associative position into the block’s direct-mapped position, anticipating th

may not conflict anymore. If the block continues to conflict in its direct-mapped posit

then the block is displaced to another, presumably different, set-associative position.

a conflicting block may transit through a few positions before settling into a non-con

ing position. During this transition, the way-number of the block is constantly changi

and unless way-prediction is updated with the correct way-number, many mispredic

will ensue. If multiple instructions access the same block, problems due to block tran

are exacerbated because each of these instructions incurs a misprediction. Because

- 19 -

 is dif-

n

 the

T),

tries

lock

t way-

rrect

plied

PT,

 is

e

d

prediction maps PCs to way-numbers, and not the other way, updating way-number

ficult, since there is no inverse mapping into the array.

Adding one level of indirection solves the block transit problem. The instructio

PCs are associated with the block address, and not the way-number of the block, in

access-prediction table (APT). A second table, called the block way-number table (BW

is used to associate the block address with the way-number of the block. Multiple en

in the APT may hold the same block address, but there is only one BWT entry per b

address. Using the block address, transiting blocks update the BWT with the correc

number, enabling all the instructions that access the same block again to get the co

way-number. Through the APT, the r-a cache exploits locality of reference within one

cache block on a per-instruction basis.

The APT is accessed using the instruction PC, and then the block address sup

by the APT entry is used to access the BWT. If the instruction PC is not found in the A

or if the block address supplied by the APT is not found in the BWT, then the access

predicted to be direct-mapped. If the appropriate entries are found in the APT and th

BWT, then the way-number from the BWT entry is sent to the cache as the predicte

Fig. 2.4. PC-based way-prediction structures.

instruction PC

block address way #mispred

access prediction block way-number

block address

predicted way-numbercorrect prediction: --
incorrect prediction: ++

L1 cache fill from L2;

inhibit list

displace? victim miss counter = 0

victim list

miss counter replacement from L1

for probe0 L1 access

table (APT) table (BWT)

counter

miss counter++

- 20 -

k

the

ks,

nsfer

the

, the

.

s are

T

truly

 the

t

tch-

ag stor-

ion

nd

finds

and

his

o that

tes

, the

e, does
probe0 way-number. The BWT is also accessed on a L1 cache fill, so that if the bloc

being retrieved is found in the BWT, the way-number is updated; this update keeps

way-prediction accuracy high for blocks in transit.

Because the APT has to hold only the instructions that access displaced bloc

small size may suffice. However, the table should be associative, so that we don’t tra

instruction line contention problems to data cache performance. Similar to the APT,

BWT has to hold the way-numbers of only the displaced blocks. Because displaced

blocks, by definition, conflict in the cache and the BWT uses block addresses to index

BWT may need to be large or highly associative (or use a skewing function to index)

Conflicts in the BWT cause mispredictions because way-numbers of displaced block

lost when BWT entries get replaced, and when the APT does not find a matching BW

entry, the APT predicts a direct-mapped access, which results in mispredictions for

displaced blocks. But because both the APT and the BWT access are well ahead of

cache access in the pipeline (Figure 2.3), high associativity of the APT or BWT is no

likely to delay probe0 initiation.

Much like a cache, each APT and BWT entry requires a tag to identify the ma

ing PC and block address, respectively. The tags can be compressed to reduce the t

age overhead. This compression involves performing a simple, bit-wise logical funct

on the original tag bits, allowing for high accuracy, but with modest tag overhead.

2.2.3 XOR-based way-prediction

XOR-based way prediction is similar, in flavor, to the idea proposed in [10], a

subsequently used for way-prediction in the PSA cache. As mentioned earlier, XOR

a way prediction by performing a bitwise XOR on the offset and source register value

using the result to index into a prediction table, all during the address computation. T

scheme exploits the fact that most memory instructions have small enough offsets s

the block address from the XOR approximation is usually same as or at least correla

well with the block address from the actual data address.

Because the XOR scheme does not use instructions as the prediction handle

scheme does not need a level of indirection used in the PC-based scheme, and henc

- 21 -

d of

ing the

 the

ate

uire-

cussed

 PC

iss

cause

all hit

robe

r this

, caus-

, a sub-

1-

 con-

ct-

mber

 XOR-

ose

ge

cks

ispre-
not use the APT. The XOR scheme uses the BWT indexed by the XOR value, instea

the block address supplied by the APT of the PC scheme. The other key difference

between the XOR and PC schemes is that the XOR scheme accesses the BWT dur

late address-compute pipeline stage, whereas the PC scheme accesses the BWT in

early instruction-decode pipeline stage. While the XOR scheme may be more accur

than the PC scheme, this late access may cause the timing problems discussed in

Section 2.2, further exacerbated because of BWT’s high associativity or large size req

ments (the PSA paper suggests 1024 entries for 256 blocks in the L1 cache), as dis

in the previous section. Otherwise, the XOR scheme’s BWT behaves identical to the

scheme’s BWT.

2.3 Selective Displacement and Feedback

While displacing conflicting blocks reduces overall misses, the initial-probe m

rate typically suffers due to increased pressure on the way-prediction mechanism. Be

mispredictions result in a second data array access (if the block is in the cache), over

latency and bandwidth to the processor may be noticeably deteriorated if the initial-p

miss rate is significantly higher than the direct-mapped miss rate. The main reason fo

degradation is that probe1 hits occupy the data array for extra cycles beyond probe0

ing subsequent cache accesses to queue in the load/store queue. In the worst case

stantial fraction of all L1 hits may be from probe1, considerably degrading valuable L

processor bandwidth.

Because way-prediction has to use inexact information due to pipeline timing

straints, it is difficult to build a perfect (100%) way predictor. Therefore, the r-a cache

attempts to reduce the number of accesses it predicts, so that either data is in a dire

mapped position or is highly-predictable in a set-associative position, keeping the nu

of mispredictions to an acceptable amount. Regardless of whether the PC-based or

based way-prediction scheme is used, the r-a cache (1) selectively displaces only th

blocks that frequently conflict, avoiding prediction accuracy degradation due to a lar

number of displaced blocks, (2) tracks prediction accuracy so that unpredictable blo

are redisplaced from set-associative to direct-mapped positions, avoiding repeated m

- 22 -

ive

obust-

and.

s.

set of

of a

ted in

e

, the

lock

d the

iction

vic-

 L1

s-

s criti-

not

the

e the
dictions and (3) disallows unpredictable blocks from being displaced to set-associat

positions using a feedback mechanism. Thus, the r-a cache achieves performance r

ness by trading-off overall hit rate for first probe hit rate, and lowering bandwidth dem

2.3.1 Victim list: selective displacement

Ideally, the r-a cache would displace only conflicting blocks to set-associative

positions; in a real implementation, it is difficult to isolate capacity and conflict misse

Consequently, the r-a cache approximates isolation of conflict misses by tracking the

recently replaced blocks in a table called the victim list. Each victim list entry consists

block address and a saturating counter. The block address of a missing block is inser

the victim list and the corresponding counter, which counts the number of misses th

block has incurred in the past, is incremented. After the block is replaced a few times

victim list counter reaches saturation, signaling a conflicting block; the next time the b

is brought back into the cache, the block is displaced to a set-associative position, an

victim counter is reset. Thus, the victim list approximates identification of conflicting

blocks, enabling the r-a cache to displace only those blocks, irrespective of the pred

scheme used.

The victim list needs to be a high-associative structure to avoid conflicts in the

tim list itself. The victim list is indexed using block addresses whenever a block is

replaced from the cache and whenever a L1 cache fill is encountered, as shown in

Figure 2.4. L1 cache misses insert the missing block address into the victim list and

cache fills lookup the victim list to determine whether the missing block should be di

placed to a set-associative position. Because the victim list is not on the cache acces

cal path but only in the replacement path, the high associativity of the victim list will

impact hit latency. The victim list need not be implemented as a separate structure,

miss counters could be placed in the L2 tag array; this implementation would increas

L2 size by less than 0.5%.

- 23 -

avior,

ks that

, then

and-

sys-

ns

ctions.

esi-

for

 a cor-

 pro-

unter

other

gle

iction

truc-

tive

he

.e.,

hibit

s it

ith

tate

-

the
2.3.2 Feedback with misprediction counters and the inhibit list

There are some memory instructions that have unpredictable data access beh

regardless of whether the PC-based or XOR-based scheme is used. If the cache bloc

these unpredictable instructions act on are permitted to reside in associative positions

they will incur many initial probe misses. A high initial probe miss-rate causes high b

width utilization, which can actually hurt system performance on a bandwidth limited

tem. The solution to this problem is to track the way prediction accuracy of instructio

that act on associative data, and to disable associative displacement for these instru

Way prediction accuracy is tracked using saturating misprediction counters, r

dent in each entry of the BWT (Figure 2.4). When the BWT provides a way-prediction

an associative access, the misprediction counter is incremented or decremented for

rect or incorrect prediction, respectively. When accesses to a particular cache block

duce repeated initial probe misses due to mispredictions, the BWT misprediction co

for that block saturates at a threshold, referred to as theinhibit threshold. At this point, any

instruction that acts on this cache block is labeled as unpredictable. Here we see an

benefit to the level of indirection through the APT for PC-based prediction (see

Section 2.2.2), namely that all instructions that act on a single datum will share a sin

misprediction counter. Since the misprediction counter is incremented on a mispred

and decremented on a correct prediction, the group prediction behavior of all the ins

tions is measured. This prevents one unpredictable instruction from limiting associa

displacement when several other instructions are able to predictably access the cac

block.

When an instruction or a group of instructions are labeled as unpredictable (i

when the BWT misprediction counter reaches theinhibit threshold), we proceed to inhibit

those instructions from further associative displacement. This is done by setting an in

bit for each unpredictable instruction in the inhibit list (Figure 2.4). Though we discus

as a separate structure, the inhibit list naturally lends itself well to being combined w

the L1 instruction cache. Such an arrangement would require only one extra bit of s

information per instruction in the icache. Once an instruction is inhibited, it will hence

forth always access the direct-mapped position on the initial probe into the dcache (

- 24 -

es).

 posi-

ht

bited

uc-

hen a

ech-

 will

ever,

to

che

s in

ro-

dict-

ally

ds

d

d in

an be

ximize

e is

rance
inhibit list is accessed with the instruction is decoded, for both the PC and XOR schem

Furthermore, if an inhibited instruction encounters a cache block in a set-associative

tion, the cache block will be evicted from the cache. When the evicted block is broug

back in from L2, it will be placed in the direct-mapped position. Inhibit information

spreads through the BWT to all other instructions that share cache blocks with an inhi

instruction, and then to the BWT entries of all the other cache blocks that those instr

tions act on. This plague-like algorithm eliminates repeated cache block evictions w

cache block is shared by inhibited and uninhibited instructions. Since the feedback m

anism will often favor direct-mapped line contention over repeated probe0 misses, it

trades-off overall hit rate for probe0 hit rate. This is the main reason that a r-a cache

have a higher overall miss rate, in general, than the prior multi-probe schemes. How

feedback, along with selective displacement, will allow a reactive-associative cache

have a low bandwidth utilization, and to perform well (compared to a direct-mapped ca

and prior schemes) regardless of the application.

2.3.3 Uninhibiting to accommodate dynamic program behavior

We found that the predictability of instructions and cache block addresses varie

different phases of program execution. For example, in the initialization phase of a p

gram, or in the first few iterations of a large loop, instructions may be labeled as unpre

able, when in actuality, they become predictable at some later time.

To optimize for the dynamic nature of predictability, it is necessary to occasion

clear the inhibit list, as well as the misprediction counters in the BWT. Several metho

were explored for doing this, but it turns out that simpler is better. One method, calle

periodic clearing, will clear the feedback information at regular intervals of (measure

number of cache accesses). For example, the inhibit list and misprediction counters c

cleared every 100,000 cache accesses. Although a generic interval (50,000-200,000

accesses) can be used successfully for most benchmarks, the precise interval to ma

performance under periodic clearing is application dependant.

Another possibility is to use a scheme we refer to as TLB clearing. This schem

motivated by the observation that data and instruction TLB misses correspond to ent

- 25 -

xed

ntly

new

redict-

n

/or

cks.

 is

nd

s, but
into new program phases. On a data TLB miss, we clear the inhibit list (which is inde

by instruction PC), with the hope that the new data will be more predictable by curre

inhibited instructions than the old data. On an instruction TLB miss, we are entering a

code phase of the program, so we anticipate that cache blocks that are currently unp

able (indicated by having saturated misprediction counters in their respective BWT

entries) may be more predictable by the new instructions. Therefore, on an instructio

TLB miss, we clear the BWT misprediction counters. After clearing the inhibit list and

the BWT misprediction counters, instructions are free to access displaced cache blo

Although periodic clearing will perform better than TLB clearing if the interval

pre-selected per application, we recommend the TLB scheme, as it is more robust a

does not require per-application tweaking. We tried more complex dynamic scheme

none of these would out-perform periodic or TLB clearing.

- 26 -

- 27 -

sso-

of the

ache.

ssocia-

e

rgani-

 the

e dis-

isit

s.

has a

ath.

ere is

r, by

unc-

es that

 hit

ti-

ne

ulti-
3. QUALITATIVE COMPARISON

There have been several prior proposals for low-latency implementations of a

ciative caches. Since the lowest-latency cache organization is direct-mapped, most

research has surrounded performing successive probes into a direct-mapped type c

These multi-probe caches are classified by more parameters than a traditional set-a

tive cache, and henceforth require further examination. In this section, we explore th

more popular multi-probe cache schemes and qualitatively compare them with the o

zation we propose here, the reactive-associativity cache. In Section 3.1, we examine

issues that are common to all multi-probe caches. In Section 3.2 and Section 3.3, w

cuss statically and dynamically probed caches, respectively. In Section 3.3.2, we rev

the reactive-associative cache in the context of the prior multi-probe cache proposal

3.1 Issues Common to Multi-Probe Caches

As discussed in Section 1.1, the primary reason that a set-associative cache

higher hit time than a direct-mapped cache is the late way multiplexing on the data p

To avoid this delay, it is necessary to use a direct-mapped type data path, in which th

no way muxing at the output. Associativity can still be supported, as mentioned earlie

performing multiple probes into the data array, with each using a different indexing f

tion. All of the multi-probe caches that we examine use what we refer to as a direct-

mapped data path. Though the data path must be direct-mapped, our analysis indicat

the tag path may be organized like that of a set-associative cache, without impacting

latency. Therefore, the organization of the tag side is a qualitative parameter for mul

probe caches.

Since only one line can be accessed at a time, and it is desirable to only do o

probe in the common case, the initial probe location is another major issue facing m

- 28 -

ed

acter-

be

ne on

nce,

ulti-

e pre-

ern

erve

spe-

ly, it

 or

the

ere

 for

tive.

 to

aches,

ility to

 hit

s are
probe caches. We pay particular attention to the distinction between a statically-prob

and dynamically-probed organization, as this property guides many of the other char

istics of multi-probe caches. Statically-probed organizations rely on a fixed initial pro

location, while dynamically-probed caches use way-prediction to access any cache li

the initial probe. The maximum number of additional probes required, the probe seque

and the actual mapping functions for subsequent probes are other parameters for m

probe caches.

3.1.1 Complications due to pipeline timing

All multi-probe caches can present problems for processor pipelines that hav

viously not had to contend with the notion of a variable hit latency. Even though mod

processors are dynamically scheduled, it is still common to use fixed latencies to res

data buses, to vacate items from the load/store queue, etc. If it is common for the L1

dcache to perform many second probes, it is possible that pipeline scheduling could

become difficult and wasteful. Although these potential problems are implementation

cific, they are an important considerations in guiding the research in this area. Clear

would be better from a scheduling standpoint if additional probes were unnecessary

uncommon. Furthermore, it would be beneficial if the processor knew by the end of

initial probe the number of additional cycles it would take to service a cache hit (if th

was a probe0 miss), or if it will be an overall cache miss. This is a primary motivation

using a set-associative tag path for a multi-probe cache, as used in reactive-associa

Also, the more deterministic the delay through the dcache, the easier it will be

pipeline the structure, as many modern L1 dcaches are pipelined. Wave-pipelined c

like those that appear in the Alpha 21264, would be difficult to make into multi-probe

caches (especially those than have high probe0 miss rates), as they have limited ab

support cache pipeline stalls.

3.1.2 Performance metrics

Architects are used to discussing the performance of caches using terms like

latency and miss rate. However, the performance metrics for multi-probe organization

- 29 -

n

o

ison

cy,

tion.

essors

d by

fore,

l

, the

et algo-

ck,

on

ve a

tuality,

s

apped

on a

ache

ated

and

quent

.1. All
more complex than for traditional caches. Clearly, average memory access time is a

appropriate measure of performance of any memory subsystem, but this is difficult t

quantify in an out-of-order superscalar processor, and is too blunt to use for compar

purposes. We discuss the performance of multi-probe caches using: probe0 hit laten

probe0 miss rate, additional probe hit latency, overall miss rate, and bandwidth utiliza

Bandwidth utilization is usually discussed with respect to the bandwidth demand of a

direct-mapped cache, and is a qualitative measure of cache throughput. Modern proc

are remarkably adept at overlapping and hiding latencies, but are fundamentally limite

bandwidth, of the processor as a whole and of the memory system in particular. There

we pay close attention to the bandwidth utilization of each cache organization.

3.2 Statically-Probed Caches

Statically-probed caches are multi-probe organizations that have a fixed initia

probe into the data array for a given cache block address. If the initial probe misses

cache may make one or more additional probes into the data array according to a s

rithm. Usually the fixed initial location is to the direct-mapped position for a cache blo

so we use the terms direct-mapped location, probe0 location, and initial probe locati

interchangeably for statically-probed caches. Clearly, these caches can never achie

probe0 miss rate lower than that of a direct-mapped cache (of the same size). In ac

the probe0 miss rate is considerably higher than the direct-mapped miss rate, unles

aggressive techniques are used to guarantee that most accesses are to the direct-m

location. This is insured by using cache block swapping, wherein a cache block found

subsequent probe is swapped with the cache block in the direct-mapped location. C

block swapping relies on block-level locality of reference, and allows for initial-probe

miss rates only modestly higher than direct-mapped miss rates. Unfortunately, dedic

circuitry to support cache block swapping is impractical for caches, which use regular

highly optimized layouts. A modest implementation of cache block swapping would

require two reads and two writes (using an intermediate cache block buffer), which

increases average hit time and increases the bandwidth utilization. Furthermore, fre

cache block swapping exacerbates the scheduling problems discussed in Section 3.1

- 30 -

blem

try

vel-

m.

ock

k is

ss will

ate

as the

ck is

be0

irect-

ress.

e1

n if
of the statically probed caches use cache block swapping, which is a fundamental pro

that will undoubtedly prohibit any statically-probed cache scheme from gaining indus

acceptance. However, there have been many interesting architectural innovations de

oped in the context of statically-probed caches, so it is still beneficial to examine the

3.2.1 Hash-rehash cache

The hash-rehash cache was initially proposed in [4], as a two-way associative

organization. It is indexed like a direct-mapped cache for the initial probe, but if the bl

is not found, a second probe is performed using a different hash function. If the bloc

found on the second probe, a swap is performed so that the next access to that addre

find the cache block in the direct-mapped location. If the block is not found in the altern

position (which would be an overall cache miss), then the alternate location is used

replacement position when the cache block is retrieved from L2. Once the cache blo

placed in the probe1 position, a swap is performed between the probe1 and the pro

lines, so that the next access to this block will find it in the direct-mapped location.

Figure 3.1 shows the decision tree for the hash-rehash algorithm. Probe0 is to the d

mapped location, while probe1 is to the alternate location for a given cache block add

In Figure 3.1, the termswap indicates that a cache block swap of the probe0 and prob

locations is performed. The hash-rehash cache will always probe both locations, eve

the block is not in the cache.

probe0

done probe1

swap

done

replace probe1 position

swap

done

hit miss

hit miss

Fig. 3.1. Decision tree for the hash-rehash algorithm

L2 access

- 31 -

che)

 by

e

e1

it is

os-

tion

cond

bes as

the

e

ehash

loca-

ates

.

3.2.2 Column-associative cache

The column-associative cache [5] augmented the hash-rehash cache with an

improved decision tree (Figure 3.2). The goal of the column-associative cache (c-a ca

is to reduce the number of second probes that are performed. This is accomplished

affixing arehash bit to each cache line. This bit indicates whether or not the cache lin

contains an out of position block (i.e., the cache block is accessed through the prob

indexing algorithm). On a direct-mapped access to a given line, if the line’s rehash b

high, then it is not possible that an additional probe will find the cache block. It is not p

sible specifically because the rehash bit indicates that the alternate (or probe1) posi

contains direct-mapped data. This rehash bit eliminates many of the superfluous se

probes that existed in the hash-rehash cache. Often, though, it still takes as many pro

the associativity of the cache (in this case, two) to determine that the block is not in

cache at all, which delays initiation of an L2 access until all the probes complete. Th

replacement algorithm is also improved over that of the hash-rehash cache, as the r

bit indicates whether it is more prudent to replace the block in the probe0 or probe1

tion (column-associative approximates an LRU replacement policy). Figure 3.2 illustr

the decision tree for the c-a cache, using the same action semantics as in Figure 3.1

probe0

done

probe1

swap

done

replace probe1 position

swap

done

hit miss

hit miss

Fig. 3.2. Decision tree for the column-associative algorithm

L2 access

rehash bit=1?

replace probe0

yes no

position

done

L2 access

- 32 -

e the

 both

ect-

the

gh a

he

k

per set

d

lock

major

Once

asso-

arate

hes
3.2.3 Sequential multicolumn cache

The sequential multicolumn cache (SMC) was introduced in [6], and basically

augmented and updated the earlier MRU cache schemes [12] [13]. We do not examin

MRU cache implementations, as they are not attempts at a low-latency cache, since

versions of the MRU cache ([12] [13]) are technically incapable of approaching a dir

mapped cache in terms of hit latency. The initial idea with the MRU cache was to track

most recently used ways in a set, so as to optimize the sequential search path throu

multi-probe cache. The sequential multicolumn cache extended this idea with what t

authors refer to as themultiple MRU block technique. The multiple MRU block technique

basically forces the initial probe to the direct-mapped location for a given cache bloc

address (as in hash-rehash and column-associative), as opposed to a MRU location

(as in earlier implementations of the MRU cache). Subsequent probes are performe

according to MRU information that is tracked separately for each cache line. Cache b

swapping is used to guarantee that the most recently accessed block is always in its

location. Figure 3.3 illustrates the decision tree for a sequential multicolumn cache.

again, probe0 is the direct-mapped location, and probes 1 through n-1 (for a n-way

ciative cache) are ordered according to the MRU information that is recorded in a sep

data structure. The MRU search algorithm allows SMC to generalize multi-probe cac

probe0

done

probeX

swap

done

hit miss, X=1

hit miss

Fig. 3.3. Decision tree for a n-way sequential multicolumn cache (SMC)

X=n-1?

replace probeX

yes no, X++

position

swap

L2 access

done

- 33 -

che

-asso-

data

probe

h info

ve-

 a

lock

e 3.4

antics

ide and

wap-

t to
for n-way associativity, in a relatively efficient manner. However, SMC still requires ca

block swapping, and is therefore subject to the same bandwidth problems as column

ciative (and all statically probed caches).

3.2.4 Parallel multicolumn cache

The parallel multicolumn cache [6] introduced the idea of a decoupled tag and

organization, with an associative tag side and a direct-mapped data side. The initial

is to the direct-mapped location, and the subsequent probe is determined by tag matc

from the associative tag side. This is similar to the organization that we use in reacti

associative, to ease pipeline timing, and to allow for at most one additional probe on

probe0 miss. Cache block swapping is used to force the most recently used cache b

into the direct-mapped location, and therefore to improve the probe0 miss rate. Figur

shows the access algorithm for the parallel multicolumn cache, using the same sem

as in the prior cache schemes. PMC contributes the concept of an associative tag s

a direct-mapped data side to the research of cache design, but the requirement for s

ping limits its performance, and will undoubtedly limit its acceptance by industry. The

sequential and parallel multicolumn caches are the first to make a legitimate attemp

provide a low-latency cache with levels of associativity higher than 2-way.

probe0 (check all probe tags in parallel)

done

probeX

swap

done

hit miss

hit miss

Fig. 3.4. Decision tree for a n-way parallel multicolumn cache (PMC)

Match in another probe location X?

replace LRU

no yes

position

swap

L2 access

done

- 34 -

ntire

g con-

ache

le to

at

ved to

ed are

ca-

nder

t of

che

e, its

direc-

ced as

name

e

g tag

n

d in

ry

ust

f the

aly-

 by

e

3.2.5 Group-associative cache

The newly proposed group-associative cache [7] also requires swapping of e

cache blocks. However, group-associative (g-a cache) did introduce some interestin

cepts to the research community. The g-a cache maintains a list of the most recently

accessed cache blocks, which it uses to control associative displacement. The g-a c

reasons that if a cache block has been recently accessed, then it would be a desirab

keep it nearby. Therefore, if a cache block from L2 is being placed into a line in L1 th

currently contains a recently accessed block, then the recently accessed block is mo

an alternate location in the cache. Cache blocks that have not been recently access

replaced as in a direct-mapped cache. This algorithm implements a limited notion of

selective displacement.

As mentioned earlier, recently accessed blocks are displaced into alternate lo

tions in the cache. The alternate location is selected by an algorithm which detects u

utilized cache lines, of which there are many in a direct-mapped cache. This concep

detecting unused cache lines, or holes, is an important contribution to multi-probe ca

research. When a cache block is placed in an alternative (or out of position) cache lin

tag information must be recorded in a special data structure referred to as the OUT

tory. The set of accesses that map to the same direct-mapped location, but are displa

indicated in the OUT directory, are referred to as an associative group, and hence the

group-associative.

On a cache access, the initial probe is to the direct-mapped location. While th

direct-mapped probe is being performed, the OUT directory is checked for a matchin

(which would indicate that the block is out of position). The OUT directory must be a

associative structure (or else conflicts from the dcache would be amplified there), an

[7] it is recommended that it be fully-associative. Furthermore, since the OUT directo

must be checked on every access (to insure correctness), and the previous lookup m

complete before the next cache access, its access time must be smaller than that o

dcache or the OUT directory will determine the hit time of the cache. However, our an

sis using CACTI [2] indicates that a fully-associative cache of the size recommended

the group associative paper (64 entries for a 256 line dcache) is 48% slower than th

- 35 -

e hit

ct-

 OUT

tally

his

ive

rga-

to

of a

d in

e0

d the

bed

he

nly

ial

, intro-

cache

mes

] pro-

on the

 ear-
direct-mapped cache itself. Even if the OUT directory is only 2-way set associative, th

time of a reactive-associative cache would be at least 21% higher than that of a dire

mapped cache, and undoubtedly the overall miss rate would much worse than if the

directory were fully-associative. Therefore, the group-associative cache is fundamen

prohibited from having a hit latency comparable to that of a direct-mapped cache. T

combined with the requirement for cache block swapping makes the group-associat

cache impractical for implementation, and we don’t consider it a viable multi-probe o

nization.

3.3 Dynamically-Probed Caches

The termdynamically-probedindicates that the initial probe into the cache is not

a fixed location, but rather to any line in the cache. This is accomplished with the use

way-predictor (which, intuitively, predicts the way of the data array index, as discusse

Section 2.2). With dynamically-probed caches, we can no longer use the terms prob

location and direct-mapped location interchangeably. When discussing dynamically-

probed organizations, the direct-mapped location refers to the direct-mapped way, an

probe0 location is the predicted way. A major motivation for using a dynamically-pro

arrangement would be the ability to access displaced cache blocks on the initial cac

probe, and therefore reduce probe0 miss rates without cache block swapping. The o

prior attempt at a dynamically-probed (low-latency) dcache is the predictive sequent

associative cache, which we discuss in Section 3.3.1. The reactive associative cache

duced in this thesis, is also a dynamically-probed arrangement. We discussed the r-a

organization thoroughly in Section 2, and we will contrast it with the prior cache sche

in Section 3.3.2.

3.3.1 Predictive sequential-associative cache

To avoid cache block swapping, the predictive sequential associative cache [8

posed way prediction to access any way, as opposed to only the direct-mapped way,

initial probe into the cache. The way prediction is accomplished via a data structure

(called the steering bit table (SBT)) that is indexed with a prediction handle available

- 36 -

y pos-

 the

rding

r a

e

e

pped

d be

tor,

cache.

ow

and L1

s

ance.

to the

ince

)

lier than the cache block address itself. As with reactive associativity, there are man

sible prediction handles, and several were explored in [8]. The PSA paper suggests

XOR scheme because of its high accuracy. As mentioned in Section 2.2.3, the XOR

scheme requires an XOR operation on a value, often obtained from a register-forwa

path, followed by a lookup of a table with many entries (1024 way-prediction entries fo

256-block cache), allwithin the time to perform a full add. In many pipelines this schem

is likely to increase cache access initiation time [14]. Furthermore, if the XOR schem

was indeed feasible, than it would certainly be possible to simply access a direct-ma

cache a cycle earlier with the XOR approximation of the memory address, which woul

a so-calledzero-cycle load, as proposed in [10]. The XOR scheme is an accurate predic

but even with XOR-based prediction, PSA’s way prediction accuracy is low. This is

because all accesses are predicted, even accesses that would hit in a direct-mapped

The low way prediction accuracy yields poor probe0 miss rates. PSA does achieve l

overall miss rates; but, because there are many second probes, average hit latency

dcache bandwidth utilization are increased. Under realistic bandwidth limitations, thi

increase often offsets the low overall miss rate and leads to degraded system perform

PSA uses a direct-mapped tag-side, and therefore must perform additional probes in

cache until the block is found or it is determined that the block is not in the cache. S

Fig. 3.5. Decision tree for a 2-way predictive sequential associative cache (PSA

probe0

done

probe1

update SBT

done

replace LRU position

update SBT

done

hit miss

hit miss

L2 access

rehash bit=1 and probe0=direct-mapped?

replace LRU

yes no

position

done

L2 access

- 37 -

bility

tive

predic-

r-a

ussed

vels

n

th

 band-

ache

cia-

ng

nly

e con-

neces-

back,

d on

, it is

nly

prac-

ly,

e

ero-

y-

e all
the probe sequence is not optimized, as in SMC (Section 3.2.3), this limits the scala

of PSA to higher levels of associativity.

3.3.2 Reactive-associative cache

Table 3.1 qualitatively compares the prior proposals with the reactive-associa

cache. Like the PSA cache (Section 3.3.1), the reactive associative cache uses way

tion to allow for a dynamically determined probe0 location. However, unlike PSA, the

cache uses a set-associative tag side (similar to the parallel multicolumn cache disc

in Section 3.2.4), which simplifies pipeline timing and allows r-a to scale to higher le

of associativity.

Way prediction accuracy of the reactive-associative cache is much higher tha

PSA due to the selective displacement and feedback mechanisms (Section 2.3). Wi

higher way prediction, the r-a cache is able to have a low probe0 miss rate, and low

width utilization. Selective displacement refers to the idea of displacing only those c

blocks for which there will most likely be a clear benefit to having cached. Group-asso

tive (Section 3.2.5) had a limited concept of selective displacement (by only displaci

recently used blocks), but reactive-associative goes further by seeking to displace o

those cache blocks which cause direct-mapped line contention. Feedback refers to th

cept of measuring the performance of the cache, and restricting displacement when

sary. Reactive associative is the only cache organization that supports a form of feed

in which the prediction accuracy is measured and associative displacement is inhibite

a per-instruction basis. Because the way-prediction accuracy of the r-a cache is high

able to use more realistic prediction handles (like instruction PC) than PSA, which o

performs well under the XOR scheme. As mentioned earlier, if the XOR scheme was

tical to implement, then zero-cycle loads [10] could also be implemented. Interesting

the r-a cache using PC prediction could also use zero-cycle loads (could issue cach

accesses early). However, to avoid confusing the advantages of the r-a cache and z

cycle loads, we do not perform zero-cycle load optimizations in this thesis.

Like PSA, the r-a cache does not require cache block swapping. The staticall

probed implementations do require cache block swapping, however, which will caus

- 38 -

nce

ctive.

 lower

ction

mory

 such

lter the

 cache
of them to have increased bandwidth demand, and will, in general, limit their performa

gains. Also, cache block swapping is undesirable to implement from a circuit perspe

Unfortunately, the low probe0 miss rate and low bandwidth utilization of a r-a

cache come at a cost. The reactive associative cache trades-off overall hit rate for a

probe0 miss rate. However, for realistic pipelines, it is better to maximize bandwidth

through the L1 dcache than it is to minimize the overall miss rate of the dcache. In Se

4, we will show execution time results (as well as miss rates) that bear out this fact.

3.4 Related Work

There have been several ideas to use program characteristics to improve me

system performance. Farrens and Tyson [16] detect loads that miss often and mark

loads to bypass the cache. Farrens and Tyson do not track data usage behavior or a

organization of the cache to enable better management. Johnson and Hwu [17] use

Table 3.1
Qualitative comparison of previous schemes and the r-a cache.

static probe0
to d-m

location?

tag
array/
data

array

probe0 miss rate
w.r.t.

d-m miss rate/
reason

overall
miss
rate/

probe0-
hit

latency

L1 band-
width

demand

w.r.t. d-m /

reason

controlled or
restricted

displacement?

column-

associative

yes,

needs swap

d-m/

d-m

higher/

static first probe

~ 2-way/

~ d-m

higher/

swapping

no

group-

associative

yes,

needs swap

d-m/

d-m

higher/

static first probe

fully-a/

fully-a

higher/

swapping

yes,

selective
displacement

sequential
multicolumn

yes,

needs swap

d-m/

d-m

higher/

static first probe

n-way/

~ d-m

higher/

swapping

no

parallel

multicolumn

yes,

needs swap

s-a/

d-m

higher/

static first probe

n-way/

~ d-m

higher/

swapping

no

predictive
sequential
associative

no,

uses way-
prediction

d-m/

d-m

higher/

high first-probe
miss rate

~ 2-way/

~ d-m

higher/

high first-
probe miss

rate

no, and also
predicts all
accesses

reactive-

associative

(PC scheme)

no,

uses way-
prediction

s-a/

d-m

lower or near/
low first probe

miss rate

> 2-way/

~ d-m

comparable/

low first
probe miss

rate

yes,

selective

displacement
& feedback

- 39 -

cache

ta

 tech-

ses.

ored
block reuse behavior based on data addresses to guide placement of data in a victim

as opposed to the cache itself. Johnson and Hwu do not use instructions to guide da

placement but focus only on data addresses. Informing memory operations [18] is a

nique to provide notification of a load miss and to inform applications about cache mis

Application-level restructuring of code to improve cache performance has been expl

in [1]. Compiler optimizations to reduce conflicts have been explored in [19] [20].

- 40 -

- 41 -

nd a

rt the

he aid

 set-

of a

ical

a-

d from

ide as

e is

of the

ion on

al

-way

erived

y tim-

ate

d in

 wait

r. As
4. QUANTITATIVE ANALYSIS

4.1 Hit time of the reactive-associative cache

The r-a cache uses a unique organization utilizing a set-associative tag side a

direct-mapped data side. The r-a cache also requires some additional logic to suppo

ability to perform both direct-mapped accesses and set-associative accesses (with t

of a way-prediction). We argue that this additional logic, as well as the inclusion of a

associative tag side, will not significantly increase the hit time of a r-a cache over that

direct-mapped cache (see Section 2.1.4). To justify this assertion, we use the analyt

cache model CACTI [2], configured for 0.18 micron technology. It is desirable to sep

rately analyze the speed of the tag side and the data side of the cache, both measure

the time when the cache block address is available. We quantify the delay of the tag s

being the total time it takes to generate the hit/miss signal. The delay of the data sid

considered to be the time to produce a cache block on the output bus. The hit latency

cache is the longer of the tag side delay and the data side delay. For further discuss

the components of delay for direct-mapped and associative caches, please refer to

Section 1.1.

In Table 4.1, we present the tag side (not including the OR gate in the hit sign

path in set-associative caches) and data side latencies for direct-mapped through 8

conventional set-associative caches. Probe0 timings for a 4-way r-a cache can be d

from the direct-mapped data side and the conventional 4-way set-associative tag arra

ings. We added a 8-ps delay, obtained by Hspice simulations, for each of the pass g

multiplexors in the probe0 hit signal path and the data array index path, as discusse

Section 2.1.4. The data out latency includes the output-way multiplexor, which must

for the result of the tag comparison (for a set-associative cache), and the output drive

- 42 -

miss

 the 2-

-way

array

ritical

r an

7%

cache

wer

 a

0.7%

ain-

ache

ench-

o

 r-a

 the
mentioned earlier, the total hit time is the larger of the data out latency, and the tag hit/

signal latency.

Because each 2-way tag bank is half the size of the direct-mapped tag array,

way tag array is actually faster than the direct-mapped tag array. As expected, the 4

data array is considerably slower than the direct-mapped data array but the 4-way tag

is comparable in speed to the direct-mapped data array. Thus, a 4-way r-a probe0 c

path (for both data and tag) is similar to the critical path of a direct-mapped cache. Fo

8 KB cache, the 4-way r-a cache is about 4.9% slower than direct-mapped, but still 4

faster than a 2-way cache, and 61% faster than a 4-way set-associative cache. For

sizes greater than 8 KB, however, a 4-way associative tag array is no longer any slo

than a direct-mapped tag array, and a 4-way r-a cache is less than 0.8% slower than

direct-mapped cache. For sizes of 32 KB and greater, an 8-way r-a cache is less than

slower than a direct-mapped cache. This implies that the hit latency of a r-a cache m

tains direct-mapped equivalence with increasing associativity. We examine an 8-KB c

only because using a larger cache results in negligible miss rates for the SPEC95 b

marks, but most modern microprocessors use L1 dcaches of size 16 KB or larger, s

replacing a direct-mapped cache with a r-a cache should not affect the clock rate.

4.2 Methodology

We modified the Simplescalar3.0 simulator [15] to model the L1 D-cache as a

cache. Table 4.2 shows the base system configuration parameters used throughout

Table 4.1
Cache hit times (ns).

Direct-mapped

conventional

2-way

conventional

4-way

conventional

8-way

conventional

4-way

r-a

8KB Data out 0.816 1.252 1.374 1.642 0.824

8KB hit signal 0.798 0.796 0.844 0.962 0.852

8KB total latency 0.816 1.252 1.374 1.642 0.852

Increase over DM 0% 53.5% 68.4% 101.2% 4.5%

16KB Data out 0.992 1.365 1.466 1.723 1.000

16KB hit signal 0.874 0.880 0.902 1.006 0.910

16KB total latency 0.992 1.365 1.466 1.723 1.000

Increase over DM 0% 37.6% 47.8% 73.7% 0.8%

- 43 -

der

n-chip

nch-

ache

tudy

che

of

ata

not

or L2

64).

e

s the

o-

 for a

ifo

tory
experiments, unless specified otherwise. The processor core including the out-of-or

issue and branch prediction mechanisms remain unchanged. We assume a modest o

cache hierarchy of 8 Kbytes L1 D-cache and 256 Kbytes L2 so that the SPEC95 be

marks exercise the memory hierarchy to a reasonable extent. Using a larger L1 D-c

results in negligible miss rates for the SPEC95 benchmarks, thwarting any effort to s

data cache performance using the SPEC95 benchmarks. We assume that the r-a ca

probe0 hit is 1 cycle and the probe0 and probe1 hit signals are available at the end

probe0, as per the discussion in Section 4.1. Probe1 takes 2 additional cycles (i.e., d

from probe1 takes a total of 3 cycles). L2 access is initiated after probe0 if the block is

in the cache (the tags for all the ways are checked in parallel). We assume 12 cycles f

cache hits to model the wire delays, and not necessarily the L2 hit time, involved in

accessing an on-chip L2 cache which is usually far from the L1 cache (e.g., Alpha 212

For our experiments, we choose those benchmark/input combinations from th

SPEC95 suite that do not require prohibitively long simulation runs. Table 4.3 present

SPEC95 benchmarks and their inputs used in this study. Apart from the SPEC95 pr

grams, we also use troff as one of our benchmarks. The benchmarks were compiled

Compaq Alpha AXP-21164 using the Compaq C and Fortran compilers under -O4 -

Table 4.2
Hardware parameters for base system.

Component Description

Processor 8-way out-of-order issue, 64-entry reorder buffer, 32-entry load/store queue

Branch prediction combines a bimodal predictor using 4096 entries and gshare using a 10-bit his

L1 I-cache 16 Kbytes, 2-way associative, 32 byte blocks, 1 cycle hit, lock-up free

L1 D-cache 8 Kbytes, 32 byte blocks, 1 cycle probe0 hit, 3 cycles probe1 hit, lock-up free

L2 cache 256 Kbytes, 8-way associative, 64 byte blocks, 12 cycle hit, pipelined

Memory Bus Split transaction, 32 bytes per bus cycle transfer

Main memory Infinite capacity, 60 cycle latency

Way-
prediction
resources

Reactive-associative, PC:128-entry APT & BWT each with compressed tags,
2048-bit inhibit list (in I-cache), and 256-entry victim list; inhibit threshold: 3 and
victim threshold: 5; (total 1184 bytes).
Reactive-associative, XOR: 1024-entry BWT, 2048-bit inhibit list (in I-cache),
and 256-entry victim list; inhibit threshold: 3 and victim threshold: 2.

- 44 -

ere

C and

. We

re 4.1

 the

 1

sider

how

-4%)

rse

 why

justs
optimization flags. Most of the simulations are run to completion, but in the cases wh

the runs are inordinately long, we halt the simulation at 1 billion instructions.

4.3 Base performance of the reactive-associative cache

In this section, we present the base performance of the r-a cache using the P

XOR schemes, compared against direct-mapped and 2-way set-associative caches

show an idealized 2-way set-associative, 1-cycle hit cache as a reference point. Figu

shows the speedups of processors using various cache configurations normalized to

performance of a system with a direct-mapped cache. To underscore the r-a cache’s

robustness with respect to L1 bandwidth, we vary the number of L1 cache ports from

(top graph) to 2 (bottom graph). We model the extra bandwidth demand of probe1

accesses by holding the L1 port for an additional cycle. As discussed earlier, we con

the XOR scheme to be difficult to implement, but we still present its performance to s

how it compares to the PC scheme.

From Figure 4.1 we can see that the first group of benchmarks (vortex, gcc, li, perl)

are relatively insensitive to associativity, and achieve only modest improvements (2%

even with the ideal, 2-way cache. The second group of benchmarks (go, troff, m88ksim,

swim, fpppp) achieve speedups from 6%-9% with the ideal, 2-way cache.Swim has a

pathological mapping problem which causes the 2-way cache to perform slightly wo

than direct-mapped, but the problem subsides with increasing associativity, which is

4-way r-a performs better than the ideal, 2-way cache. The r-a cache dynamically ad

to the associativity requirements of the application, providing the first group with low

degrees of associativity, and the second group with high degrees of associativitybut at

Table 4.3
Benchmarks and inputs.

Benchmark
first group

Input #instructions
simulated

Benchmark
second group

Input #instructions
simulated

vortex ref 1 billion go 9stone21.in 1 billion

gcc 1recog 347 million troff paper.me 70 million

li train 365 million m88ksim train 171 million

perl jumble 1 billion swim train 430 million

fpppp train 235 million

- 45 -

ups

or

e

pres-

4.1,

eased

heme

ore
direct-mapped speeds. For the second group, the 1-port r-a achieves 1%-9% speed

using PC, and 2%-14% speedups using XOR, approaching the ideal, 2-way cache f

many benchmarks. The 2-port case follows similar trends.

The r-a cache’s only slow-down is forfppppunder the PC scheme using 1 port du

to fpppp’s poor instruction locality, disrupting the PC-indexed APT, which causes high

probe0 miss rates and wastes L1 cache bandwidth. In the 2-port case, this bandwidth

sure is absorbed by the extra port, resulting in a 4% speedup. As indicated in Figure

the slowdown for the 1-port case turns into a 2% speedup when the APT size is incr

to 512 entries. For both the 1-port and the 2-port cases, the performance of the PC sc

approaches that of the XOR scheme, even though the XOR predictor is potentially m

difficult to implement.

Fig. 4.1. Base performance of the reactive-associative cache.

go

S
pe

ed
up

 n
or

m
al

iz
ed

 to
 d

ire
ct

-m
ap

pe
d

0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

vo
rte

x
gc

c li
pe

rl
tro

ff

m88
ks

im
sw

im
fpp

pp
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

Lower bandwidth (1 cache port)

Higher bandwidth (2 cache ports)

first group second group

512-entry APT

4-way R-A PC 4-way R-A XOR 2-way 1 cycle (ideal)

- 46 -

-

hes are

rks

dicat-

f

ance

t they

 for

le L1

iative

ven if

x the

, this
In Table 4.4, we compare the miss rates for the r-a cache with those of direct

mapped and 2-way caches. The probe0 miss rates of both the PC and XOR r-a cac

less than or comparable to the miss rates of a direct-mapped cache for all benchma

except forvortexandfpppp, indicating the success of our way-prediction scheme.Vortex’s

probe0 miss rate decreases to 5.3% when the inhibit list is cleared less frequently, in

ing that vortex has many unpredictable instructions.Fpppp’s large instruction footprint

causes thrashing in the APT, resulting in a high probe0 miss rate when using the PC

scheme, even though the overall miss rate approaches that of 2-way. The final row o

Table 4.4 contains the geometric means for each column.

The prediction accuracy columns for PC and XOR schemes show the perform

of the way predictor. Note that unpredictable instructions are tracked and blocks tha

touch are prohibited from being displaced, which enables high prediction accuracies

those blocks that remain. This policy achieves high accuracy, which conserves valuab

bandwidth, but at the cost of higher overall miss rate compared to a 2-way set-assoc

cache because unpredictable blocks are not displaced to set-associative positions e

they conflict. Because XOR is a more accurate prediction handle in general, we rela

victim list threshold from 5 to 2, which encourages more displacement. In most cases

Table 4.4
Reactive-associative miss rates compared to set associative caches

direct

mapped

r-a 4-
way,pc

r-a 4-
way,pc

r-a 4-
way, pc

r-a 4-
way,
xor

r-a 4-
way,
xor

r-a 4-
way, xor

2-way
set
assoc.

SPEC-95

Bench

overall

miss

rate

probe0

miss
rate

overall

miss
rate

pred.
accuracy

probe0

miss
rate

overall

miss
rate

pred.
accuracy

overall

miss
rate

vortex 5.1 6.7 4.5 97.8 6.5 4.1 97.5 3.9

gcc 8.0 8.8 7.0 98.2 8.4 6.4 97.9 6.4

li 6.0 5.7 5.6 99.9 5.4 5.1 99.7 4.8

perl 5.4 5.6 4.2 98.5 5.9 3.3 97.4 3.9

go 8.9 9.5 8.3 98.7 6.9 5.8 98.9 6.3

troff 5.0 4.3 3.4 99.1 3.7 2.7 98.9 2.8

m88ksim 5.2 3.3 2.4 99.1 4.2 2.2 98.0 2.0

swim 49.7 48.7 46.9 96.6 49.8 44.6 90.6 50.8

fpppp 7.4 24.8 3.5 77.9 6.2 5.2 98.9 2.7

MEAN 7.9 8.7 5.9 96.0 7.3 5.3 97.5 5.1

- 47 -

ases

redic-

(c-a

l simi-

e

ad of

al cir-

e

relaxation results in lower probe0 and overall miss rates for XOR However, in some c

this relaxation of parameters causes the XOR scheme to actually have worse way-p

tion accuracy than with the PC scheme.

4.4 Comparison between the reactive-associative and prior schemes

In this section, we compare the r-a cache with the column-associative cache

cache), which is representative of caches that rely on swapping because they are al

larly limited in performance due to the bandwidth demands imposed by swapping. W

also compare the r-a cache against the PSA cache, which uses way-prediction inste

swapping. We do not compare against group-associative because of the fundament

cuit problems that we outlined in Chapter 3, which prohibit a group-associative cach

from having a direct-mapped hit latency, and also because it requires swapping.

Fig. 4.2. Comparison of reactive associativity to previous schemes

S
pe

ed
up

 n
or

m
al

iz
ed

 to
 d

ire
ct

-m
ap

pe
d

0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

C-A PSA PC R-A PC PSA XOR R-A XOR
1.20

0.89

vo
rte

x
gcc li

perl go
tro

ff

m88ks
im

sw
im

fpppp
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

1.42

Lower bandwidth (1 cache port)

Higher bandwidth (2 cache ports)

first group second group

- 48 -

he, as

 a 1-

rt is

ay-

e so

OR

ere for

 a

e and

sing

nch-

wap-

arks

. The

han c-

ups for

llevi-

s are

n

s

ses of

ding

se the

or

for
For the PSA-cache, we assume the same latency assignments as the r-a cac

they have similar timing constraints for both probe0 and probe1; the PSA-cache has

cycle probe0 hit with an additional 2 cycles for a probe1 hit. As with r-a, the cache po

only held for 1 additional cycle for a probe1 hit. The PSA cache uses a 1024-entry w

prediction table (as in [8]), with 1 hash-rehash bit per cache blockfor a total of 160

bytes of extra state. We show PSA using the XOR scheme as well as the PC schem

that we can compare PSA and r-a. The authors of the PSA paper recommend the X

scheme but do not recommend using the PC scheme. We include the PC scheme h

comparison purposes only. In Figure 4.2, we compare speedups (over a system with

direct-mapped cache) of the 4-way r-a cache against those of the column-associativ

PSA caches.

For the 1-port (lower bandwidth) case in Figure 4.2 (the upper graph), PSA u

PC and XOR schemes and column-associative (c-a) suffer slow-downs on many be

marks due to their high bandwidth demand, caused by poor probe0 miss rates and s

ping, respectively. The slow-downs are more pronounced in the first group of benchm

because the higher bandwidth demand is not compensated by lower overall miss rate

r-a cache using PC or XOR performs better than the corresponding PSA, and better t

a, because r-a has a lower bandwidth demand. Column associative has large speed

swim because ofswim’s pathological set-associative mapping problem. Since column-

associative uses a skewing hash function (i.e. the complement of the index bits), it a

ates this problem and achieves massive speedups. Similarly, if the APT and BWT size

increased significantly, the 4-way r-a cache does achieve similar speedups forswim.

For the 2-port (higher bandwidth) case in Figure 4.2 (the lower graph), colum

associative and the predictive sequential caches achieve somewhat higher speedup

because the extra port absorbs the bandwidth pressure, though there are still a few ca

slow-down. The r-a caches using PC and XOR continue to outperform the correspon

PSA as well as c-a caches, although by smaller margins than the 1-port case becau

bandwidth advantage of the r-a cache is less important for the 2-port case. The maj

exception isfpppp, whose large instruction footprint wreaks havoc with the PC scheme

an r-a cache.

- 49 -

iss

 and

rates

rfor-

ing.

s,

s are

ack),

cing

idth

, in

ective

the

 suf-

hat do

robe0
Table 4.5 shows the first probe (indicated by p0) and overall (indicated by ov) m

rates for the 4-way r-a (using PC and XOR), column associative, and PSA (using PC

XOR) caches. The r-a caches using PC or XOR usually have the lowest probe0 miss

of all the caches. Although column-associative has low probe0 miss rates, overall pe

mance is poor due to the high latency and bandwidth demand of cache block swapp

Probe0 miss rates of PSA using XOR are much worse than direct-mapped miss rate

resulting in high bandwidth demand. Although the overall miss rates for the r-a cache

usually higher than those for PSA and c-a (due to selective displacement and feedb

the r-a cache performs better than PSA or c-a, which validates the concept of balan

overall miss rate and probe0 miss rate for optimal performance in the face of bandw

limitations.

4.5 Effect of filtering and feedback on probe0 and overall miss rates

To isolate the effects of selective displacement and feedback on the r-a cache

Table 4.6 we present probe0 and overall miss rates using the PC scheme without sel

displacement (i.e., no victim list), and without feedback (i.e., no mispredict counters in

BWT, and no inhibit list). In the case of no selective displacement, probe0 miss rate

fers dramatically because the cache attempts to displace all accesses, even those t

not cause any contention in a direct-mapped cache. In the case of no feedback, the p

Table 4.5
Initial probe (p0) and overall (ov) miss rates for various cache schemes.

direct-

mapped

c-a PSA
pc

r-a
pc

PSA
xor

r-a
xor

c-a PSA
pc

r-a
pc

PSA
xor

r-a
xor

Bench ov p0 p0 p0 p0 p0 ov ov ov ov ov

vortex 5.1 6.0 36.1 6.7 15.7 6.5 4.0 3.4 4.5 3.4 4.1

gcc 8.0 8.9 32.8 8.8 17.2 8.4 6.0 5.8 7.0 5.8 6.4

li 6.0 6.6 34.5 5.7 15.5 5.4 4.7 4.4 5.6 4.4 5.1

perl 5.4 6.2 20.9 5.6 12.5 5.9 3.4 3.5 4.2 3.5 3.3

go 8.9 10.3 25.8 9.5 12.0 6.9 5.9 5.4 8.3 5.4 5.8

troff 5.0 5.6 19.2 4.3 12.3 3.7 2.3 2.4 3.4 2.3 2.7

m88ksim 5.2 5.7 17.5 3.3 10.3 4.2 2.2 1.8 2.4 1.8 2.2

swim 49.7 53.6 66.4 48.7 65.1 49.8 26.2 50.7 46.9 50.3 44.6

fpppp 7.4 9.6 35.3 24.8 19.1 6.2 5.8 2.3 3.5 2.3 5.2

MEAN 7.9 9.0 29.6 8.7 16.6 7.3 4.9 4.5 5.9 4.5 5.3

- 50 -

over-

s all

 in

on.

ose to

edict-

y

rate

we
miss rate increases, albeit not as dramatically as with selective displacement, but the

all miss rate approaches those achieved by PSA or c-a because the cache displace

cache blocks regardless of predictability. These increased probe0 miss rates would,

general, cause an increased average cache hit time and a higher bandwidth utilizati

Depending on the L1 cache bandwidth of a particular system, the designer may cho

be more or less strict about which blocks to displace. The degree of tolerance to unpr

able instructions can be adjusted by changing the inhibit thresholdwhich makes the r-a

cache easily adapted to maximize performance across systems with varying memor

bandwidths. Furthermore, if the prediction handle being used is naturally more accu

than instruction PC, the architect may choose to lower the victim list threshold (which

set to 5 for PC, and 2 for XOR), and therefore encourage more displacement.
Table 4.6

Effect of filtering and feedback on probe0 and overall miss rates

direct-

mapped

r-a pc,
with no
feedback

r-a pc,
with no
feedback

r-a pc,
with no
filtering

r-a pc,
with no
filtering

r-a pc,
original
config

r-a pc,
original
config

Bench overall probe0 overall probe0 overall probe0 overall

vortex 5.1 11.7 4.4 31.9 4.4 6.7 4.6

gcc 8.2 16.3 6.7 23.3 7.4 9.0 7.2

li 6.3 9.2 5.4 7.9 6.2 6.0 5.9

perl 5.6 10.3 3.5 17.6 4.5 5.6 4.2

go 9.2 17.2 6.6 19.7 8.1 9.8 8.5

troff 5.2 9.0 2.8 13.4 3.1 4.3 3.3

m88ksim 5.3 11.0 2.1 12.0 3.1 3.4 2.4

swim 54.3 50.3 48.4 50.7 45.5 50.3 48.5

fpppp 7.4 22.4 2.8 69.0 2.3 25.9 3.5

MEAN 8.1 14.8 5.2 21.9 5.8 9.0 5.9

- 51 -

n the

he

ciativ-

pped

ns.

epend-

tion

e posi-

-

ctions

dic-

use

ped

 the

y is

n

r that

ocia-

ve

and-
5. CONCLUSIONS

In this thesis, we propose the reactive-associative cache (r-a cache) based o

key observation that even for applications that benefit from increased associativity, t

common case for a direct-mapped cache is a hit. This observation implies that asso

ity is needed only for conflicting blocksand should not be provided at the expense of

higher hit latencies for all accesses. The r-a cache keeps as much data in direct-ma

positions as possible, and displaces only conflicting blocks to set-associative positio

The r-a cache therefore provides flexible associativity that increases or decreases d

ing on application characteristics.

The reactive-associative cache is a dynamically-probed multi-probe organiza

which has a direct-mapped hit latency for the initial probe. For a given cache block

address, the initial probe can be to the direct-mapped location or to a set-associativ

tion, with the use of a way-prediction. Therefore, all direct-mapped and correctly pre

dicted set-associative accesses can complete in the initial probe. Incorrect way-predi

will require a single additional probe into the data array. The ability to service mispre

tions in a single extra probe (even for high associativities) is accomplished through the

of a unique organization in which a set-associative tag side is joined with a direct-map

data side. This arrangement allows all the tags in a set to be checked in parallel with

initial probe in the data side. If the initial probe prediction was incorrect, the correct wa

known from the tag match information acquired during the first probe. We have show

that using a set-associative tag side does not significantly increase the hit latency ove

of a direct-mapped cache.

Prior statically-probed multi-probe caches (such as hash-rehash, column ass

tive, and group-associative) have required swapping of entire cache blocks to impro

their initial-probe miss rates. But cache block swapping degrades both latency and b

- 52 -

ping

d

which

the

and

eed-

ced,

for

para-

ome

tes of

ed

has a

ore
width. The previously-proposed predictive sequential associative cache avoids swap

via way prediction, but incurs initial-probe miss rates much worse than direct-mappe

miss rates. This is because it displaces, and subsequently predicts, all cache blocks,

places a strain on the prediction resources. The poor first-probe miss rates result in

depletion of valuable L1 bandwidth. In contrast, the r-a cache selectively displaces,

consequently predicts, only conflicting blocks. In addition, the r-a cache employs a f

back mechanism on way prediction to prevent unpredictable blocks from being displa

achieving initial-probe miss rates often lower than (or at least comparable to) direct-

mapped miss rates and conserving L1 bandwidth.

The r-a cache delivers performance robustness by trading-off overall hit rate

first-probe hit rate, achieving initial-probe miss rates often lower than (or at least com

ble to) direct-mapped miss rates, and conserving L1 bandwidth. Simulations using s

of the SPEC95 benchmarks show that a 4-way associative r-a cache, using 1184 by

prediction storage, achieves 1%-11% and 1%-7% improvements over a direct-mapp

cache and a predictive sequential associative cache, respectively, with one L1 port.

The reactive-associative cache is a low-latency associative organization that

bandwidth demand comparable to a system with a direct-mapped cache, and theref

would be ideal as the L1 dcache in a memory bandwidth-limited system.

- 53 -

se

 on-

l-
on

ems

miss
-

es.

or
n

itec-

. In
LIST OF REFERENCES

[1] A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC benchmarks: A ca
study.IEEE Computer, pages 15–26, Oct. 1994.

[2] S. J. E. Wilson and N. P. Jouppi. An enhanced access and cycle time model for
chip caches. Technical Report 93/5, July 1994.

[3] J.-K. Peir, W. Hsu, H. Young, and S. Ong. Improving cache performance with ba
anced tag and data paths. InProceedings of the Seventh International Symposium
Architectural Support for Programming Languages and Operating Systems, pages
268–278. Association for Computing Machinery, Oct. 1996.

[4] A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance of operating syst
and multiprogramming.ACM Transactions on Computer Systems, 6(4):393–431,
Nov. 1988.

[5] A. Agarwal and S. Pudar. Column associative caches: A technique for reducing
rate of direct-mapped caches. InProceedings of the 20th Annual International Sym
posium on Computer Architecture, pages 179–190. Association for Computing
Machinery, May 1993.

[6] C. Zhang, X. Zhang, and Y. Yan. Two Fast and High-Associativity Cache Schem
IEEE Micro, Vol. 17, No. 5, September/October 1997.

[7] J. K. Peir, Y. Lee, and W. W. Hsu. Capturing dynamic memory reference behavi
with adaptive cache topology. InProceedings of the 8th International Conference o
Architectural Support for Programming Languages and Operating Systems, pages
240–250, Oct. 1998.

[8] B. Calder, D. Grunwald, and J. Emer. Predictive sequential associative cache. InPro-
ceedings of the Second IEEE Symposium on High-Performance Computer Arch
ture, pages 244–253, Feb. 1996.

[9] D. H. Albonesi. Selective Cache Ways: On-Demand Cache Resource Allocation
32nd International Symposium on Microarchitecture (MICRO-32), pages 248-259,
November 1999.

- 54 -

ng

tTi-
er

370.

 set-
-

sim-
on,

data
on
95.

a ref-

e

n
r

[10] T. Austin and G. Sohi. Zero-Cycle Loads: Microarchitecture Support for Reduci
Load Latency. In Proceedings of the 28th Annual International Symposium on
Microarchitecture. MICRO-28, November 1995.

[11] N. P. Jouppi. Architectural and organizational tradeoffs in the design of the Muli
tan cpu. InProceedings of the 15th Annual International Symposium on Comput
Architecture, pages 281-289. Association for Computing Machinery, May 1988.

[12] J. H. Chang, H. Chao, and K. So. Cache design of a sub-micron CMOS System/
In 14th Annual International Symposium on Computer Architecture, SIGARCH
Newsletter, pages 208-213. IEEE, June 1987.

[13] R. E. Kessler, R. Jooss, A. Lebeck, and M. Hill. Inexpensive implementations of
associativity. InProceedings of the 16th Annual International Symposium on Com
puter Architecture, pages 131–139, May 1989.

[14] M. Hill. A case for direct-mapped caches.IEEE Computer, 21(12):25–40, Dec.
1988.

[15] D. Burger, T. M. Austin, and S. Bennett. Evaluating future microprocessors: the
plescalar tool set. Technical Report CS TR-1308, University of Wisconsin, Madis
July 1996.

[16] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A modified approach to
cache management. InProceedings of the 28th Annual International Symposium
Microarchitecture, pages 93–103. Association for Computing Machinery, Dec. 19

[17] T. Johnson and W.-M. Hwu. Run-time adaptive cache hierarchy management vi
erence analysis. InProceedings of the 24th Annual International Symposium on
Computer Architecture, pages 315–326, June 1997.

[18] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith. Informing memory
operations: Providing memory performance feedback in modern processors. InPro-
ceedings of the 23rd Annual International Symposium on Computer Architectur,
pages 260–270, May 1996.

[19] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data placement. I
Proceedings of the Eighth International Symposium on Architectural Support fo
Programming Languages and Operating Systems, pages 139–149. Association for
Computing Machinery, Oct. 1998.

[20] T. Chilimbi, M. Hill, and J. Larus. Cache-conscious structure layout. InProceedings
of the 1999 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1–12. Association for Computing Machinery, May 1999.

- 55 -

	Reactive associativE caches
	table of contents
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. Introduction
	1.1 Critical Path Analysis of Direct-Mapped and Set-Associative Caches
	Fig. 1.1. A direct-mapped cache
	Fig. 1.2. A n-way set-associative cache

	1.2 Multi-Probe Caches
	1.3 Reactive Associative Caches
	Fig. 1.3. A reactive associative cache

	1.4 Thesis Roadmap

	2. Reactive associativE cache
	2.1 Basic Organization
	Fig. 2.1. The reactive-associative cache.
	2.1.1 Data side
	2.1.2 Tag side
	2.1.3 Cache miss
	Fig. 2.2. Implementation of probe0 way# multiplexor.

	2.1.4 Probe0 hit latency

	2.2 Way Prediction
	Fig. 2.3. Pipeline timing of way-prediction.
	2.2.1 PC-based way-prediction
	2.2.2 Access-prediction table and block way-number table
	Fig. 2.4. PC-based way-prediction structures.

	2.2.3 XOR-based way-prediction

	2.3 Selective Displacement and Feedback
	2.3.1 Victim list: selective displacement
	2.3.2 Feedback with misprediction counters and the inhibit list
	2.3.3 Uninhibiting to accommodate dynamic program behavior

	3. Qualitative comparison
	3.1 Issues Common to Multi-Probe Caches
	3.1.1 Complications due to pipeline timing
	3.1.2 Performance metrics

	3.2 Statically-Probed Caches
	3.2.1 Hash-rehash cache
	Fig. 3.1. Decision tree for the hash-rehash algorithm

	3.2.2 Column-associative cache
	Fig. 3.2. Decision tree for the column-associative algorithm

	3.2.3 Sequential multicolumn cache
	Fig. 3.3. Decision tree for a n-way sequential multicolumn cache (SMC)

	3.2.4 Parallel multicolumn cache
	Fig. 3.4. Decision tree for a n-way parallel multicolumn cache (PMC)

	3.2.5 Group-associative cache

	3.3 Dynamically-Probed Caches
	3.3.1 Predictive sequential-associative cache
	Fig. 3.5. Decision tree for a 2-way predictive sequential associative cache (PSA)

	3.3.2 Reactive-associative cache
	Table 3.1 Qualitative comparison of previous schemes and the r-a cache.

	3.4 Related Work

	4. Quantitative analysis
	4.1 Hit time of the reactive-associative cache
	Table 4.1 Cache hit times (ns).

	4.2 Methodology
	Table 4.2 Hardware parameters for base system.
	Table 4.3 Benchmarks and inputs.

	4.3 Base performance of the reactive-associative cache
	Fig. 4.1. Base performance of the reactive-associative cache.
	Table 4.4 Reactive-associative miss rates compared to set associative caches

	4.4 Comparison between the reactive-associative and prior schemes
	Fig. 4.2. Comparison of reactive associativity to previous schemes
	Table 4.5 Initial probe (p0) and overall (ov) miss rates for various cache schemes.

	4.5 Effect of filtering and feedback on probe0 and overall miss rates
	Table 4.6 Effect of filtering and feedback on probe0 and overall miss rates

	5. Conclusions

