REACTIVE
ASSOCIATIVE

CACHES

A Thesis
Submitted to the Faculty
of
Purdue University
by

Brannon Batson

In Partial Fulfillment of the
Requirements for the Degree
of
Masters of Science in Electrical Engineering

May 2000



To my family



ACKNOWLEDGMENTS

| would like to thank my thesis advisor, Prof. T. N. Vijaykumar, for spending long
hours in our common pursuit to make this project successful. | would also like to thank
Prof. Babak Falsafi and Prof. Cheng-Kok Koh for their invaluable service as members of
my advisory committee. | am grateful to have had all three of these professors as teachers,

advisors, mentors, and friends.



-iv -

TABLE OF CONTENTS

Page
LIST OF TABLES ...ttt ettt e et e e e e e e e e e e e e e e e s s s nnnaanes Vi
LIST OF FIGURES .....oottttetiiiiiiiee ettt e e e e e e e e e e e e e e e e e e e e s annnneees Vii
Y 2 1S 3 1 3 A PP viii
CHAPTER 1. INTRODUCTION ...citiiiiiiiiiiieieee et e e e e e e e e e e e e e e e e aaaaannnnns 1
1.1 Critical Path Analysis of Direct-Mapped and Set-Associative Caches............. 2
1.2 MUIti-Probe CACh@S .......uuiiiiiiiiiiiiiiiiiiee et e e 5
1.3 Reactive ASsociative CacChes ..........ciiiiiiii e 7
1.4 THESIS ROAAMEP ..eveviiiiiiiiiiiiiee ettt e e e e e e e e 10
CHAPTER 2. REACTIVE ASSOCIATIVE CACHE ...ttt 11
2.1 BaSIC OrganiZation .............uuuuuuuuuiiiiiaieeeeeeeaeeeeeeeeesssssssnnasaaaeeeaaeaeaeeeeesesnnsnnnnnns 11
2.0.1 DALA SIA@.....ciiiiiiieiiieite e 12
2. 1.2 TAQ SIUC ettt e e e e e 13
2.1.3 CaACRE MISS ... 14
2.1.4 Probe0 hit [atENCY........uiiiiiiieiiee e 14
2.2 WY PreOiCUION ....eeeeiiiiiiiiieee ettt e e e e e e e e e e e 16
2.2.1 PC-based way-prediCtion .............cuevuuiiiiuiiiiiiiieee e eeeeee e 17
2.2.2 Access-prediction table and block way-number table ......................... 18
2.2.3 XOR-based way-prediCtion.............cooooiiiiiiiiiiiiiiieeeeeeeee e 20
2.3 Selective Displacement and Feedback ...............oovviiiiiiiii e 21
2.3.1 Victim list: selective displacement...........ccoooovviiiiiiiiiciciiiii e, 22
2.3.2 Feedback with misprediction counters and the inhibit list................... 23

2.3.3 Uninhibiting to accommodate dynamic program behavior.................. 24



Page
CHAPTER 3. QUALITATIVE COMPARISON.......ccoiiiiiieiitiiiiiiiiriee e e e e e e e e e e e 27
3.1 Issues Common to Multi-Probe Caches ...........coovvvviiiiiiiiiiiieeeeeeeeee 27
3.1.1 Complications due to pipeline timing ..........cccceeveviiiiiiiieeeec e, 28
3.1.2 PerformancCe METIICS .....coouieeeeeeeeiieeeeeeiiiise e e e e e e e 28
3.2 Statically-Probed CaCh@S.........cciiiiiii i 29
3.2.1 Hash-rehash cache..........ccccoooiiiiiii e 30
3.2.2 Column-associative CaCh@ .........coooeieiiiiiiiiieee e 31
3.2.3 Sequential multicolumn CaCNE .........uuiiiiiii i 32
3.2.4 Parallel multicolumn cache ............coouuiiiiiiiiii e 33
3.2.5 Group-assoCiative CACNE.........uuviiiiiiiiiiiieee e 34
3.3 Dynamically-Probed CacChes ..........cooviiviiiiiiiiiiieie e 35
3.3.1 Predictive sequential-associative cache............ccccceevviiiiiiiiiiiieeciiiie e, 35
3.3.2 Reactive-associativVe CaChE ..........ccevvviiiiiiiiiiiee e 37
CHAPTER 4. QUANTITATIVE ANALYSIS ...t 41
4.1 Hit time of the reactive-associative Cache ................uviiiiiiiiiiiee e 41
o \Y 1= 1 T Yo (o] o o | 42
4.3 Base performance of the reactive-associative cache............c..ccooooovviiiiiiinnnnn, 44
4.4 Comparison between the reactive-associative and prior schemes................... 47
4.5 Effect of filtering and feedback on probeO and overall miss rates .................. 49
CHAPTER 5. CONCLUSIONS ....coiiiiiiiiiiiiiie ettt e e e e e e e e e e e 51

REFERENGCES ... e e e e et 53



-Vi -

LIST OF TABLES
Table Page
Table 3.1 Qualitative comparison of previous schemes and the r-a cache..................... 38
Table 4.1 Cache Nit IMES (NS)....uviiiiiiiiiieee e 42
Table 4.2 Hardware parameters for base SyStem...........ooooiiiiiiiiiiiiiiiiiiiie e 43
Table 4.3 Benchmarks and iNPULS. ......cooooiiiiiiiii e 44
Table 4.4 Reactive-associative miss rates compared to set associative caches.............. 46

Table 4.5 Initial probe (p0) and overall (ov) miss rates for various cache schemes. .....49

Table 4.6 Effect of filtering and feedback on probe0 and overall miss rates.................. 50



Figure

Figure 1.1:

Figure 1.2:

Figure 1.3:

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 4.1:

Figure 4.2:

- Vii -

LIST OF FIGURES

Page
A direct-mappPed CACNE ........cii i 3
A n-way Set-asSoCiative CaCNe ...........uuuiiiiiiiiiiiiiiii e 4
A reactive assoCiative CaCh@ ...........oooiiiiiiiiic e 8
The reactive-associative Cache. ... 12
Implementation of probe0 way# multiplexXor. .........ccccocevveiviiiiiii e, 14
Pipeline timing of way-prediCtion. ..............ccovvviiviiiiiiiiiie e, 17
PC-based way-prediCtion SITUCLUIES. .........uurreiiiiiii e eeeeeeeeeeeeeeeee s 19
Decision tree for the hash-rehash algorithm...............cccooiiii, 30
Decision tree for the column-associative algorithm................cccoiiiiiinnee. 31
Decision tree for a n-way sequential multicolumn cache (SMC) .............. 32
Decision tree for a n-way parallel multicolumn cache (PMC)................... 33

Decision tree for a 2-way predictive sequential associative cache (PSA)..36

Base performance of the reactive-associative cache. ................ccccevvvennnnns 45

Comparison of reactive associativity to previous schemes ........................ 47



- Viii -

ABSTRACT

Batson, Brannon. M.S.E.E., Purdue University, May, 2000. Reactive Associative Caches.
Major Professor: Babak Falsafi.

The growing gap between processor speeds and memory speeds is resulting in
increasingly expensive cache misses, underscoring the need for sophisticated cache hierar-
chy techniques. Increasing the associativity of the cache is one way to reduce its miss rate.
While set-associative caches typically incur fewer misses than direct-mapped caches, set-
associative caches have slower hit times. We propose the reactive associative cache (r-a
cache), which dynamically provides associativity in response to application demand. The
r-a cache employs a novel multi-probe organization which uses a direct-mapped data array
and a set-associative tag array. It is accessed like a regular direct-mapped cache for most
accesses, but it also has the ability to be accessed like a set-associative cache (using a way
prediction), when it is necessary to alleviate direct-mapped line contention. Circuit analy-
sis indicates that a r-a cache has a hit latency comparable to that of a direct-mapped cache
for all direct-mapped accesses and all correctly predicted set-associative accesses. Incor-
rectly predicted set-associative accesses will incur an additional probe into the data array.
Prior multi-probe cache organizations have suffered from poor initial-probe miss rates,
and therefore require many secondary probes, which increases average hit time and
demand for cache bandwidth over that of a direct-mapped cache. Furthermore, a r-a cache
does not require cache block swapping, as in statically-probed multi-probe cache schemes
such as column associative and group associative. A r-a cache uses two mechanisms,
selective displacement and feedback, to reduce pressure on the prediction resources and
achieve low initial-probe miss rates. Selective displacement refers to the notion of only
displacing conflicting cache blocks to set-associative positions. The feedback mechanism

allows the r-a cache to measure the ‘predictability’ of certain instructions and to prohibit



-iX -

associative displacement for unpredictable accesses. Simulations show that a 4-way r-a
cache, using modest prediction resources, will outperform column associative and predic-
tive sequential associative, as well as achieve 1%-11% speedups over a direct-mapped

cache on a subset of the SPEC95 benchmark suite.



1. INTRODUCTION

One of the fundamental limitations of the performance of modern computer sys-
tems is the rate at which memory requests can be serviced. While processors have steadily
improved in computational performance by several orders of magnitude, memory speeds
have not kept pace. This rift, as well as the concept of locality of memory reference, has
motivated the development of memory hierarchies, in which small and fast SRAM cache
memories are used to satisfy most requests. Successive levels of increasingly larger (and
slower) caches are used to gradually insulate the nimble processor from slower main
memory DRAMSs. The direct relationship between memory system performance and over-
all system performance has made cache design a relevant issue in computer architecture.

The performance of the memory system is particularly important in the first level
of cache (L1) that is accessed by the cpu. In modern processors, the L1 cache is on-chip,
and split between an instruction cache (L1 icache) and a data cache (L1 dcache). The high
locality and regular access patterns of instruction streams have made the L1 instruction
cache perform relatively well, but the L1 data cache of most systems still is a significant
performance bottleneck. There are three major reasons that this is the case: (1) loads (and
therefore data cache accesses) are in the critical path of program execution, so there are
few techniques which can hide the latency of a load operation; (2) for a variety of circuit
reasons, it is difficult to increase the number of cache ports to satisfy all the requests from
the processor; and (3) as the wire delays start to dominate intra-processor communication,
the time to retrieve a cache block from the next level in the hierarchy is growing, which
makes misses in the data cache increasing more expensive. In this thesis, we examine opti-
mizations to improve the performance of the L1 data cache.

The traditional measures of a cache are its miss rate (the percent of accesses that

are not satisfied by the cache), and the hit latency (the time it takes to service cache hits).



_2-

The miss rate indicates how often the next level in the hierarchy is accessed, so it becomes
more important as the L2 access latency increases. The hit latency is often in the critical
(circuit) path of processor execution, so it can figure prominently in the clock cycle of the
cpu. The simplest form of a L1 dcache is a direct-mapped organization, in which each
cache block address is mapped to a single possible location in the cache array. This struc-
ture allows for fast hit times, and also achieves respectable miss rates, usually lower than
15% for typical integer applications. Set associative caches allow a given cache block to
reside in more than one place (way) within the array, which increases occupancy of re-
used data, and therefore decreases the miss rate. The decrease in miss rate can be drastic.
For a subset of the SPEC95 benchmark suite [1] (including vortex, gcc, li, perl, go, troff,
m88ksim, swim, and fpppp) with an 8k L1 dcache, a 2-way set associative cache has (on
average) 32% fewer misses than a direct-mapped cache. A 4-way set-associative cache has
41% fewer misses than a direct-mapped cache. This decrease in miss rate is unfortunately
accompanied by an equally drastic increase in hit latency, due to the additional logic nec-
essary to implement the associativity. Using the cache analysis tool CACTI [2], we esti-
mate that an 8k 2-way set associative cache is 53% slower than an 8k direct-mapped
cache. This creates a major trade-off between hit latency and miss rate in the L1 data
cache. In Section 1.1, we examine more closely the circuit issues that control the hit time
of direct-mapped and associative caches. The large increase in hit latency between direct-
mapped and a set-associative caches has motivated interest in multi-probe cache schemes,
which have a hit-latency close to that of a direct-mapped cache, but with miss rates closer
to an associative cache. These schemes have failed to garner industry attention because of
fundamental problems with respect to performance and bandwidth utilization. We briefly
examine these issues in section 1.3. In section 1.4, we introduce the reactive associative

cache, which addresses the major problems with multi-probe caches.

1.1 Critical Path Analysis of Direct-Mapped and Set-Associative Caches
In this section we will examine the circuit differences between a direct-mapped
and set-associative cache as it pertains to the access time of the cache. Knowledge of these

differences is critical to understanding the components of cache access time. Figure 1.1



-3-

and Figure 1.2 are generic representations of a direct-mapped and a set-associative cache,
respectively. For the purposes of this discussion, we ignore the word multiplexing delay
and the output drivers, as they are common to all organizations. Also, though our diagrams
do not indicate as much, both the set-associative and direct-mapped tag & data arrays are
subject to squaring optimizations, which optimize the width and height of the arrays to
minimize the access delay. Furthermore, it is uncommon for today’s processors to use a
single array larger than 8kb, so 16kb and larger data banks are, in general, sub-banked
(split into two or more smaller arrays). However, these sub-banks are not independently
accessible, and therefore act like a single array (caches with independently accessible
banks are referred to anulti-banked or simplybanked,caches). In this thesis, when we
speak of a single array or a single bank, we do so with the understanding that the array

may be sub-banked, but acts as though it were a single array.

Cache Block Address

| TAG | INDEX |
TAG SIDE cee DATA SIDE
Word
_Lines_
LN LN
column muxes & sense amps Address column muxes & sense amps
Decoder
A 4 tag
compare
v
Hit/Miss Output Data Bus

Fig. 1.1. A direct-mapped cache

In the direct-mapped cache (Figure 1.1), each set holds a single cache block. As
soon as the address becomes available, the appropriate word line is activated, which
causes the bitlines take on the value stored within that cache block. The sense amplifiers

detect transitions in the bitlines and immediately make this cache block available on the



Cache Block Address

| TAG | INDEX |
TAG SIDE oo DATA SIDE
Way 0 Way 1 Way n-1 vy v Way 0 Way 1 Way n-1
Word
o0 o Lines e e e
LN ) LN ) LN ) LN ) LN ) LN
Address
Decoder
F P ol
¥ ¥ ¥ column muxes
fag tag ces Tag and sense amps
compare |compare compare 1 1 1

| }\,»\ Output Way Multiplexor

Output Data Bus

Hit/Miss
Fig. 1.2. A n-way set-associative cache

output data bus. In parallel with the data cache probe, the tag array is similarly accessed to
provide the tag of the stored cache block. This stored tag is compared to the tag bits of the
original address, and if they match, the Hit/Miss signal is asserted to indicate a cache hit.
By the time the hit is signalled, the data bus should already contain the value of the cache
block (as the critical path is, in general, through the tag path). As mentioned earlier, this
organization allows for extremely fast access times, which in turn enables fast clock
cycles. However, because each address maps to exactly one line in the cache, no two
addresses with the same set bits can reside in the cache at the same time. Thidleads to
spots(frames with high line contention), which cause thrashing, laslds(under utilized
cache lines), which waste cache space.

The set-associative cache (Figure 1.2) works in a somewhat similar manner, except
that multiple cache blocks can reside in a single set, which alleviates most line contention.
When the address becomes available, the appropriate wordline is activated. This wordline

is shared by each associative way-bank. In each way-bank, the bitlines will take on the val-



-5-

ues of the cache block stored in that way. The sense amplifiers will detect transitions on
the bitlines and produce logic level values at the inputs to the output way multiplexor. The
tag array is also divided into separate way banks, holding the tag information for the cache
blocks in corresponding ways of the data array. Each way bank in the tag array is probed
in parallel to produce inputs to the n tag comparators (which will compare these stored
tags to the tag bits of the address). The results of these tag comparisons are used to gener-
ate the select lines for the output way multiplexor on the data side. Once these select lines
are available, the output way multiplexor will output the correct cache block onto the out-
put data bus. The set associative cache introduces significant critical path delay in addition
to the delays associated with a direct-mapped cache: (1) The time it takes to propagate the
way select lines from the tag comparators to the output multiplexor, and (2) The time to
switch the multiplexor and provide the results on the data bus. Note that the data bus typi-
cally carries a large RC load, and while the evaluation on this bus is overlapped with tag
compare in a direct-mapped cache, it is in the critical path of cache access for a set-asso-
ciative cache. Thus, a set-associative cache can be expected to have a significant increase
in hit latency over a direct-mapped cache. This has lead designers to explore alternative
associative organizations, such as multi-probe caches. Further discussion of the intricacies

of tag and data-side cache timing can be found in [3].

1.2 Multi-Probe Caches

The large increase in hit latency of a set-associative cache over a direct-mapped
cache has motivated research in alternative caches that have direct-mapped hit latencies,
but with increased associativity to allow for lower miss rates. Most research in this area
has been in what we refer to collectivelyrasiti-probe cachesThe initial concept behind
these organizations is to maintain a direct-mapped type cache, but provide the ability to
sequentially probe different locations within the cache, and therefore allow any given
cache block to be placed in multiple locations. While multi-probe schemes allow for
direct-mapped hit latencies on the initial probe into the cache, any subsequent probes
require one or more additional cycles of hit latency, as well as stalling access to the cache

by other memory operations. In this thesis, we will refer to the initial probe as probeO, the



-6 -

subsequent probe as probel, and so on. Most multi-probe organizations will check in a
static location on the initial probe into the cache (usually the direct-mapped location).
These organizations are referred tat@sically-probedcaches. We refer to caches that
employ way-predictors (i.e. probe0 is not necessarily to the direct-mapped location) as
dynamically-probedaches.

Statically-probed caches include hash-rehash [4], column-associative [5], sequen-
tial & parallel multicolumn [6], and group-associative [7]. In Section 3, we will analyze in
detail the differences between these organizations. At this point, however, it suffices to
point out the fundamental problems shared by all statically-probed caches. One such limi-
tation is that since the initial probe is always to the direct-mapped location, the initial-
probe miss rate is always at least as large as the miss-rate of a direct-mapped cache. The
probe0 miss rate increases as more blocks are displaced from their direct-mapped loca-
tions, as there are fewer blocks that can be reached on the first probe into the cache. To
decrease the probe0 miss rate, all of the statically-probed caches will swap a block found
on a subsequent probe with the direct-mapped location. Unfortunately, dedicated circuitry
to support cache block swapping is impractical for caches, which use regular and highly
optimized circuitry. A modest implementation of cache block swapping would require two
reads and two writes (using an extra intermediate cache block), which increases average
hit time and degrades valuable L1 bandwidth. Furthermore, we will show that even with
cache block swapping, the initial-probe miss rate is still nominally larger than the direct-
mapped miss rate.

To increase the probability of a first probe hit without block swapping, the predic-
tive sequential associative cache [8] (PSA cache) proposed using way-prediction. Way-
prediction has been previously used for low-power purposes in icaches [9], but PSA is the
first attempt to apply it to dcaches to create a low-latency multi-probe cache. The initial
probe can hit in any way in the set as long as the way-prediction is correct. Thus the PSA
cache’s probe0 miss rate is dependent only on the prediction accuracy of the way-predic-
tor. The PSA cache predicts all accesses, even those that would have not produced conflict
misses in a direct-mapped cache, and without regard to the performance of the predictor.

Therefore, the PSA cache has poor initial-probe miss rates, which are usually significantly



-7 -

worse than direct-mapped miss rates. Each probe0O miss requires the cache to be stalled
until probel completes. This can actually cause a system with a PSA cache to perform
worse than one with a direct-mapped cache, if there is limited L1 bandwidth. Predictive
sequential associative and reactive-associative, which we introduce in this thesis, are both

considered dynamically-probed caches.

1.3 Reactive Associative Caches

Statically-probed caches have been around for nearly fifteen years, but have not
gained industry acceptance, due to the requirement for cache block swapping. Predictive
sequential associative is similarly fated, due to its heavy increase in bandwidth utilization.
We suggest a new dynamically-probed scheme called reactive-associative (r-a), which
does not require cache block swapping, and has a bandwidth demand similar to that of a
direct-mapped cache.

The r-a cache employs a novel organization in which the data array is direct-
mapped, but the tag array is set-associative (as shown in Figure 1.3). The data side con-
tains a single data array, like in a direct-mapped cache, which can support only one probe
at a time. The data side does not require tag match information from the tag array on the
initial probe, and therefore the critical path though the data side is equivalent to that of a
direct-mapped cache. The tag side contains equivalent logic to the tag side of a set-asso-
ciative cache (Figure 1.2). Specifically, the tag array is divided into way banks that are
probed in parallel for a given set (from the cache block address). The critical-path delay of
the tag side of a set-associative cache is comparable to that of a direct-mapped tag side.
This is because the set-associative tag array contains two or more way banks that are each
smaller and faster than a direct-mapped tag array; since the way banks are probed in paral-
lel, the tag array of an associative cache is actually faster than that of a direct-mapped
cache, which offsets the increase in other logic.

Most accesses proceed just as though it were a direct-mapped cache, but when line
contention is detected, the appropriate cache bocks are placed into set-associative posi-
tions. The initial probe location is controlled by a way selection multiplexor, which allows

either the direct-mapped way or a way prediction to be selected depending on whether itis



Cache Block Address

| Set Associative TAG Set Associative INDEX. ]
. direct mapped
1 way #
predicted
way # —]
TAG SIDE wayf |... DATA SIDE
sel
Way 0 Way 1 Way n-1 \ A 4
Word
LI ) _ |:irle_5_ |
LN LN o000 [N )
Address column muxes & sense amps
Decoder
" “
column muxes
tagv @ag | ,,, [ [0 and sense amps
compare |compare compare
k |
o000
way

sel Output Data Bus

Probe0 Hit/Miss o
Overall Hit/Miss

Fig. 1.3. A reactive associative cache

a direct-mapped or set-associative access, respectively. The advantage of using a set-asso-
ciative tag array is that the location of the cache block is determined by the end of the ini-
tial cache probe, which simplifies pipeline timing, requires at most one additional probe
on a probe0 miss (even for highly associative r-a caches), and eliminates superfluous addi-
tional probes if the block is not in the cache. The idea of using a set-associative tag array
with a direct-mapped data array was proposed initially in [6]. However, we show that this
is actually a feasible alternative by performing critical path circuit analysis with CACTI.

As can be seen in Figure 1.3, the reactive-associative cache is asymmetric in configura-
tion. However, cache designers routinely apply separate squaring and sub-banking optimi-
zations to tag and data arrays, so architectural symmetry rarely maps to circuit symmetry
even for traditional direct-mapped or set-associative caches. It is for this reason that the
asymmetrical organization of the reactive-associative cache is unlikely to create additional

floor planning problems.



-9-

Since the data output path is decoupled from the tag comparison path, the r-a cache
can support initial probe hit latencies comparable to those of a direct-mapped cache. In
Section 4.1, we show that for 16k and larger cache sizes, the difference between the hit
latency of a r-a cache and a direct-mapped cache is less than 0.8%. Using a set-associative
tag array does not impact hit time, in general, because a set-associative tag array has per-
formance comparable to that of a direct-mapped tag array (as mentioned earlier, in most
cases, a set-associative tag array is faster than a direct-mapped tag array, since the set-
associative array is divided into smaller and faster way banks that are probed in parallel).

While the organization of the r-a cache is interesting, the true novelty comes from
the displacement/prediction subsystems. The r-a cache will only displace conflicting
blocks to set associative positions, therefore relieving what would be line contention (and
thrashing) in a direct-mapped cache. Conflicting cache blocks are detected using a so-
called victim list, which tracks recent L1 dcache misses. By only displacing conflicting
blocks, we relieve pressure on the way-predictor, which now must only track way predic-
tion information for displaced (contentious) cache blocks. The notion of only displacing
certain blocks is referred to aelective displacemerfurthermore, we determined that in
each application, there are a group of instructions that have poor predictability. The r-a
cache employs feedbackmechanism which will measure the dynamic prediction accu-
racy per individual (or groups of) instructions. Instructions with poor predictability are
prohibited from accessing displaced cache blocks (i.e. the cache blocks are forced to
reside in their direct-mapped positions). By limiting the candidates for associative dis-
placement, the r-a cache will have a higher overall miss rate, in general, than the earlier
multi-probe cache schemes. However, this performance disadvantage is more than offset
by the increased performance due to have a much lower probe0O miss rate and by eliminat-
ing the need for costly block swapping.

The way predictor uses a prediction handle, which is some function of system state
that correlates to data access patterns, and is available prior to the effective address. This
prediction handle is used to index into a prediction table, which allows for a way predic-
tion. Predictive sequential associative recommended the use of XOR way prediction, in

which the source register contents are logically XORed with the offset value, to produce



-10 -

an approximation of the data address (this is similar in flavor to zero-cycle loads, which
were proposed in [10]). Unfortunately, it is unlikely that this method could be used
because of the strict timing constraints of cache accesses. For XOR prediction, the logical
operation would have to be performed, and a way prediction table lookup completed, all in
the time of a normal address computation. For r-a, we suggest using PC prediction, which
is a weaker prediction handle that correlates the address of the memory operation (i.e., the
PC value) to the way prediction. Since the PC is available many cycles earlier than the
memory request is dispatched, there is plenty of time for table lookups, and there is no risk
of compromising the critical path of cache accesses.

We evaluated the performance of several multi-probe caches on a subset of the
SPEC95 benchmark suite including applications of varying associativity requirements.
For these benchmarks, the geometric mean of the direct-mapped miss rates is 7.9%. The
initial probe miss-rate mean for the PSA cache (using XOR prediction) is 16.6%, while
the initial probe miss-rate mean for the r-a cache (using XOR prediction) is 7.3%. When
using the more implementable, but somewhat weaker, PC prediction scheme, the r-a cache
achieves a respectable initial-probe miss rate mean of 8.7%. Execution time simulations
with these benchmarks show that a 4-way associative r-a cache, using 1184 bytes of pre-
diction storage, achieves 1%-11% speedups over a system with a direct-mapped cache,
and 1%-7% speedups over a system with a predictive sequential associative cache, when
the bandwidth to the L1 dcache is limited.

1.4 Thesis Roadmap

In Section 2, we develop the reactive associative cache in detail. In Section 3, we
describe the other multi-probe cache schemes, and do a qualitative comparison against
reactive associative. In Section 4 we provide a thorough performance analysis using
SPEC95 benchmarks on an out of order simulator. We present our conclusions in Section
5.



-11 -

2. REACTIVE ASSOCIATIVE CACHE

The r-a cache employs a physical organization similar to that of a direct-mapped
cache, but allows cache blocks to reside in set-associative positions. Only blocks that
cause persistent conflict misses are displaced. Low hit latency is achieved by using a
direct-mapped data path. Since a direct-mapped data array can probe only one location at
a time, associative cache blocks are found using a way prediction. Incorrectly predicted
associative accesses will require an additional probe into the data array. Cache blocks
residing in their direct-mapped positions can be found via conventional direct-mapped

indexing, without the need for a way prediction.

2.1 Basic Organization

The r-a cache uses a set-associative tag array and a direct-mapped data array, as
can be seen in Figure 1.3. A more conceptual view of the cache can be seen in Figure 2.1.
The r-a cache simultaneously accesses the tag and data arrays for the first probe, at either
the direct-mapped location or a set-associative position provided by the way-prediction
mechanism. If the first probe hits, the access is complete and the data is returned to the
processor. A probe0 miss occurs for one of three reasons: (1) the access is predicted to be
direct-mapped, but the block is actually in a set-associative position, (2) the access is pre-
dicted to be set-associative, but the way-prediction provided is incorrect, or (3) the block
is not resident in the cache at all. Since the tags for all the ways are checked in parallel
during probeO, the actual location of the cache block is correctly determined by the end of
probe0, even if the initial prediction is incorrect. Therefore, on a probe0 miss, the cache
block can be retrieved from the correct way with only one additional probe (called probel)
into the data array. The tag array would not need to be accessed again, as the tag informa-

tion was verified during the initial probe (therefore, an overall hit signal is generated at the



-12 -

predicted way number address
: ! direct-mapped
¢ way number
probe0 d-m/
probe0 predicted/
probel? —»
data array
way #0 tag array way #n-1 set |Way #0
>N . . .
way #i
concat
way #n-1
probe0-hit probel-hit cache block Y

Fig. 2.1. The reactive-associative cache.

end of probe0, just like in a conventional cache). Of course, if the block is not in the cache
at all, then this additional probe is unnecessary, and we can proceed immediately with an
L2 cache access.

Thus there are three possible paths through the cache for a given address: (1)
probe0 is predicted to be a direct-mapped access, (2) probe0 is predicted to be a set-asso-
ciative access and the prediction mechanism provides the predicted way-number, and (3)
probe0 is mispredicted but obtains the correct way-number from the tag array, and the data

array is probed with the correct position in probel.

2.1.1 Data side
The data side of a conventional n-way set-associative cache (Figure 1.2) has n way

banks, each of which is a separate array. The r-a cache uses one data bank, similar to a



-13 -

direct-mapped cache (Figure 1.1). This single data array may be thought of as containing
the traditional data bank for each set-associative way, placed one below another, sharing
bit lines (see Figure 1.3). Thus, the blocks belonging to a set in the r-a cache are spread out
in the data array, placed at a stride equal to the number of sets in a traditional set-associa-
tive cache (Figure 2.1).

To index into the data array for probe0O direct-mapped accesses, the index bits cor-
responding to a conventional set-associative cache are concatenated with a few lower
order bits from the conventional set-associative tag field, calledirdet-mapped way
numberfor the address. For probe0 set-associative accesses, the conventional set-associa-
tive index is concatenated with the predicted way number provided by the way-prediction
mechanism. For probel accesses, the conventional set-associative index is concatenated
with the correct way-number obtained during probe0. Thus, the set is identified by the
conventional set-associative index, but the block within the set is determined by the way-
number output of the multiplexg@robe0 way# muxas shown in Figure 2.1. The select
input to the multiplexor is set to probe0 direct-mapped, probe0 set-associative, or probel.
The select foprobe0 way# muss set to probeO direct-mapped or probe0 set-associative
by the way prediction hardware prior to the initial probe. If probe0 fails (but there is a tag
match in an alternate way during probe0), then the mux is set to probel for the subsequent

cache access, so that the correct way will be supplied to index the data array.

2.1.2 Tag side

The r-a cache tag side is similar to that of a set-associative cache (Figure 1.2 &
Figure 1.3). Much like conventional set-associative caches, the r-a cache uses as many tag
banks in the tag array as the associativity of the cache, with each entry containing the
usual valid and other state bits and the conventional set-associative tag. The tag array is
accessed using the conventional set-associative index, probing all the banks in parallel.
The difference between the r-a tag side and the set-associative tag side is in the Hit/Miss
signals that are generated. Both will generate an overall hit signal (that will indicate that
the cache block is resident in any of the n ways), but the r-a cache also generates a probe0

hit signal. The probeO hit signal indicates that the cache block is indeed in the cache, and



-14 -

direct-mapped : d-m
probe0 way# bel " B:ggg&ed probeoe\r,gg#el
pregicéed l probel way way #  Way#
probe way#i ¢ + ¢
probe0 d-m/—3» probe0 d-m/ —p
probe0 predicted probe0 predicted
probel? ¢ probel? ¢

Fig. 2.2. Implementation of probe0 way# multiplexor.

the initial probe prediction was accurate. If the probe0 hit signal is low, and the overall hit
signal is high, then a probel must be performed. The probe0 hit signal is created by multi-
plexing (byprobeO hit muxthe tag match signal generated by the comparator for the way
number of the initial data probe, as in Figure 2.1.

Although the r-a cache uses prediction to probe the data array, data is returned to
the processor only after ascertaining that the prediction is cafreathere is no increase
in speculation over a system with a direct-mapped cache. However, the r-a cache does not
preclude optimistically returning the data before the tag match is confirmed [11], which is

not possible in a conventional set-associative cache.

2.1.3 Cache miss

On an overall miss, the cache block is retrieved from the L2 cache, and usually is
placed in its direct-mapped location in L1. However, if the cache block address is identi-
fied as avictim (a persistently conflicting cache block), then it will be placed into an asso-
ciative position. The associative position can be selected using any of the conventional

replacement algorithms such as LRU, random, etc.

2.1.4 Probe0 hit latency

As discussed in Section 1.1, set-associative caches are fundamentally slower than
direct-mapped caches. However, our critical path analysis indicates that a reactive associa-
tive cache is comparable in speed to a direct-mapped cache for the initial probe, if we
assume that the prediction information is available prior to the cache access. In

Section 2.2, we show how way-prediction can be done before the data address is available.



-15 -

Compared to a conventional direct-mapped cache of equal size, the r-a cache intro-
duces the extra multiplexprobeO way# mui the data array index path (Figure 2.1).

Note that this multiplexor always chooses one out of three inputs, irrespective of the set-
associativity of the r-a cache. The multiplexor select signal to choose between the probe0
direct-mapped, probe0 way-predicted, and probel way numbers is available earlier than
the data address because the signal comes from the way-prediction mechanism. A circuit-
level optimization to exploit this fact is to generate a one-hot encoding of the select signal
to set up the multiplexor select path well before the data address is available, so that the
multiplexor adds only its propagation delay, and not any delay due to the select signal
itself, to the data array index path.

Probe0 way# mugan be implemented as a single level of pass gates using the one-
hot encoding of the select signal, as shown in Figure 2.2. In the case of direct-mapped
probe0, the data array index path propagates through one extra pass gate, compared to that
of a conventional direct-mapped cache. In the case of way-predicted probe0, because the
predicted way number is available earlier than the address, the data array index path also
propagates through one extra pass gate, compared to that of a conventional direct-mapped
cache. Some or all of this pass gate delay may be further folded into the data array address
decode tree or the address-compute pipeline stage. Probel may incur a whole extra cycle
to account for therobel way# encodéFigure 2.1) and the pass gate.

The tag side does not incur any extra delay because it uses the conventional set-
associative index directly from the address and not thrqughe0 way# muxHigure 2.1).

Using the multiplexoprobeO hit muxXFigure 2.1)the probe0 hit signal is generated by
selecting the tag match for the probe0 way-number from among the tag matches from all
the banks of the tag array. Note that the probe0 way-number (either direct-mapped way-
number or predicted probe0 way-numbers) is the seleptdbe0 hit muxand is avail-

able no later than the address. While the tag array is being accessed with the conventional
set-associative index, the probe0 way-number is sent, in paral@bbe0 hit muxselect.

A one-hot encoding of this select inputpi@be0 hit mwallows the multiplexor select

path to be set up well before the tag match signals reeate0 hit muxThus, the probe0-

hit signal incurs extra delay of only one pass gate, compared to a conventional direct-



-16 -

mapped cache hit signal. Assuming that the select lingsrédreO hit mux& probe0 way#

muxare set up early, as we mentioned earlier, there are no additional transistor switch

delays in the critical path of the probe0 access in excess of those in a direct-mapped cache.
The overall-hit signal (probel hit signal) incurs extra delay of one OR gate, com-

pared to a conventional direct-mapped cache hit signal.

2.2 Way Prediction

For each access to an r-a cache, there must be a prediction as to whether it is a
direct-mapped or a set-associative access. If it is a set-associative access, we also must
predict the associative way that the block is in. Perhaps confusingly, we refer to both the
above predictions as being performed by the way prediction hardware. In the hit time dis-
cussion above (Section 2.1.4), we indicated that the r-a cache has a direct-mapped hit
latency if the way predictions are available prior to the cache access. Clearly, this strict
timing constraint limits the possible prediction criteria to those available prior to genera-
tion of the cache block address. Icache way-prediction techniques can be combined with
branch prediction, but dcaches do not interact directly with control flow, so those tech-
niques cannot be used directly.

We examine two handles that can be used to perform way prediction: instruction
PC of the memory reference; and XOR, which is an approximation of the data address
formed by XORing the register value with the instruction offset (proposed in [10], and
used in [8]). These two handles represent the two extremes of the trade-off between pre-
diction accuracy and early availability in the pipeline. PC is available much earlier than
the XOR approximation but the XOR approximation is more accurate because it is impos-
sible for PC to disambiguate different data addresses touched by the same instruction.
Other sources for way-prediction are possible, some of which are explored in [8].

Figure 2.3 shows a generic out-of-order processor pipeline and the pipeline timing
of both PC-based and XOR-based way-prediction with respect to cache access. Because
the instruction PC is available early in the pipeline, way-prediction can be done in parallel
with the pipeline front end processing of memory instructions so that the predicted way-

number angbrobe0 way# mugelect input are ready well before the data address is com-



-17 -

XOR-based way prediction

compute reg XOR offsef | ]
YOR lookup way-prediction | | cache
>
Scheme predicted way-number} | accesd
probe0 way# muselect
CPU PC| | fetch | |decodd |reg dispatcly | issue rejire
renam
] AI;-[,/ ] ] loads ] ]
inhibit
PC list BWT stores addresy | cache
Scheme > > > - > >
accesy | accesg comput({ | access
{ B _¢ way-prediction information/ ’_»_ B

PC-based way prediction predicted way-numbeprobe0 way# musgelect

Fig. 2.3. Pipeline timing of way-prediction.
puted. The XOR scheme would require obtaining the contents of a physical register (often

obtained from a register-forwarding path), performing the bitwise XOR operation on that
value with the offset, and using the result to index into a prediction table. The prediction
table entry will then provide the way prediction for cache access. This entire algorithm
must complete within the time to compute a full add (for the address computation) to
avoid delaying cache access. Note that the prediction table must have more entries that the
L1 dcache, or must be highly associative, since the XORed values will experience the
same line contention problems in the prediction table as their counterparts do in the

dcache. Thus, the prediction table alone will have a significant access time.

2.2.1 PC-based way-prediction

PC-based way-prediction tracks memory access behavior to associate the cache
blocks with the PCs of the instructions that access the blocks, by exploiting the locality of
reference within one cache block on a per-instruction basis. The prediction mechanism
tracks the instructions that access displaced blocks and associates the instruction PCs with

the way-number of the displaced blocks. If the instruction accesses the displaced block



-18 -

again (i.e., the instruction exhibits locality of reference within the cache block), the pre-
diction mechanism returns the associated way-number, which results in a probe0 hit. This
kind of locality can be expected from (1) an instruction that accesses the same data
throughout program execution, such as an instruction accessing static globals using a glo-
bal pointer register (e.qg., register $29 in MIPS, register $30 in Alpha), (2) an instruction
that accesses the same data for a period of time during program execution, such as an
instruction accessing stack frame variables within a function invocation using the stack
pointer (the stack pointer changes infrequently within a function invocation), and (3) an
instruction that accesses the different words in a cache block, such as an instruction

accessing successive array elements within a cache block.

2.2.2 Access-prediction table and block way-number table

Figure 2.4 depicts the way-prediction scheme showing all the structures used by
the mechanism. At this point in the discussion, only the access-prediction table (APT) and
the block way-number table (BWT) are of interest, as they perform the actual predictions.

A naive implementation of a PC-based prediction might use a single array, indexed
by PC, which provides a way prediction for that instruction. However, we found that a
direct correlation from PC to way is problematic (as we describe below) and yields poor
prediction accuracy. We solve the major problems with a level of indirection through the
APT.

When a block is displaced to a set-associative position, it may cause further con-
flicts, in which case it is replaced from the cache. The r-a cache places a block replaced
from a set-associative position into the block’s direct-mapped position, anticipating that it
may not conflict anymore. If the block continues to conflict in its direct-mapped position
then the block is displaced to another, presumably different, set-associative position. Thus
a conflicting block may transit through a few positions before settling into a non-conflict-
ing position. During this transition, the way-number of the block is constantly changing
and unless way-prediction is updated with the correct way-number, many mispredictions
will ensue. If multiple instructions access the same block, problems due to block transit

are exacerbated because each of these instructions incurs a misprediction. Because way-



-19 -

_ .. access prdiction block way-number
inhibit list  table (APT) table (BWT)
—_— block address———|mispred
P i counter way #
A
block address

victim list correct prediction: -- predicted way-num»ber
incorrect prediction: + for probe0 L1 access

replacement from L1

mISS counter

miss counter++

TLl cache fill from L2;
displace? victim miss counter = 0

Fig. 2.4. PC-based way-prediction structures.

prediction maps PCs to way-numbers, and not the other way, updating way-number is dif-
ficult, since there is no inverse mapping into the array.

Adding one level of indirection solves the block transit problem. The instruction
PCs are associated with the block address, and not the way-number of the block, in the
access-prediction table (APT). A second table, called the block way-number table (BWT),
is used to associate the block address with the way-number of the block. Multiple entries
in the APT may hold the same block address, but there is only one BWT entry per block
address. Using the block address, transiting blocks update the BWT with the correct way-
number, enabling all the instructions that access the same block again to get the correct
way-number. Through the APT, the r-a cache exploits locality of reference within one
cache block on a per-instruction basis.

The APT is accessed using the instruction PC, and then the block address supplied
by the APT entry is used to access the BWT. If the instruction PC is not found in the APT,
or if the block address supplied by the APT is not found in the BWT, then the access is
predicted to be direct-mapped. If the appropriate entries are found in the APT and the

BWT, then the way-number from the BWT entry is sent to the cache as the predicted



-20 -

probe0 way-number. The BWT is also accessed on a L1 cache fill, so that if the block
being retrieved is found in the BWT, the way-number is updated; this update keeps the
way-prediction accuracy high for blocks in transit.

Because the APT has to hold only the instructions that access displaced blocks,
small size may suffice. However, the table should be associative, so that we don't transfer
instruction line contention problems to data cache performance. Similar to the APT, the
BWT has to hold the way-numbers of only the displaced blocks. Because displaced
blocks, by definition, conflict in the cache and the BWT uses block addresses to index, the
BWT may need to be large or highly associative (or use a skewing function to index).
Conflicts in the BWT cause mispredictions because way-numbers of displaced blocks are
lost when BWT entries get replaced, and when the APT does not find a matching BWT
entry, the APT predicts a direct-mapped access, which results in mispredictions for truly
displaced blocks. But because both the APT and the BWT access are well ahead of the
cache access in the pipeline (Figure 2.3), high associativity of the APT or BWT is not
likely to delay probe0 initiation.

Much like a cache, each APT and BWT entry requires a tag to identify the match-
ing PC and block address, respectively. The tags can be compressed to reduce the tag stor-
age overhead. This compression involves performing a simple, bit-wise logical function

on the original tag bits, allowing for high accuracy, but with modest tag overhead.

2.2.3 XOR-based way-prediction

XOR-based way prediction is similar, in flavor, to the idea proposed in [10], and
subsequently used for way-prediction in the PSA cache. As mentioned earlier, XOR finds
a way prediction by performing a bitwise XOR on the offset and source register value and
using the result to index into a prediction table, all during the address computation. This
scheme exploits the fact that most memory instructions have small enough offsets so that
the block address from the XOR approximation is usually same as or at least correlates
well with the block address from the actual data address.

Because the XOR scheme does not use instructions as the prediction handle, the

scheme does not need a level of indirection used in the PC-based scheme, and hence, does



-21 -

not use the APT. The XOR scheme uses the BWT indexed by the XOR value, instead of
the block address supplied by the APT of the PC scheme. The other key difference
between the XOR and PC schemes is that the XOR scheme accesses the BWT during the
late address-compute pipeline stage, whereas the PC scheme accesses the BWT in the
early instruction-decode pipeline stage. While the XOR scheme may be more accurate
than the PC scheme, this late access may cause the timing problems discussed in

Section 2.2, further exacerbated because of BWT’s high associativity or large size require-
ments (the PSA paper suggests 1024 entries for 256 blocks in the L1 cache), as discussed
in the previous section. Otherwise, the XOR scheme’s BWT behaves identical to the PC
scheme’s BWT.

2.3 Selective Displacement and Feedback

While displacing conflicting blocks reduces overall misses, the initial-probe miss
rate typically suffers due to increased pressure on the way-prediction mechanism. Because
mispredictions result in a second data array access (if the block is in the cache), overall hit
latency and bandwidth to the processor may be noticeably deteriorated if the initial-probe
miss rate is significantly higher than the direct-mapped miss rate. The main reason for this
degradation is that probel hits occupy the data array for extra cycles beyond probe0, caus-
ing subsequent cache accesses to queue in the load/store queue. In the worst case, a sub-
stantial fraction of all L1 hits may be from probel, considerably degrading valuable L1-
processor bandwidth.

Because way-prediction has to use inexact information due to pipeline timing con-
straints, it is difficult to build a perfect (100%) way predictor. Therefore, the r-a cache
attempts to reduce the number of accesses it predicts, so that either data is in a direct-
mapped position or is highly-predictable in a set-associative position, keeping the number
of mispredictions to an acceptable amount. Regardless of whether the PC-based or XOR-
based way-prediction scheme is used, the r-a cache (1) selectively displaces only those
blocks that frequently conflict, avoiding prediction accuracy degradation due to a large
number of displaced blocks, (2) tracks prediction accuracy so that unpredictable blocks

are redisplaced from set-associative to direct-mapped positions, avoiding repeated mispre-



-22 -

dictions and (3) disallows unpredictable blocks from being displaced to set-associative
positions using a feedback mechanism. Thus, the r-a cache achieves performance robust-

ness by trading-off overall hit rate for first probe hit rate, and lowering bandwidth demand.

2.3.1 Victim list: selective displacement

Ideally, the r-a cache would displace only conflicting blocks to set-associative
positions; in a real implementation, it is difficult to isolate capacity and conflict misses.
Consequently, the r-a cache approximates isolation of conflict misses by tracking the set of
recently replaced blocks in a table called the victim list. Each victim list entry consists of a
block address and a saturating counter. The block address of a missing block is inserted in
the victim list and the corresponding counter, which counts the number of misses the
block has incurred in the past, is incremented. After the block is replaced a few times, the
victim list counter reaches saturation, signaling a conflicting block; the next time the block
is brought back into the cache, the block is displaced to a set-associative position, and the
victim counter is reset. Thus, the victim list approximates identification of conflicting
blocks, enabling the r-a cache to displace only those blocks, irrespective of the prediction
scheme used.

The victim list needs to be a high-associative structure to avoid conflicts in the vic-
tim list itself. The victim list is indexed using block addresses whenever a block is
replaced from the cache and whenever a L1 cache fill is encountered, as shown in
Figure 2.4. L1 cache misses insert the missing block address into the victim list and L1
cache fills lookup the victim list to determine whether the missing block should be dis-
placed to a set-associative position. Because the victim list is not on the cache access criti-
cal path but only in the replacement path, the high associativity of the victim list will not
impact hit latency. The victim list need not be implemented as a separate structure, the
miss counters could be placed in the L2 tag array; this implementation would increase the
L2 size by less than 0.5%.



-23-

2.3.2 Feedback with misprediction counters and the inhibit list

There are some memory instructions that have unpredictable data access behavior,
regardless of whether the PC-based or XOR-based scheme is used. If the cache blocks that
these unpredictable instructions act on are permitted to reside in associative positions, then
they will incur many initial probe misses. A high initial probe miss-rate causes high band-
width utilization, which can actually hurt system performance on a bandwidth limited sys-
tem. The solution to this problem is to track the way prediction accuracy of instructions
that act on associative data, and to disable associative displacement for these instructions.

Way prediction accuracy is tracked using saturating misprediction counters, resi-
dent in each entry of the BWT (Figure 2.4). When the BWT provides a way-prediction for
an associative access, the misprediction counter is incremented or decremented for a cor-
rect or incorrect prediction, respectively. When accesses to a particular cache block pro-
duce repeated initial probe misses due to mispredictions, the BWT misprediction counter
for that block saturates at a threshold, referred to amthibit threshold At this point, any
instruction that acts on this cache block is labeled as unpredictable. Here we see another
benefit to the level of indirection through the APT for PC-based prediction (see
Section 2.2.2), namely that all instructions that act on a single datum will share a single
misprediction counter. Since the misprediction counter is incremented on a misprediction
and decremented on a correct prediction, the group prediction behavior of all the instruc-
tions is measured. This prevents one unpredictable instruction from limiting associative
displacement when several other instructions are able to predictably access the cache
block.

When an instruction or a group of instructions are labeled as unpredictable (i.e.,
when the BWT misprediction counter reachesititebit threshold, we proceed to inhibit
those instructions from further associative displacement. This is done by setting an inhibit
bit for each unpredictable instruction in the inhibit list (Figure 2.4). Though we discuss it
as a separate structure, the inhibit list naturally lends itself well to being combined with
the L1 instruction cache. Such an arrangement would require only one extra bit of state
information per instruction in the icache. Once an instruction is inhibited, it will hence-

forth always access the direct-mapped position on the initial probe into the dcache (the



-24 -

inhibit list is accessed with the instruction is decoded, for both the PC and XOR schemes).
Furthermore, if an inhibited instruction encounters a cache block in a set-associative posi-
tion, the cache block will be evicted from the cache. When the evicted block is brought
back in from L2, it will be placed in the direct-mapped position. Inhibit information
spreads through the BWT to all other instructions that share cache blocks with an inhibited
instruction, and then to the BWT entries of all the other cache blocks that those instruc-
tions act on. This plague-like algorithm eliminates repeated cache block evictions when a
cache block is shared by inhibited and uninhibited instructions. Since the feedback mech-
anism will often favor direct-mapped line contention over repeated probe0O misses, it
trades-off overall hit rate for probeO hit rate. This is the main reason that a r-a cache will
have a higher overall miss rate, in general, than the prior multi-probe schemes. However,
feedback, along with selective displacement, will allow a reactive-associative cache to
have a low bandwidth utilization, and to perform well (compared to a direct-mapped cache

and prior schemes) regardless of the application.

2.3.3 Uninhibiting to accommodate dynamic program behavior

We found that the predictability of instructions and cache block addresses varies in
different phases of program execution. For example, in the initialization phase of a pro-
gram, or in the first few iterations of a large loop, instructions may be labeled as unpredict-
able, when in actuality, they become predictable at some later time.

To optimize for the dynamic nature of predictability, it is necessary to occasionally
clear the inhibit list, as well as the misprediction counters in the BWT. Several methods
were explored for doing this, but it turns out that simpler is better. One method, called
periodic clearing, will clear the feedback information at regular intervals of (measured in
number of cache accesses). For example, the inhibit list and misprediction counters can be
cleared every 100,000 cache accesses. Although a generic interval (50,000-200,000
accesses) can be used successfully for most benchmarks, the precise interval to maximize
performance under periodic clearing is application dependant.

Another possibility is to use a scheme we refer to as TLB clearing. This scheme is

motivated by the observation that data and instruction TLB misses correspond to entrance



- 25 -

into new program phases. On a data TLB miss, we clear the inhibit list (which is indexed
by instruction PC), with the hope that the new data will be more predictable by currently
inhibited instructions than the old data. On an instruction TLB miss, we are entering a new
code phase of the program, so we anticipate that cache blocks that are currently unpredict-
able (indicated by having saturated misprediction counters in their respective BWT
entries) may be more predictable by the new instructions. Therefore, on an instruction
TLB miss, we clear the BWT misprediction counters. After clearing the inhibit list and/or
the BWT misprediction counters, instructions are free to access displaced cache blocks.
Although periodic clearing will perform better than TLB clearing if the interval is
pre-selected per application, we recommend the TLB scheme, as it is more robust and
does not require per-application tweaking. We tried more complex dynamic schemes, but

none of these would out-perform periodic or TLB clearing.



-26 -



-27 -

3. QUALITATIVE COMPARISON

There have been several prior proposals for low-latency implementations of asso-
ciative caches. Since the lowest-latency cache organization is direct-mapped, most of the
research has surrounded performing successive probes into a direct-mapped type cache.
These multi-probe caches are classified by more parameters than a traditional set-associa-
tive cache, and henceforth require further examination. In this section, we explore the
more popular multi-probe cache schemes and qualitatively compare them with the organi-
zation we propose here, the reactive-associativity cache. In Section 3.1, we examine the
issues that are common to all multi-probe caches. In Section 3.2 and Section 3.3, we dis-
cuss statically and dynamically probed caches, respectively. In Section 3.3.2, we revisit

the reactive-associative cache in the context of the prior multi-probe cache proposals.

3.1 Issues Common to Multi-Probe Caches

As discussed in Section 1.1, the primary reason that a set-associative cache has a
higher hit time than a direct-mapped cache is the late way multiplexing on the data path.
To avoid this delay, it is necessary to use a direct-mapped type data path, in which there is
no way muxing at the output. Associativity can still be supported, as mentioned earlier, by
performing multiple probes into the data array, with each using a different indexing func-
tion. All of the multi-probe caches that we examine use what we refer to as a direct-
mapped data path. Though the data path must be direct-mapped, our analysis indicates that
the tag path may be organized like that of a set-associative cache, without impacting hit
latency. Therefore, the organization of the tag side is a qualitative parameter for multi-
probe caches.

Since only one line can be accessed at a time, and it is desirable to only do one

probe in the common case, the initial probe location is another major issue facing multi-



-28-

probe caches. We pay particular attention to the distinction between a statically-probed
and dynamically-probed organization, as this property guides many of the other character-
istics of multi-probe caches. Statically-probed organizations rely on a fixed initial probe
location, while dynamically-probed caches use way-prediction to access any cache line on
the initial probe. The maximum number of additional probes required, the probe sequence,
and the actual mapping functions for subsequent probes are other parameters for multi-

probe caches.

3.1.1 Complications due to pipeline timing

All multi-probe caches can present problems for processor pipelines that have pre-
viously not had to contend with the notion of a variable hit latency. Even though modern
processors are dynamically scheduled, it is still common to use fixed latencies to reserve
data buses, to vacate items from the load/store queue, etc. If it is common for the L1
dcache to perform many second probes, it is possible that pipeline scheduling could
become difficult and wasteful. Although these potential problems are implementation spe-
cific, they are an important considerations in guiding the research in this area. Cleatrly, it
would be better from a scheduling standpoint if additional probes were unnecessary or
uncommon. Furthermore, it would be beneficial if the processor knew by the end of the
initial probe the number of additional cycles it would take to service a cache hit (if there
was a probe0 miss), or if it will be an overall cache miss. This is a primary motivation for
using a set-associative tag path for a multi-probe cache, as used in reactive-associative.

Also, the more deterministic the delay through the dcache, the easier it will be to
pipeline the structure, as many modern L1 dcaches are pipelined. Wave-pipelined caches,
like those that appear in the Alpha 21264, would be difficult to make into multi-probe
caches (especially those than have high probe0O miss rates), as they have limited ability to

support cache pipeline stalls.

3.1.2 Performance metrics
Architects are used to discussing the performance of caches using terms like hit

latency and miss rate. However, the performance metrics for multi-probe organizations are



-29.-

more complex than for traditional caches. Clearly, average memory access time is an
appropriate measure of performance of any memory subsystem, but this is difficult to
guantify in an out-of-order superscalar processor, and is too blunt to use for comparison
purposes. We discuss the performance of multi-probe caches using: probe0 hit latency,
probe0 miss rate, additional probe hit latency, overall miss rate, and bandwidth utilization.
Bandwidth utilization is usually discussed with respect to the bandwidth demand of a
direct-mapped cache, and is a qualitative measure of cache throughput. Modern processors
are remarkably adept at overlapping and hiding latencies, but are fundamentally limited by
bandwidth, of the processor as a whole and of the memory system in particular. Therefore,

we pay close attention to the bandwidth utilization of each cache organization.

3.2 Statically-Probed Caches

Statically-probed caches are multi-probe organizations that have a fixed initial
probe into the data array for a given cache block address. If the initial probe misses, the
cache may make one or more additional probes into the data array according to a set algo-
rithm. Usually the fixed initial location is to the direct-mapped position for a cache block,
so we use the terms direct-mapped location, probe0 location, and initial probe location
interchangeably for statically-probed caches. Clearly, these caches can never achieve a
probe0 miss rate lower than that of a direct-mapped cache (of the same size). In actuality,
the probe0O miss rate is considerably higher than the direct-mapped miss rate, unless
aggressive techniques are used to guarantee that most accesses are to the direct-mapped
location. This is insured by using cache block swapping, wherein a cache block found on a
subsequent probe is swapped with the cache block in the direct-mapped location. Cache
block swapping relies on block-level locality of reference, and allows for initial-probe
miss rates only modestly higher than direct-mapped miss rates. Unfortunately, dedicated
circuitry to support cache block swapping is impractical for caches, which use regular and
highly optimized layouts. A modest implementation of cache block swapping would
require two reads and two writes (using an intermediate cache block buffer), which
increases average hit time and increases the bandwidth utilization. Furthermore, frequent

cache block swapping exacerbates the scheduling problems discussed in Section 3.1.1. All



-30 -

probe0
hit iss
done fﬁ/pmbe%niss
swap replace probel position
+ + L2 access
done sivap
done

Fig. 3.1. Decision tree for the hash-rehash algorithm
of the statically probed caches use cache block swapping, which is a fundamental problem
that will undoubtedly prohibit any statically-probed cache scheme from gaining industry
acceptance. However, there have been many interesting architectural innovations devel-

oped in the context of statically-probed caches, so it is still beneficial to examine them.

3.2.1 Hash-rehash cache

The hash-rehash cache was initially proposed in [4], as a two-way associative
organization. Itis indexed like a direct-mapped cache for the initial probe, but if the block
is not found, a second probe is performed using a different hash function. If the block is
found on the second probe, a swap is performed so that the next access to that address will
find the cache block in the direct-mapped location. If the block is not found in the alternate
position (which would be an overall cache miss), then the alternate location is used as the
replacement position when the cache block is retrieved from L2. Once the cache block is
placed in the probel position, a swap is performed between the probel and the probe0
lines, so that the next access to this block will find it in the direct-mapped location.
Figure 3.1 shows the decision tree for the hash-rehash algorithm. Probe0 is to the direct-
mapped location, while probel is to the alternate location for a given cache block address.
In Figure 3.1, the terrawapindicates that a cache block swap of the probe0 and probel
locations is performed. The hash-rehash cache will always probe both locations, even if

the block is not in the cache.



-31-

probe0
hit iss
done rehash bit=1?
ye no

replace probe0 it probel

position rl/ \nzss

L2 acces swap replace probel position
done * L2 access
done swap
done

Fig. 3.2. Decision tree for the column-associative algorithm

3.2.2 Column-associative cache

The column-associative cache [5] augmented the hash-rehash cache with an
improved decision tree (Figure 3.2). The goal of the column-associative cache (c-a cache)
is to reduce the number of second probes that are performed. This is accomplished by
affixing arehash bitto each cache line. This bit indicates whether or not the cache line
contains an out of position block (i.e., the cache block is accessed through the probel
indexing algorithm). On a direct-mapped access to a given line, if the line’s rehash bit is
high, then it is not possible that an additional probe will find the cache block. It is not pos-
sible specifically because the rehash bit indicates that the alternate (or probel) position
contains direct-mapped data. This rehash bit eliminates many of the superfluous second
probes that existed in the hash-rehash cache. Often, though, it still takes as many probes as
the associativity of the cache (in this case, two) to determine that the block is not in the
cache at all, which delays initiation of an L2 access until all the probes complete. The
replacement algorithm is also improved over that of the hash-rehash cache, as the rehash
bit indicates whether it is more prudent to replace the block in the probe0 or probel loca-
tion (column-associative approximates an LRU replacement policy). Figure 3.2 illustrates

the decision tree for the c-a cache, using the same action semantics as in Figure 3.1.



-32-

probe0
hit iss X=1
done X=n-1? ¢
ye no, X++
replace probeX . probeX .
position rﬁ/ miss
L2 acces swap —
swap ‘
¢ done
done

Fig. 3.3. Decision tree for a n-way sequential multicolumn cache (SMC)

3.2.3 Sequential multicolumn cache

The sequential multicolumn cache (SMC) was introduced in [6], and basically
augmented and updated the earlier MRU cache schemes [12] [13]. We do not examine the
MRU cache implementations, as they are not attempts at a low-latency cache, since both
versions of the MRU cache ([12] [13]) are technically incapable of approaching a direct-
mapped cache in terms of hit latency. The initial idea with the MRU cache was to track the
most recently used ways in a set, so as to optimize the sequential search path through a
multi-probe cache. The sequential multicolumn cache extended this idea with what the
authors refer to as thaultiple MRU block techniqud he multiple MRU block technique
basically forces the initial probe to the direct-mapped location for a given cache block
address (as in hash-rehash and column-associative), as opposed to a MRU location per set
(as in earlier implementations of the MRU cache). Subsequent probes are performed
according to MRU information that is tracked separately for each cache line. Cache block
swapping is used to guarantee that the most recently accessed block is always in its major
location. Figure 3.3 illustrates the decision tree for a sequential multicolumn cache. Once
again, probe0 is the direct-mapped location, and probes 1 through n-1 (for a n-way asso-
ciative cache) are ordered according to the MRU information that is recorded in a separate

data structure. The MRU search algorithm allows SMC to generalize multi-probe caches



-33-

probe0 (check all probe tags in parallel)

hit iSs
done Match in another probe location X?
no es
replace LRU .. probeX .
position rﬁ/ \nzss
L2 acces swap
swap ‘
¢ done
done

Fig. 3.4. Decision tree for a n-way parallel multicolumn cache (PMC)
for n-way associativity, in a relatively efficient manner. However, SMC still requires cache
block swapping, and is therefore subject to the same bandwidth problems as column-asso-

ciative (and all statically probed caches).

3.2.4 Parallel multicolumn cache

The parallel multicolumn cache [6] introduced the idea of a decoupled tag and data
organization, with an associative tag side and a direct-mapped data side. The initial probe
is to the direct-mapped location, and the subsequent probe is determined by tag match info
from the associative tag side. This is similar to the organization that we use in reactive-
associative, to ease pipeline timing, and to allow for at most one additional probe on a
probe0 miss. Cache block swapping is used to force the most recently used cache block
into the direct-mapped location, and therefore to improve the probe0 miss rate. Figure 3.4
shows the access algorithm for the parallel multicolumn cache, using the same semantics
as in the prior cache schemes. PMC contributes the concept of an associative tag side and
a direct-mapped data side to the research of cache design, but the requirement for swap-
ping limits its performance, and will undoubtedly limit its acceptance by industry. The
sequential and parallel multicolumn caches are the first to make a legitimate attempt to

provide a low-latency cache with levels of associativity higher than 2-way.



-34 -

3.2.5 Group-associative cache

The newly proposed group-associative cache [7] also requires swapping of entire
cache blocks. However, group-associative (g-a cache) did introduce some interesting con-
cepts to the research community. The g-a cache maintains a list of the most recently
accessed cache blocks, which it uses to control associative displacement. The g-a cache
reasons that if a cache block has been recently accessed, then it would be a desirable to
keep it nearby. Therefore, if a cache block from L2 is being placed into a line in L1 that
currently contains a recently accessed block, then the recently accessed block is moved to
an alternate location in the cache. Cache blocks that have not been recently accessed are
replaced as in a direct-mapped cache. This algorithm implements a limited notion of
selective displacement.

As mentioned earlier, recently accessed blocks are displaced into alternate loca-
tions in the cache. The alternate location is selected by an algorithm which detects under
utilized cache lines, of which there are many in a direct-mapped cache. This concept of
detecting unused cache lines, or holes, is an important contribution to multi-probe cache
research. When a cache block is placed in an alternative (or out of position) cache line, its
tag information must be recorded in a special data structure referred to as the OUT direc-
tory. The set of accesses that map to the same direct-mapped location, but are displaced as
indicated in the OUT directory, are referred to as an associative group, and hence the name
group-associative.

On a cache access, the initial probe is to the direct-mapped location. While the
direct-mapped probe is being performed, the OUT directory is checked for a matching tag
(which would indicate that the block is out of position). The OUT directory must be an
associative structure (or else conflicts from the dcache would be amplified there), and in
[7] it is recommended that it be fully-associative. Furthermore, since the OUT directory
must be checked on every access (to insure correctness), and the previous lookup must
complete before the next cache access, its access time must be smaller than that of the
dcache or the OUT directory will determine the hit time of the cache. However, our analy-
sis using CACTI [2] indicates that a fully-associative cache of the size recommended by

the group associative paper (64 entries for a 256 line dcache) is 48% slower than the



-35 -

direct-mapped cache itself. Even if the OUT directory is only 2-way set associative, the hit
time of a reactive-associative cache would be at least 21% higher than that of a direct-
mapped cache, and undoubtedly the overall miss rate would much worse than if the OUT
directory were fully-associative. Therefore, the group-associative cache is fundamentally
prohibited from having a hit latency comparable to that of a direct-mapped cache. This
combined with the requirement for cache block swapping makes the group-associative
cache impractical for implementation, and we don’t consider it a viable multi-probe orga-

nization.

3.3 Dynamically-Probed Caches

The termdynamically-probedhdicates that the initial probe into the cache is not to
a fixed location, but rather to any line in the cache. This is accomplished with the use of a
way-predictor (which, intuitively, predicts the way of the data array index, as discussed in
Section 2.2). With dynamically-probed caches, we can no longer use the terms probe0
location and direct-mapped location interchangeably. When discussing dynamically-
probed organizations, the direct-mapped location refers to the direct-mapped way, and the
probeO location is the predicted way. A major motivation for using a dynamically-probed
arrangement would be the ability to access displaced cache blocks on the initial cache
probe, and therefore reduce probe0 miss rates without cache block swapping. The only
prior attempt at a dynamically-probed (low-latency) dcache is the predictive sequential
associative cache, which we discuss in Section 3.3.1. The reactive associative cache, intro-
duced in this thesis, is also a dynamically-probed arrangement. We discussed the r-a cache
organization thoroughly in Section 2, and we will contrast it with the prior cache schemes
in Section 3.3.2.

3.3.1 Predictive sequential-associative cache

To avoid cache block swapping, the predictive sequential associative cache [8] pro-
posed way prediction to access any way, as opposed to only the direct-mapped way, on the
initial probe into the cache. The way prediction is accomplished via a data structure

(called the steering bit table (SBT)) that is indexed with a prediction handle available ear-



-36 -

probe0
hit iSS
done  rehash bit=1 and probeO=direct-mapped?
ye no
replace LRU .. probel
L2 acces update SBT replace LRU position
done L2 access
done updite SBT
done

Fig. 3.5. Decision tree for a 2-way predictive sequential associative cache (PSA)

lier than the cache block address itself. As with reactive associativity, there are many pos-
sible prediction handles, and several were explored in [8]. The PSA paper suggests the
XOR scheme because of its high accuracy. As mentioned in Section 2.2.3, the XOR
scheme requires an XOR operation on a value, often obtained from a register-forwarding
path, followed by a lookup of a table with many entries (1024 way-prediction entries for a
256-block cache), ailvithin the time to perform a full add. In many pipelines this scheme

is likely to increase cache access initiation time [14]. Furthermore, if the XOR scheme

was indeed feasible, than it would certainly be possible to simply access a direct-mapped
cache a cycle earlier with the XOR approximation of the memory address, which would be

a so-calleazero-cycle loadas proposed in [10]. The XOR scheme is an accurate predictor,

but even with XOR-based prediction, PSAs way prediction accuracy is low. This is
because all accesses are predicted, even accesses that would hit in a direct-mapped cache.
The low way prediction accuracy yields poor probe0 miss rates. PSA does achieve low
overall miss rates; but, because there are many second probes, average hit latency and L1
dcache bandwidth utilization are increased. Under realistic bandwidth limitations, this
increase often offsets the low overall miss rate and leads to degraded system performance.
PSA uses a direct-mapped tag-side, and therefore must perform additional probes into the

cache until the block is found or it is determined that the block is not in the cache. Since



-37-

the probe sequence is not optimized, as in SMC (Section 3.2.3), this limits the scalability

of PSA to higher levels of associativity.

3.3.2 Reactive-associative cache

Table 3.1 qualitatively compares the prior proposals with the reactive-associative
cache. Like the PSA cache (Section 3.3.1), the reactive associative cache uses way predic-
tion to allow for a dynamically determined probeO location. However, unlike PSA, the r-a
cache uses a set-associative tag side (similar to the parallel multicolumn cache discussed
in Section 3.2.4), which simplifies pipeline timing and allows r-a to scale to higher levels
of associativity.

Way prediction accuracy of the reactive-associative cache is much higher than
PSA due to the selective displacement and feedback mechanisms (Section 2.3). With
higher way prediction, the r-a cache is able to have a low probe0O miss rate, and low band-
width utilization. Selective displacement refers to the idea of displacing only those cache
blocks for which there will most likely be a clear benefit to having cached. Group-associa-
tive (Section 3.2.5) had a limited concept of selective displacement (by only displacing
recently used blocks), but reactive-associative goes further by seeking to displace only
those cache blocks which cause direct-mapped line contention. Feedback refers to the con-
cept of measuring the performance of the cache, and restricting displacement when neces-
sary. Reactive associative is the only cache organization that supports a form of feedback,
in which the prediction accuracy is measured and associative displacement is inhibited on
a per-instruction basis. Because the way-prediction accuracy of the r-a cache is high, it is
able to use more realistic prediction handles (like instruction PC) than PSA, which only
performs well under the XOR scheme. As mentioned earlier, if the XOR scheme was prac-
tical to implement, then zero-cycle loads [10] could also be implemented. Interestingly,
the r-a cache using PC prediction could also use zero-cycle loads (could issue cache
accesses early). However, to avoid confusing the advantages of the r-a cache and zero-
cycle loads, we do not perform zero-cycle load optimizations in this thesis.

Like PSA, the r-a cache does not require cache block swapping. The statically-

probed implementations do require cache block swapping, however, which will cause all



-38 -

of them to have increased bandwidth demand, and will, in general, limit their performance

gains. Also, cache block swapping is undesirable to implement from a circuit perspective.

Table 3.1
Quialitative comparison of previous schemes and the r-a cache.

staticprobeO| tag | probeOmissratg overall L1 band- controlled or
to d-m array/ W.I.t. miss width restricted
location? data | d-m miss rate/ rate/ demand | displacement?
array reason probe0- | w.r.t. d-m/
hit reason
latency
column- yes, d-m/ higher/ ~2-way/ higher/ no
associative || needs swap| d-m | static first probe| ~ d-m swapping
group- yes, d-m/ higher/ fully-a/ higher/ yes,
associative || needs swap| d-m | static first probe| fully-a swapping selective
displacement
sequential yes, d-m/ higher/ n-way/ higher/ no
multicolumn || needs swap| d-m | static first probe| ~ d-m swapping
parallel yes, s-a/ higher/ n-way/ higher/ no
multicolumn|| needs swap| d-m | static first probe| ~ d-m swapping
predictive no, d-m/ higher/ ~ 2-way/ higher/ no, and also
sequential || usesway- | d-m | high first-probe | ~d-m high first- predicts all
assoclative ||  prediction miss rate probe miss accesses
rate
reactive- no, s-a/ lower or near/ | > 2-way/ | comparable/ yes,
associative || usesway- | d-m | lowfirstprobe | - d-m low first selective
(PC scheme)| Pprediction miss rate probe miss | displacement
rate & feedback

Unfortunately, the low probe0O miss rate and low bandwidth utilization of a r-a
cache come at a cost. The reactive associative cache trades-off overall hit rate for a lower
probe0 miss rate. However, for realistic pipelines, it is better to maximize bandwidth
through the L1 dcache than it is to minimize the overall miss rate of the dcache. In Section

4, we will show execution time results (as well as miss rates) that bear out this fact.

3.4 Related Work

There have been several ideas to use program characteristics to improve memory
system performance. Farrens and Tyson [16] detect loads that miss often and mark such
loads to bypass the cache. Farrens and Tyson do not track data usage behavior or alter the

organization of the cache to enable better management. Johnson and Hwu [17] use cache



-39 -

block reuse behavior based on data addresses to guide placement of data in a victim cache
as opposed to the cache itself. Johnson and Hwu do not use instructions to guide data
placement but focus only on data addresses. Informing memory operations [18] is a tech-
nique to provide notification of a load miss and to inform applications about cache misses.
Application-level restructuring of code to improve cache performance has been explored

in [1]. Compiler optimizations to reduce conflicts have been explored in [19] [20].



- 40 -



-41 -

4. QUANTITATIVE ANALYSIS

4.1 Hit time of the reactive-associative cache

The r-a cache uses a unique organization utilizing a set-associative tag side and a
direct-mapped data side. The r-a cache also requires some additional logic to support the
ability to perform both direct-mapped accesses and set-associative accesses (with the aid
of a way-prediction). We argue that this additional logic, as well as the inclusion of a set-
associative tag side, will not significantly increase the hit time of a r-a cache over that of a
direct-mapped cache (see Section 2.1.4). To justify this assertion, we use the analytical
cache model CACTI [2], configured for 0.18 micron technology. It is desirable to sepa-
rately analyze the speed of the tag side and the data side of the cache, both measured from
the time when the cache block address is available. We quantify the delay of the tag side as
being the total time it takes to generate the hit/miss signal. The delay of the data side is
considered to be the time to produce a cache block on the output bus. The hit latency of the
cache is the longer of the tag side delay and the data side delay. For further discussion on
the components of delay for direct-mapped and associative caches, please refer to
Section 1.1.

In Table 4.1, we present the tag side (not including the OR gate in the hit signal
path in set-associative caches) and data side latencies for direct-mapped through 8-way
conventional set-associative caches. Probe0 timings for a 4-way r-a cache can be derived
from the direct-mapped data side and the conventional 4-way set-associative tag array tim-
ings. We added a 8-ps delay, obtained by Hspice simulations, for each of the pass gate
multiplexors in the probe0 hit signal path and the data array index path, as discussed in
Section 2.1.4. The data out latency includes the output-way multiplexor, which must wait

for the result of the tag comparison (for a set-associative cache), and the output driver. As



-42 -

mentioned earlier, the total hit time is the larger of the data out latency, and the tag hit/miss
signal latency.

Because each 2-way tag bank is half the size of the direct-mapped tag array, the 2-
way tag array is actually faster than the direct-mapped tag array. As expected, the 4-way
data array is considerably slower than the direct-mapped data array but the 4-way tag array
is comparable in speed to the direct-mapped data array. Thus, a 4-way r-a probe0 critical
path (for both data and tag) is similar to the critical path of a direct-mapped cache. For an
8 KB cache, the 4-way r-a cache is about 4.9% slower than direct-mapped, but still 47%
faster than a 2-way cache, and 61% faster than a 4-way set-associative cache. For cache
sizes greater than 8 KB, however, a 4-way associative tag array is no longer any slower
than a direct-mapped tag array, and a 4-way r-a cache is less than 0.8% slower than a
direct-mapped cache. For sizes of 32 KB and greater, an 8-way r-a cache is less than 0.7%
slower than a direct-mapped cache. This implies that the hit latency of a r-a cache main-
tains direct-mapped equivalence with increasing associativity. We examine an 8-KB cache
only because using a larger cache results in negligible miss rates for the SPEC95 bench-
marks, but most modern microprocessors use L1 dcaches of size 16 KB or larger, so

replacing a direct-mapped cache with a r-a cache should not affect the clock rate.

Table 4.1
Cache hit times (ns).

Direct-mapped 2-way 4-way 8-way 4-way
conventional | conventional| conventional | conventional r-a
8KB Data out 0.816 1.252 1.374 1.642 0.824
8KB hit signal 0.798 0.796 0.844 0.962 0.852
8KB total latency 0.816 1.252 1.374 1.642 0.852
Increase over DM 0% 53.5% 68.4% 101.2% 4.5%
16KB Data out 0.992 1.365 1.466 1.723 1.000
16KB hit signal 0.874 0.880 0.902 1.006 0.910
16KB total latency 0.992 1.365 1.466 1.723 1.000
Increase over DM 0% 37.6% 47.8% 73.7% 0.8%

4.2 Methodology
We modified the Simplescalar3.0 simulator [15] to model the L1 D-cache as a r-a

cache. Table 4.2 shows the base system configuration parameters used throughout the



-43 -

experiments, unless specified otherwise. The processor core including the out-of-order
issue and branch prediction mechanisms remain unchanged. We assume a modest on-chip
cache hierarchy of 8 Kbytes L1 D-cache and 256 Kbytes L2 so that the SPEC95 bench-
marks exercise the memory hierarchy to a reasonable extent. Using a larger L1 D-cache
results in negligible miss rates for the SPEC95 benchmarks, thwarting any effort to study
data cache performance using the SPEC95 benchmarks. We assume that the r-a cache
probe0 hit is 1 cycle and the probe0 and probel hit signals are available at the end of
probe0, as per the discussion in Section 4.1. Probel takes 2 additional cycles (i.e., data
from probel takes a total of 3 cycles). L2 access is initiated after probe0 if the block is not
in the cache (the tags for all the ways are checked in parallel). We assume 12 cycles for L2
cache hits to model the wire delays, and not necessarily the L2 hit time, involved in

accessing an on-chip L2 cache which is usually far from the L1 cache (e.g., Alpha 21264).

Table 4.2
Hardware parameters for base system.

Component Description
Processor 8-way out-of-order issue, 64-entry reorder buffer, 32-entry load/store queue
Branch predictior]| combines a bimodal predictor using 4096 entries and gshare using a 10-bit |history
L1 I-cache 16 Kbytes, 2-way associative, 32 byte blocks, 1 cycle hit, lock-up free
L1 D-cache 8 Kbytes, 32 byte blocks, 1 cycle probe0 hit, 3 cycles probel hit, lock-up freg
L2 cache 256 Kbytes, 8-way associative, 64 byte blocks, 12 cycle hit, pipelined
Memory Bus Split transaction, 32 bytes per bus cycle transfer
Main memory Infinite capacity, 60 cycle latency
Way- Reactive-associative, P@28-entry APT & BWT each with compressed tags,
prediction 2048-bit inhibit list (in I-cache), and 256-entry victim list; inhibit threshold: 3 ahd
resources victim threshold: 5; (total 1184 bytes).
Reactive-associative, XOR1024-entry BWT, 2048-bit inhibit list (in I-cache),
and 256-entry victim list; inhibit threshold: 3 and victim threshold: 2.

For our experiments, we choose those benchmark/input combinations from the
SPEC95 suite that do not require prohibitively long simulation runs. Table 4.3 presents the
SPEC95 benchmarks and their inputs used in this study. Apart from the SPEC95 pro-
grams, we also use troff as one of our benchmarks. The benchmarks were compiled for a

Compag Alpha AXP-21164 using the Compaqg C and Fortran compilers under -O4 -ifo



- 44 -

optimization flags. Most of the simulations are run to completion, but in the cases where

the runs are inordinately long, we halt the simulation at 1 billion instructions.

Table 4.3
Benchmarks and inputs.

Benchmark Input #instructions Benchmark Input #instructions
first group simulated second group simulated
vortex ref 1 billion go 9stone21.in| 1 billion
gcc 1lrecog 347 million troff paper.me 70 million
li train 365 million m88ksim train 171 million
perl jumble 1 billion swim train 430 million
fpppp train 235 million

4.3 Base performance of the reactive-associative cache

In this section, we present the base performance of the r-a cache using the PC and
XOR schemes, compared against direct-mapped and 2-way set-associative caches. We
show an idealized 2-way set-associative, 1-cycle hit cache as a reference point. Figure 4.1
shows the speedups of processors using various cache configurations normalized to the
performance of a system with a direct-mapped cache. To underscore the r-a cache’s
robustness with respect to L1 bandwidth, we vary the number of L1 cache ports from 1
(top graph) to 2 (bottom graph). We model the extra bandwidth demand of probel
accesses by holding the L1 port for an additional cycle. As discussed earlier, we consider
the XOR scheme to be difficult to implement, but we still present its performance to show
how it compares to the PC scheme.

From Figure 4.1 we can see that the first group of benchmaokie, gcc, li, penl
are relatively insensitive to associativity, and achieve only modest improvements (2%-4%)
even with the ideal, 2-way cache. The second group of benchrgarksoff, m88ksim,
swim, fpppp achieve speedups from 6%-9% with the ideal, 2-way c&wienhas a
pathological mapping problem which causes the 2-way cache to perform slightly worse
than direct-mapped, but the problem subsides with increasing associativity, which is why
4-way r-a performs better than the ideal, 2-way cache. The r-a cache dynamically adjusts
to the associativity requirements of the application, providing the first group with low

degrees of associativity, and the second group with high degrees of assadiatinigt



1.14

1.12
§1.1o
S1.08
g 1.06
$1.04
5 1.02
g 1.00
go0.98
S 0.96

=
5114
o112
3 1.10
3
0 1.08
¥ 1.06
1.04
1.02
1.00
0.98
0.96

direct-mapped speeds. For the second group, the 1-port r-a achieves 1%-9% speedups

using PC, and 2%-14% speedups using XOR, approaching the ideal, 2-way cache for

4-way R-A PC

=45 -

I 4-way R-A XOR

[ ] 2-way 1 cycle (ideal)

| [Lower bandwidth (1 cache port)|

12-entry APT|

v

| |Higher bandwidth (2 cache ports)|

|
%

a
I

v ” ’ v
& & L S N £ & L
S ° N & &
¢ | | & |
first group second group

Fig. 4.1. Base performance of the reactive-associative cache.

many benchmarks. The 2-port case follows similar trends.

The r-a cache’s only slow-down is fggpppunder the PC scheme using 1 port due
to fpppp’spoor instruction locality, disrupting the PC-indexed APT, which causes high
probe0 miss rates and wastes L1 cache bandwidth. In the 2-port case, this bandwidth pres-
sure is absorbed by the extra port, resulting in a 4% speedup. As indicated in Figure 4.1,
the slowdown for the 1-port case turns into a 2% speedup when the APT size is increased
to 512 entries. For both the 1-port and the 2-port cases, the performance of the PC scheme

approaches that of the XOR scheme, even though the XOR predictor is potentially more

difficult to implement.



- 46 -

In Table 4.4, we compare the miss rates for the r-a cache with those of direct-
mapped and 2-way caches. The probe0 miss rates of both the PC and XOR r-a caches are
less than or comparable to the miss rates of a direct-mapped cache for all benchmarks
except forvortexandfpppp indicating the success of our way-prediction schevioetex’s
probe0 miss rate decreases to 5.3% when the inhibit list is cleared less frequently, indicat-
ing that vortex has many unpredictable instructiéipgpp’slarge instruction footprint
causes thrashing in the APT, resulting in a high probe0 miss rate when using the PC
scheme, even though the overall miss rate approaches that of 2-way. The final row of

Table 4.4 contains the geometric means for each column.

Table 4.4
Reactive-associative miss rates compared to set associative caches

direct r-a 4- r-a 4- r-a 4- r-a 4- r-a 4- r-a 4- 2-way
mapped | Way,pc | way,pc [ way, pc | way, way, way, xor | set
xor xor assoc.
SPEC-95 || overall probeO | overall | pred. probeO | overall | pred. overall
Bench miss miss | miss | @cCuracy| miss miss accuracy | mjss
rate rate rate rate rate rate
vortex 5.1 6.7 4.5 97.8 6.5 4.1 97.5 3.9
gcc 8.0 8.8 7.0 98.2 8.4 6.4 97.9 6.4
li 6.0 5.7 5.6 99.9 5.4 5.1 99.7 4.8
perl 5.4 5.6 4.2 98.5 5.9 3.3 97.4 3.9
go 8.9 9.5 8.3 98.7 6.9 5.8 98.9 6.3
troff 5.0 4.3 3.4 99.1 3.7 2.7 98.9 2.8
m88ksim || 5.2 3.3 24 99.1 4.2 2.2 98.0 2.0
swim 49.7 48.7 46.9 96.6 49.8 44.6 90.6 50.8
fpppp 7.4 24.8 35 77.9 6.2 5.2 98.9 2.7
MEAN 7.9 8.7 5.9 96.0 7.3 5.3 97.5 5.1

The prediction accuracy columns for PC and XOR schemes show the performance
of the way predictor. Note that unpredictable instructions are tracked and blocks that they
touch are prohibited from being displaced, which enables high prediction accuracies for
those blocks that remain. This policy achieves high accuracy, which conserves valuable L1
bandwidth, but at the cost of higher overall miss rate compared to a 2-way set-associative
cache because unpredictable blocks are not displaced to set-associative positions even if
they conflict. Because XOR is a more accurate prediction handle in general, we relax the

victim list threshold from 5 to 2, which encourages more displacement. In most cases, this



- 47 -

C-A [ PSAPC [ ]RAPC [l PSAXOR [KXJR-AXOR
1.20

1.14 | |Lower bandwidth (1 cache port)| 2 -

112 | ¢ ;2

1.10 + ; %

1.08 % N
< 1.06 | 17 &
© 1.04 - Zhen:
g1.02 11K
£ 1.00 = H 4
£ 0.98 - B
 0.96 - o
= 0.94 K4
2092 | X
- 0.90 b
o AL.42
‘S 1.14 |-|Higher bandwidth (2 cache ports)|
€112
S 1.10 |-
o 1.08 +
31061
0 1.04 -
8102 | ~
? 1.00 — ]

0.98 |

0.96

0.94 -

0.92

0.90 " ‘ .

e X 3 R § R
s ° MY &
first group second group

Fig. 4.2. Comparison of reactive associativity to previous schemes

relaxation results in lower probe0 and overall miss rates for XOR However, in some cases
this relaxation of parameters causes the XOR scheme to actually have worse way-predic-

tion accuracy than with the PC scheme.

4.4 Comparison between the reactive-associative and prior schemes

In this section, we compare the r-a cache with the column-associative cache (c-a
cache), which is representative of caches that rely on swapping because they are all simi-
larly limited in performance due to the bandwidth demands imposed by swapping. We
also compare the r-a cache against the PSA cache, which uses way-prediction instead of
swapping. We do not compare against group-associative because of the fundamental cir-
cuit problems that we outlined in Chapter 3, which prohibit a group-associative cache

from having a direct-mapped hit latency, and also because it requires swapping.



- 48 -

For the PSA-cache, we assume the same latency assignments as the r-a cache, as
they have similar timing constraints for both probeO and probel; the PSA-cache has a 1-
cycle probe0 hit with an additional 2 cycles for a probel hit. As with r-a, the cache port is
only held for 1 additional cycle for a probel hit. The PSA cache uses a 1024-entry way-
prediction table (as in [8]), with 1 hash-rehash bit per cache Bltmka total of 160
bytes of extra state. We show PSA using the XOR scheme as well as the PC scheme so
that we can compare PSA and r-a. The authors of the PSA paper recommend the XOR
scheme but do not recommend using the PC scheme. We include the PC scheme here for
comparison purposes only. In Figure 4.2, we compare speedups (over a system with a
direct-mapped cache) of the 4-way r-a cache against those of the column-associative and
PSA caches.

For the 1-port (lower bandwidth) case in Figure 4.2 (the upper graph), PSA using
PC and XOR schemes and column-associative (c-a) suffer slow-downs on many bench-
marks due to their high bandwidth demand, caused by poor probe0 miss rates and swap-
ping, respectively. The slow-downs are more pronounced in the first group of benchmarks
because the higher bandwidth demand is not compensated by lower overall miss rate. The
r-a cache using PC or XOR performs better than the corresponding PSA, and better than c-
a, because r-a has a lower bandwidth demand. Column associative has large speedups for
swimbecause o$wimris pathological set-associative mapping problem. Since column-
associative uses a skewing hash function (i.e. the complement of the index bits), it allevi-
ates this problem and achieves massive speedups. Similarly, if the APT and BWT sizes are
increased significantly, the 4-way r-a cache does achieve similar speedsysifor

For the 2-port (higher bandwidth) case in Figure 4.2 (the lower graph), column
associative and the predictive sequential caches achieve somewhat higher speedups
because the extra port absorbs the bandwidth pressure, though there are still a few cases of
slow-down. The r-a caches using PC and XOR continue to outperform the corresponding
PSA as well as c-a caches, although by smaller margins than the 1-port case because the
bandwidth advantage of the r-a cache is less important for the 2-port case. The major
exception igpppp whose large instruction footprint wreaks havoc with the PC scheme for

an r-a cache.



- 49 -

Table 4.5
Initial probe (p0) and overall (ov) miss rates for various cache schemes.
direct- | c-a | PSA | r-a PSA | r-a c-a |PSA|ra PSA | r-a
mapped pc pc xor | xor pc pc xor | xor
Bench ov pO pO pO pO pO0 ov ov ov ov oV
vortex 5.1 6.0 |36.1 |67 |157 |65 |40 |34 |45 |34 |41
gcc 8.0 8.9 328 | 8.8 17.2 | 8.4 6.0 5.8 7.0 5.8 6.4
[ 6.0 6.6 |345 |57 |155 |54 |47 |44 |56 |44 |51
perl 5.4 62 | 209 |56 |125|59 |34 |35 |42 |35 |33
go 8.9 10.3 | 25.8 | 9.5 12.0 | 6.9 5.9 5.4 8.3 5.4 5.8
troff 5.0 56 |[19.2 |43 |123 |37 |23 |24 |34 |23 |27
m88ksim || 5.2 57 |175 (33 |103 |42 |22 |18 |24 |18 |22
swim 49.7 53.6 | 66.4 | 48.7 | 65.1 | 49.8 | 26.2 | 50.7 | 46.9 | 50.3 | 44.6
fpppp 7.4 96 (353|248 |191|6.2 |58 |23 |35 |23 |52
MEAN 7.9 90 [296 (87 |166 |73 |49 |45 |59 |45 |53

Table 4.5 shows the first probe (indicated by p0) and overall (indicated by ov) miss
rates for the 4-way r-a (using PC and XOR), column associative, and PSA (using PC and
XOR) caches. The r-a caches using PC or XOR usually have the lowest probe0 miss rates
of all the caches. Although column-associative has low probe0O miss rates, overall perfor-
mance is poor due to the high latency and bandwidth demand of cache block swapping.
Probe0 miss rates of PSA using XOR are much worse than direct-mapped miss rates,
resulting in high bandwidth demand. Although the overall miss rates for the r-a caches are
usually higher than those for PSA and c-a (due to selective displacement and feedback),
the r-a cache performs better than PSA or c-a, which validates the concept of balancing
overall miss rate and probe0O miss rate for optimal performance in the face of bandwidth

limitations.

4.5 Effect of filtering and feedback on probeO and overall miss rates

To isolate the effects of selective displacement and feedback on the r-a cache, in
Table 4.6 we present probe0 and overall miss rates using the PC scheme without selective
displacement (i.e., no victim list), and without feedback (i.e., no mispredict counters in the
BWT, and no inhibit list). In the case of no selective displacement, probe0 miss rate suf-
fers dramatically because the cache attempts to displace all accesses, even those that do

not cause any contention in a direct-mapped cache. In the case of no feedback, the probe0



-50 -

miss rate increases, albeit not as dramatically as with selective displacement, but the over-
all miss rate approaches those achieved by PSA or c-a because the cache displaces all
cache blocks regardless of predictability. These increased probeO miss rates would, in
general, cause an increased average cache hit time and a higher bandwidth utilization.
Depending on the L1 cache bandwidth of a particular system, the designer may choose to
be more or less strict about which blocks to displace. The degree of tolerance to unpredict-
able instructions can be adjusted by changing the inhibit thréshaich makes the r-a

cache easily adapted to maximize performance across systems with varying memory
bandwidths. Furthermore, if the prediction handle being used is naturally more accurate
than instruction PC, the architect may choose to lower the victim list threshold (which we

setto 5 for PC, and 2 for XOR), and therefore encourage more displacement.

Table 4.6
Effect of filtering and feedback on probeO and overall miss rates

direct- r-a pc, r-a pc, r-a pc, r-a pc, r-a pc, r-a pc,
mapped | Withno | withno | withno | withno | original | original
feedback| feedback| filtering | filtering | config config

Bench overall | probe0 overall probe0 | overall probe0 overall
vortex 5.1 11.7 4.4 31.9 4.4 6.7 4.6
gce 8.2 16.3 6.7 23.3 7.4 9.0 7.2
li 6.3 9.2 5.4 7.9 6.2 6.0 5.9
perl 5.6 10.3 35 17.6 4.5 5.6 4.2
go 9.2 17.2 6.6 19.7 8.1 9.8 8.5
troff 5.2 9.0 2.8 13.4 3.1 4.3 3.3
m88ksim 5.3 11.0 21 12.0 3.1 34 2.4
swim 54.3 50.3 48.4 50.7 455 50.3 48.5
fpppp 7.4 22.4 2.8 69.0 2.3 25.9 35
MEAN 8.1 14.8 5.2 21.9 5.8 9.0 5.9




-51 -

5. CONCLUSIONS

In this thesis, we propose the reactive-associative cache (r-a cache) based on the
key observation that even for applications that benefit from increased associativity, the
common case for a direct-mapped cache is a hit. This observation implies that associativ-
ity is needed only for conflicting blockisand should not be provided at the expense of
higher hit latencies for all accesses. The r-a cache keeps as much data in direct-mapped
positions as possible, and displaces only conflicting blocks to set-associative positions.
The r-a cache therefore provides flexible associativity that increases or decreases depend-
ing on application characteristics.

The reactive-associative cache is a dynamically-probed multi-probe organization
which has a direct-mapped hit latency for the initial probe. For a given cache block
address, the initial probe can be to the direct-mapped location or to a set-associative posi-
tion, with the use of a way-prediction. Therefore, all direct-mapped and correctly pre-
dicted set-associative accesses can complete in the initial probe. Incorrect way-predictions
will require a single additional probe into the data array. The ability to service mispredic-
tions in a single extra probe (even for high associativities) is accomplished through the use
of a unique organization in which a set-associative tag side is joined with a direct-mapped
data side. This arrangement allows all the tags in a set to be checked in parallel with the
initial probe in the data side. If the initial probe prediction was incorrect, the correct way is
known from the tag match information acquired during the first probe. We have shown
that using a set-associative tag side does not significantly increase the hit latency over that
of a direct-mapped cache.

Prior statically-probed multi-probe caches (such as hash-rehash, column associa-
tive, and group-associative) have required swapping of entire cache blocks to improve

their initial-probe miss rates. But cache block swapping degrades both latency and band-



-52 -

width. The previously-proposed predictive sequential associative cache avoids swapping
via way prediction, but incurs initial-probe miss rates much worse than direct-mapped
miss rates. This is because it displaces, and subsequently predicts, all cache blocks, which
places a strain on the prediction resources. The poor first-probe miss rates result in the
depletion of valuable L1 bandwidth. In contrast, the r-a cache selectively displaces, and
consequently predicts, only conflicting blocks. In addition, the r-a cache employs a feed-
back mechanism on way prediction to prevent unpredictable blocks from being displaced,
achieving initial-probe miss rates often lower than (or at least comparable to) direct-
mapped miss rates and conserving L1 bandwidth.

The r-a cache delivers performance robustness by trading-off overall hit rate for
first-probe hit rate, achieving initial-probe miss rates often lower than (or at least compara-
ble to) direct-mapped miss rates, and conserving L1 bandwidth. Simulations using some
of the SPEC95 benchmarks show that a 4-way associative r-a cache, using 1184 bytes of
prediction storage, achieves 1%-11% and 1%-7% improvements over a direct-mapped
cache and a predictive sequential associative cache, respectively, with one L1 port.

The reactive-associative cache is a low-latency associative organization that has a
bandwidth demand comparable to a system with a direct-mapped cache, and therefore

would be ideal as the L1 dcache in a memory bandwidth-limited system.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

-B3 -

LIST OF REFERENCES

A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC benchmarks: A case
study.I[EEE Computerpages 1526, Oct. 1994.

S. J. E. Wilson and N. P. Jouppi. An enhanced access and cycle time model for on-
chip caches. Technical Report 93/5, July 1994.

J.-K. Peir, W. Hsu, H. Young, and S. Ong. Improving cache performance with bal-
anced tag and data paths.Rroceedings of the Seventh International Symposium on
Architectural Support for Programming Languages and Operating Syspagess
268-278. Association for Computing Machinery, Oct. 1996.

A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance of operating systems
and multiprogrammingACM Transactions on Computer Systefi(d):393-431,
Nov. 1988.

A. Agarwal and S. Pudar. Column associative caches: A technique for reducing miss
rate of direct-mapped caches.Rroceedings of the 20th Annual International Sym-
posium on Computer Architectuggages 179-190. Association for Computing
Machinery, May 1993.

C. Zhang, X. Zhang, and Y. Yan. Two Fast and High-Associativity Cache Schemes.
IEEE Micro, Vol. 17, No. 5, September/October 1997.

J. K. Peir, Y. Lee, and W. W. Hsu. Capturing dynamic memory reference behavior
with adaptive cache topology. Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and Operating Syspagess
240-250, Oct. 1998.

B. Calder, D. Grunwald, and J. Emer. Predictive sequential associative caétre- In
ceedings of the Second IEEE Symposium on High-Performance Computer Architec-
ture, pages 244-253, Feb. 1996.

D. H. Albonesi. Selective Cache Ways: On-Demand Cache Resource Allocation. In
32nd International Symposium on Microarchitecture (MICRO-Bapes 248-259,
November 1999.



-54 -

[10] T. Austin and G. Sohi. Zero-Cycle Loads: Microarchitecture Support for Reducing
Load Latency. IrProceedings of the 28th Annual International Symposium on
Microarchitecture MICRO-28, November 1995.

[11] N. P. Jouppi. Architectural and organizational tradeoffs in the design of the MulitTi-
tan cpu. InProceedings of the 15th Annual International Symposium on Computer
Architecture pages 281-289. Association for Computing Machinery, May 1988.

[12] J. H. Chang, H. Chao, and K. So. Cache design of a sub-micron CMOS System/370.
In 14th Annual International Symposium on Computer ArchitecBI@ARCH
Newsletterpages 208-213. IEEE, June 1987.

[13] R. E. Kessler, R. Jooss, A. Lebeck, and M. Hill. Inexpensive implementations of set-
associativity. IrProceedings of the 16th Annual International Symposium on Com-
puter Architecturepages 131-139, May 1989.

[14] M. Hill. A case for direct-mapped cachéSEE Computer21(12):25-40, Dec.
1988.

[15] D. Burger, T. M. Austin, and S. Bennett. Evaluating future microprocessors: the sim-
plescalar tool set. Technical Report CS TR-1308, University of Wisconsin, Madison,
July 1996.

[16] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A modified approach to data
cache management. Broceedings of the 28th Annual International Symposium on
Microarchitecture pages 93—103. Association for Computing Machinery, Dec. 1995.

[17] T. Johnson and W.-M. Hwu. Run-time adaptive cache hierarchy management via ref-
erence analysis. IRroceedings of the 24th Annual International Symposium on
Computer Architecturgpages 315-326, June 1997.

[18] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith. Informing memory
operations: Providing memory performance feedback in modern procesdens- In
ceedings of the 23rd Annual International Symposium on Computer Architecture
pages 260-270, May 1996.

[19] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data placement. In
Proceedings of the Eighth International Symposium on Architectural Support for
Programming Languages and Operating Systgrages 139-149. Association for
Computing Machinery, Oct. 1998.

[20] T. Chilimbi, M. Hill, and J. Larus. Cache-conscious structure layouRrirceedings
of the 1999 ACM SIGPLAN Conference on Programming Language Design and
Implementationpages 1-12. Association for Computing Machinery, May 1999.



-55 -



	Reactive associativE caches
	table of contents
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. Introduction
	1.1 Critical Path Analysis of Direct-Mapped and Set-Associative Caches
	Fig. 1.1. A direct-mapped cache
	Fig. 1.2. A n-way set-associative cache

	1.2 Multi-Probe Caches
	1.3 Reactive Associative Caches
	Fig. 1.3. A reactive associative cache

	1.4 Thesis Roadmap

	2. Reactive associativE cache
	2.1 Basic Organization
	Fig. 2.1. The reactive-associative cache.
	2.1.1 Data side
	2.1.2 Tag side
	2.1.3 Cache miss
	Fig. 2.2. Implementation of probe0 way# multiplexor.

	2.1.4 Probe0 hit latency

	2.2 Way Prediction
	Fig. 2.3. Pipeline timing of way-prediction.
	2.2.1 PC-based way-prediction
	2.2.2 Access-prediction table and block way-number table
	Fig. 2.4. PC-based way-prediction structures.

	2.2.3 XOR-based way-prediction

	2.3 Selective Displacement and Feedback
	2.3.1 Victim list: selective displacement
	2.3.2 Feedback with misprediction counters and the inhibit list
	2.3.3 Uninhibiting to accommodate dynamic program behavior


	3. Qualitative comparison
	3.1 Issues Common to Multi-Probe Caches
	3.1.1 Complications due to pipeline timing
	3.1.2 Performance metrics

	3.2 Statically-Probed Caches
	3.2.1 Hash-rehash cache
	Fig. 3.1. Decision tree for the hash-rehash algorithm

	3.2.2 Column-associative cache
	Fig. 3.2. Decision tree for the column-associative algorithm

	3.2.3 Sequential multicolumn cache
	Fig. 3.3. Decision tree for a n-way sequential multicolumn cache (SMC)

	3.2.4 Parallel multicolumn cache
	Fig. 3.4. Decision tree for a n-way parallel multicolumn cache (PMC)

	3.2.5 Group-associative cache

	3.3 Dynamically-Probed Caches
	3.3.1 Predictive sequential-associative cache
	Fig. 3.5. Decision tree for a 2-way predictive sequential associative cache (PSA)

	3.3.2 Reactive-associative cache
	Table 3.1 Qualitative comparison of previous schemes and the r-a cache.


	3.4 Related Work

	4. Quantitative analysis
	4.1 Hit time of the reactive-associative cache
	Table 4.1 Cache hit times (ns).

	4.2 Methodology
	Table 4.2 Hardware parameters for base system.
	Table 4.3 Benchmarks and inputs.

	4.3 Base performance of the reactive-associative cache
	Fig. 4.1. Base performance of the reactive-associative cache.
	Table 4.4 Reactive-associative miss rates compared to set associative caches

	4.4 Comparison between the reactive-associative and prior schemes
	Fig. 4.2. Comparison of reactive associativity to previous schemes
	Table 4.5 Initial probe (p0) and overall (ov) miss rates for various cache schemes.

	4.5 Effect of filtering and feedback on probe0 and overall miss rates
	Table 4.6 Effect of filtering and feedback on probe0 and overall miss rates


	5. Conclusions


