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  ABSTRACT

Chen-Yong Cher. Ph.D., Purdue University, May, 2004. Exploring and Evaluating
Control-flow and Thread-level Parallelism. Major Professor: T. N. Vijaykumar.

Simultaneous Multithreading (SMT) has been proposed for improving processor

throughput by overlapping multiple threads in a wide-issue superscalar processor. While

trace cache, value prediction, and prefetching are shown to be effective in improving sin-

gle-thread performance in the superscalar, there has been no analysis of these techniques

in an SMT processor.

SMT brings new factors both for and against these techniques, and it is not known how

these techniques would fare in SMT. Therefore, I evaluate these techniques in an SMT.

My key contributions are: (1) I identify a fundamental interaction between the techniques

and SMT’s sharing of resources among multiple threads, and (2) I quantify the impact of

this interaction on SMT throughput. SMT’s sharing of the instruction storage, physical

registers, and issue queue impacts the effectiveness of trace cache, value prediction, and

prefetching, respectively. My simulations show that (1) compared to a similar-sized i-

cache, trace cache degrades throughput; (2) with a typical number of physical registers,

value prediction degrades throughput; and (3) For memory-intensive workloads, prefetch-

ing improves throughput with many threads. For workloads with mixed memory demand,

prefetching has little opportunity and slightly degrades throughput.

Although modern superscalar processors achieve high branch prediction accuracy, cer-

tain branches either are inherently difficult to predict or incur destructive interference in

prediction tables, causing significant performance loss due to mispredictions. I propose a

novel micro-architecture, called Skipper, to handle such difficult branches by exploiting

control-flow independence. Skipper altogether avoids incorrect instructions by skipping



 xi

over, without even fetching, the control-flow dependent computation conditioned by a dif-

ficult branch. Instead, Skipper fetches and executes the control-flow independent instruc-

tions which need to be executed irrespective of the branch’s outcome. Because Skipper

executes the correct control-flow dependent instructions after the difficult branch is

resolved, it conserves the valuable resources.

Skipper is the first proposal to exploit control-flow independence by skipping over

control-flow dependent computation in a superscalar pipeline. Skipper fetches the skipped

control-flow dependent instructions after the difficult branch is resolved, out of program

order. SPECint95 simulations shows that Skipper performs 10% and 8% better than super-

scalar and previously proposed Polypath, respectively, when all three micro-architectures

have equal i-cache bandwidth and hardware resources.
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1  INTRODUCTION

Two architectures for mainstream computing today are Simultaneous Multithreading

(SMT) and superscalar processors. The micro-architecture community has made impres-

sive improvements in superscalar by introducing myriad novel techniques over the years.

Because these techniques introduce little or no change to the semantic between processor

and applications, they significantly improve performance while preserving compatibility

for existing applications. Because SMT is designed by extending the capability of a super-

scalar core to handle multiple, independent threads, SMT naturally inherits these tech-

niques that are originally intended for superscalar. However, the effectiveness of these

techniques have not been studied in the context of SMT. Because SMT operates funda-

mentally different from a superscalar, the benefit of these techniques in an SMT is ques-

tionable.

SMT has been proposed for improving processor throughput by overlapping multiple

threads in a wide-issue superscalar processor. Separately, three techniques which are used

to improve single-thread performance by exploiting more instruction-level parallelism

(ILP) in superscalar are: 1) trace cache to increase fetch bandwidth, 2) value prediction to

break data dependences, and 3) prefetching to hide memory latency. While these tech-

niques have evolved over the years by many researchers and have been shown to be effec-

tive in the single-threaded superscalar, there has been no analysis of their effectiveness in

SMT, which is becoming the microarchitecture of choice for high-performance micropro-

cessors (e.g., Intel’s Hyperthreading, Sun’s Niagara, IBM’s POWER5).

Compared to superscalar, SMT brings new factors both for and against these tech-

niques, and it is not known how these techniques would fare in SMT. An study of how

these technique fare in SMT is critical to the design decision of whether to include them in
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an SMT. On one hand, including an effective technique will improve SMT performance;

on the other hand, including an ineffective technique will waste design time, chip area and

power, and even hurt SMT performance. Because SMT are typically built by converting

existing superscalar cores, some of these techniques that are already implemented in

superscalars will also be included automatically in SMT. Because these techniques

improve single-thread performance, future Operating Systems should enable the tech-

niques all the time when running as a superscalar, but enable selectively depending on the

effectiveness of these techniques when running as an SMT. In the environment where

some threads are prioritized over the others, because these techniques may be more effec-

tive on certain threads regardless of their priority, the techniques may improve low priority

threads while hurting higher priority threads. In such cases, the Operating System (OS)

should selectively enable the techniques only for high priority threads. Traditionally, OSs

are designed assuming that each thread uses one superscalar core, even in an Symmetric

Multi-Processor system (SMP), and enforcing thread priority through time-slicing. Conse-

quently, OSs need not disable hardware optimizations in such systems. My finding that

recommends such OS intervention in an SMT is a significant departure from the tradi-

tional OS design. Therefore, it is important to know how the three techniques fare in SMT.

My study fills this important gap by evaluating these techniques in the context of an

out-of-order issue SMT and provides recommendations for future SMT designs. Because

SMT’s goal is to improve throughput, which is an important performance metric for

server-class machines which increasingly use SMT, I evaluate the techniques in terms of

processor throughput. My novelty is not in the study or improvement of these techniques,

but in their evaluation in the context of SMT. My key contributions are: (1) I identify a

fundamental interaction between the techniques and SMT’s sharing of resources among

multiple threads, and (2) I quantify the impact of this interaction on SMT throughput. This

interaction is the key issue and common theme in my evaluation of the three techniques.

Previous studies showed that trace cache increases fetch bandwidth [37,36,34,13,5].

Trace cache creates traces from dynamic instruction sequences and allows an entire trace

to be fetched in one access. A key motivation for trace cache is that increasing fetch
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bandwidth in superscalar is complicated and involves more than merely using many fetch

ports. To utilize multiple fetch ports, superscalar needs multiple branch prediction, which

is hard to implement. Implementing multiple branch prediction involves both (1) main-

taining high accuracy of prediction and (2) providing multiple, contiguous fetch (Program

Counter) PCs for the same thread. Trace cache handles these issues effectively and

achieves better performance than multiple branch prediction.

Unfortunately, trace cache introduces multiple copies of instructions in different

traces, despite the most efficient implementation [5]. This redundancy reduces the effec-

tive size of the cache. Increasing the cache size is difficult due to latency, area, and power

considerations. This trade-off of space for bandwidth seems reasonable for superscalar

because a single thread may not need a large instruction cache. However, SMT needs a

larger instruction storage (i.e., trace cache or i-cache) because multiple threads share the

storage. In contrast to superscalar, an SMT can supply multiple fetch PCs from different

threads and utilize extra fetch ports effectively without needing multiple branch predic-

tion. Therefore, it is not clear whether trace cache’s trade-off of space for bandwidth will

improve SMT throughput.

Value prediction predicts values instead of waiting for long-latency dependences to be

resolved, speeding up computation even beyond data-flow limits [30,2,40,32,9]. Predic-

tion accuracy can be increased and the benefit of the technique can be sustained by trading

off coverage and predicting only highly-predictable long-latency operations (e.g., cache

misses) [9]. In contrast to using value prediction in superscalar, SMT can simply tolerate

L1 misses with execution of other threads. For L2 misses which have long latency, SMT

squashes the thread [47], releasing the thread’s shared resources (i.e., physical registers

and issue queue slots) to allow overlapping of the L2 miss with other threads.

Applying value prediction to SMT raises a key but subtle issue related to sharing of

registers: value prediction holds up physical registers even when the prediction is correct!

Due to program-order commit, instructions that follow a correctly-value-predicted, long-

latency instruction hold up registers even after completing execution. These instructions

can release their registers only after the long-latency instruction completes, confirms the
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prediction, and commits. Building larger register file to alleviate such hold-up proves hard

due to latency, area, and power considerations [4,6,33]. While this hold-up of registers

may be acceptable for superscalar because they would be unused otherwise, it may not be

profitable for SMT, in which multiple threads create a higher demand for the shared regis-

ters. Therefore, it is not clear whether SMT throughput is improved more by value-pre-

dicting long-latency instructions and holding up registers; or by squashing the instructions

and releasing registers so other threads can use the registers and overlap the latency.

Prefetching predicts future memory references and brings data into caches before the

data is actually needed [44,26,45,10,18,25,55,16]. Recent proposals for aggressive hard-

ware prefetching, such as Dead-block predictor[25] and its successor Time-Keeping pre-

dictor [55], are highly successful even with non-strided access patterns. SMT has two

opposing effects on the opportunity available from prefetching. On one hand, because

SMT can tolerate cache misses, it may present less opportunity to prefetching. On the

other hand, because SMT issues memory references from multiple threads, it increases the

pressure on the memory hierarchy and may present more opportunity.

Prefetching in SMT achieves coverage and accuracy comparable to those of a single

thread. However, prefetching raises a subtle issue related to sharing of the issue queue.

While prefetching into L2 achieves most of the benefit of prefetching into L1 without

incurring L1’s contention problems for a single thread [16], prefetching only into L2

causes a problem for SMT. Prefetching into L2 converts slow L2 misses into fast L2 hits;

however, the L2 hits still miss in L1, resulting in the same L1 misses occurring in fewer

cycles. L1 misses clog the issue queue with dependent instructions, even though L1 misses

are short. While SMT without prefetching is also clogged for the L1-miss duration, it

eventually incurs an L2 miss and squashes the thread [9], unclogging the issue queue to

allow other threads to progress. Because prefetching causes L1 misses to occur in fewer

cycles, the issue queue is clogged more often with prefetching than without. Thus, even

correct prefetching may hurt SMT throughput! Unfortunately, neither removing L1 misses

nor circumventing them to avoid the clogging is easy; removing L1 misses by prefetching

into L1 is difficult due to L1’s high contention [16], which is worse in SMT.
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Circumventing L1 misses is also difficult because L1 misses are known too late in the

pipeline to prevent dependent instructions from entering the pipeline. Thus, in addition to

the uncertainty in opportunity, the question of whether issue-queue clogging or latency

hiding will impact SMT throughput more is unclear. Table 1 summarizes the trade-offs of

the techniques when they are implemented in SMT.

In superscalar, the micro-architecture community has also made impressive improve-

ments in branch prediction [29,53] to avoid pipeline stalls caused by branches, achieving

prediction accuracies that are typically 95% or higher. Nevertheless, certain branches are

either inherently hard to predict or incur destructive interference in a finite-sized branch

prediction table. Mispredictions of such “difficult” branches cause considerable perfor-

mance penalty and will worsen as the pipeline stages increase in the future microproces-

sors. One approach to target such difficult branches is to exploit the fundamental property

of control-flow independence. Despite advances in out-of-order techniques to exploit data

independence, the technique that exploits control-flow independence has not been exten-

sively studied even in the context of a superscalar. To reduce branch misprediction penalty

Table 1: Trade-offs of trace cache, value prediction and prefetching

Trace Cache
Pros - satisfies SMT’s high demand of fetch bandwidth.
Cons - causes redundancy in instruction storage while SMT demands

high instruction storage capacity.
- SMT provides high fetch bandwidth without needing multiple
branch prediction.

Value Prediction
Pros - breaks the data dependences of individual threads.
Cons - Data dependence delay can be hidden by other threads.

- holds up resources even when predictions are correct.
Prefetching

Pros - fulfills SMT’s high demand on memory access.
Cons - Opportunity may drop because of thread-level parallelism.

- may cause issue queue clogging even when prefetches are
correct
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on superscalar, I propose a novel architecture, called Skipper, to handle difficult branches.

Skipper is the first proposal to exploit control-flow independence by skipping over con-

trol-flow dependent computation in the context of a superscalar pipeline.

Skipper avoids predicting difficult branches, by skipping over the computation condi-

tioned by a difficult branch, and exploits the fundamental property of control-flow inde-

pendence. The computations in a branch’s taken and non-taken paths are conditioned by

the branch, and are control-flow dependent on the branch, because whether each of the

computations should be executed or not depends on the outcome of the branch. In con-

trast, the computations immediately following the point where the taken and non-taken

paths re-converge are control-flow independent, because the post-reconvergence computa-

tions will be executed, irrespective of whether the branch is taken or not. A previous study

shows potential speedups of about 30% in a wide-issue superscalar by exploiting control-

flow independence [38].

Previous proposals to handle difficult branches are (1) to execute both the taken and

non-taken paths conditioned by the difficult branch or (2) upon a mis-prediction, selec-

tively recovering control-flow independent instructions by not squashing data-independent

instructions, and re-executing only instructions that are data-dependent or (3) compiler-

driven techniques, such as delay slot and conditional execution. Because the first approach

executes both paths, one of which is incorrect, and the second execute incorrect instruc-

tions from the mis-predicted path, both approaches squandering processor cycles and

valuable resources such as i-cache bandwidth. Incorrect instructions are numerous

because they include not only incorrect control-flow dependent instructions but also con-

trol-flow independent instructions which are data dependent on the incorrect control- flow

dependent instructions. In [38], the proponents of the second approach conclude that the

biggest performance limiter is wasted resources consumed by incorrect control dependent

instructions. The third approach executes incorrect instructions or waste resources, even

when the branches can be correctly predicted without the compiler’s help. Delay slot does

not work well in long pipeline and wastes resources when the compiler cannot find inde-

pendent instructions at compile time and resulting in empty delay slots; conditional execu-

tion executes both taken and non-taken paths and discards computations from the incorrect

path, when the branch is resolved.
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To conserve valuable resources, Skipper altogether avoids incorrect instructions by

skipping over, without even fetching, the control-flow dependent instructions from both

taken and non-taken paths conditioned by a difficult branch. Skipper fetches and executes

instructions from post-reconvergent instructions when waiting for a branch to resolve, and

executes only the correct control-flow dependent instructions after the difficult branch is

resolved. Skipper is the first proposal to exploit control-flow independence by skipping

over control-flow dependent computation in the context of a superscalar pipeline. Super-

scalar employs sophisticated out-of-order instruction-issue techniques which routinely

skip over data dependent instructions but not control-flow dependent instructions. Other

approaches, employing hardware and software assists vastly different from a superscalar,

skip over instructions to pursue multiple flows of control: Multiscalar[42] uses the com-

piler to identify reconvergence points, Dynamic Multithreading [1] uses hardware to skip

over loops and calls, but not branches.

Unlike superscalars which always fetch instructions in predicted program order, Skip-

per fetches the skipped control-flow dependent instructions after the post-convergent

instructions, out of program order. Thereby, Skipper exploits control-flow independence

of the post-reconvergent computation, and overlaps execution of computation before the

branch (and resolution of the difficult branch) with the execution of the post-reconvergent

computation. Execution overlaps comes from post-reconvergent instructions that are data

dependent of the skipped instructions. Skipper forces the post-reconvergent instructions,

which are data dependent on the yet-to-be-fetched skipped computation, to wait till the

difficult branch is resolved and the correct path within the skipped computation is fetched

and executed. Note that conventional superscalars delay all instructions following a

mispredicted branch till the instructions are re-executed. In contrast, Skipper delays only

the skipped instructions and the post-reconvergent data-dependent instructions, but does

not delay the post-reconvergent data-independent instructions.

I describe four mechanisms to implement Skipper in an out-of-order pipeline: First, to

identify difficult branches, Skipper uses the previously proposed JRS scheme. Second, to

determine difficult branches’ reconvergence points, Skipper employs a heuristic based on
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idiomatic control-flow code patterns generated by modern compilers for conditional con-

structs, without requiring scanning of instructions as in [38]. Third, despite out-of-order

fetching of the skipped instructions, Skipper maintains program order in the instruction

window and load/store queue. On fetching a difficult branch, Skipper creates a appropriate

sized, contiguous gap in the instruction window and load/store queue, to be filled later by

the skipped computation from the correct path Fourth, to force data-dependent, post-

reconvergence instructions to wait till the yet-to-be-fetched skipped instructions execute,

Skipper estimates register dependencies, learning from prior dynamic instances. At the

time of skipping, Skipper updates the register rename tables using this dependence infor-

mation, making post-reconvergent data-dependent instructions wait.

The main contributions of this dissertation are:

• I show for the first time the evaluation of trace cache, value prediction and prefetching

in the context of an Simultaneous Multithreading Processor (SMT).

• My evaluation pin-points when-and-why these techniques do or do not benefit SMT,

thereby providing recommendations for future SMT designs. Because my results show

that trace cache and value prediction hurt SMT throughput, I recommend that these

techniques to be excluded for future SMT designs when multi-programmed workloads

are the common case and throughput is the main goal.

• My findings also create a new responsibility for the OS: Because the techniques

improve single-thread performance, I recommend that the OS disable the techniques

when running multi-programmed workload, and enable them for single-threaded work-

load and for high-priority threads in a multi-programmed workload.

• I propose Skipper, the first proposal to skip control- flow dependent instructions, with-

out wasting resources on incorrect control-flow dependent instructions.

• I describe key mechanisms to implement Skipper without unduly complicating the

pipeline despite out-of-order fetching.
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For the evaluation of trace cache, value prediction and prefetching in SMT, I use multi-

programmed workloads that comprises a subset of the SPEC2000 benchmarks. The main

results of my simulations are:

• Trace cache, value prediction and prefetching significantly improve single-thread per-

formance. This result agrees with previous papers and validates my implementations.

• Given similar size for the duo of trace cache and backup i-cache as the conventional i-

cache, trace cache degrades SMT throughput compared to the conventional i-cache.

Throughput improves for 2 threads, agreeing with the two-threaded Pentium IV’s use of

a trace cache. This result shows that trace cache’s space-for-bandwidth trade-off hurts

SMT. Giving considerable extra size to the trace cache results in the trace cache per-

forming only marginally better than the conventional i-cache, showing that trace cache

is not effective in SMT.

• Given a typical number of physical registers, value prediction degrades SMT through-

put, showing that holding up registers under value prediction hurts SMT throughput.

While value prediction does improve individual threads that have long-latency misses,

it does so at the cost of the other threads, defeating SMT’s purpose. Using infinite phys-

ical registers and perfect confidence prediction results in value prediction performing

only marginally better than conventional SMT, showing that value prediction is not

effective in SMT.

• For memory-intensive workloads, there is substantial opportunity for prefetching even

with many threads, showing that SMT cannot hide not all long-latency misses. I found

that prefetch coverage can be reduced to balance prefetching and issue queue clogging,

improving throughput for this workload. For workloads with mixed memory demand,

SMT significantly reduces opportunity. Despite reducing the coverage, prefetching

slightly degrades throughput for this workload due to issue queue clogging. Like value

prediction, prefetching also improves individual threads at the cost of the other threads

in this workload, degrading overall throughput.

• My simulations using SPECint95 show that Skipper performs 10% and 8% better than

superscalar and the previously proposed Polypath, respectively, when the three archi-

tectures have equal i-cache bandwidth and hardware resources.
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Section 4 gives the background of trace cache, value prediction, prefetching and con-

trol-flow independence. Section 3 describes the details of Skipper microarchitecture.

Section 4 describes the methodology. Section 5 shows my results, and Section 6 concludes

my dissertation.
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2  BACKGROUND

Figure 1 shows how the trace cache, value prediction and prefetching affect the super-

scalar pipeline.

2.1  Trace Cache

Before trace cache was introduced, Tyson et al. [54] increased fetch bandwidth by pre-

dicting multiple branches every cycle with Branch Address Cache. Rotenberg et al. [37]

introduced trace cache, and compared it with other high-bandwidth instruction fetch

schemes. Others [36,35,13] studied important issues concerning trace cache performance

such as partial matching, cache associativity, fill unit, and multiple branch prediction.

Patel et al. [34] proposed branch promotion and trace packing for improving trace cache

bandwidth. To achieve better utilization of trace cache space, Black et al. [5] suggested the

block-based trace cache, which stores pointers to blocks constituting a trace, instead of

storing instructions. Any repetition of the traces results in only the pointers being repeated

instead of the entire trace, reducing space requirements.

Figure 1: Trace cache, value prediction and prefetching in superscalar pipeline
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Because I wish to study the effectiveness of trace cache’s space-for-bandwidth trade-

off, and because the block-based trace cache is the most space-efficient implementation

that also achieves high bandwidth, I use the block-based trace cache in my evaluations. I

discuss the details of this specific trace cache later in Section 4.1.

2.2  Value Prediction

Lipasti et al. [30] proposed last-value prediction with saturating confidence counters.

Mendelson et al. [2] added a stride prediction scheme, and Farkas et al. [40] studied the

implementation details for the context-based prediction scheme. Others predict load val-

ues by using recent store information [32,50]. However, without accurate prediction, value

prediction may hurt performance due to misprediction penalties unless there is hardware

support, such as selective recovery, to reduce the penalty. Calder et al. [9] showed the

importance of confidence prediction to perform selective value prediction to avoid mispre-

dictions and achieve good speedup even without the complicated machinery of selective

recovery.

In addition to avoiding complicated selective recovery, reducing mispredictions is

important for SMT so that processor resources are not wasted on incorrect execution.

Therefore, I use [9]’s selective value prediction, which combines confidence prediction

and value prediction, in my evaluations and discuss their details in Section 4.2.

2.3  Prefetching

While prefetching can be implemented in either software [44,26] or hardware, I focus

on hardware prefetching in this study. Chen et al. [45] proposed the stride prefetcher, and

others [19,12] used a stream buffer for prefetching. Markov prefetching uses address cor-

relation (i.e., correlation among addresses in the cache miss stream) to improve the accu-

racy of prefetching arbitrary, non-strided access patterns [10,18]. These proposals focused

on what to prefetch but do not pinpoint when to prefetch.

Lai et al. [25] first proposed to consider the timing of memory access patterns to deter-

mine when to prefetch and improves accuracy over [18]. They introduced Dead-Block

Predictors to predict the dead blocks — i.e., the blocks that will be evicted without any use
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— in L1. When a block dies, the prefetcher predicts the next access to the block’s set and

prefetches the next access into the dead block’s frame. Kaxiras et al. [20] also proposed a

scheme to predict dead blocks, but they used the prediction for reducing cache leakage

power and not for prefetching data. Hu et al. [55] applied [20] to prefetching and used

smaller prediction tables than [25] for both dead-block prediction and next-address predic-

tion while achieving better performance.

Lastly, Hu, et al. [16] simplified [55] by showing that when prefetching into a large

highly-associative L2 cache, dead-block prediction was not necessary. [16] also showed

that prefetching into L2 can achieve most of the benefit of prefetching into L1 without dis-

rupting the highly contentious L1 with untimely or incorrect prefetches. Because SMT’s

multiple threads cause even higher contention on L1 than that of superscalar, I implement

the latest, best-performing tag-correlating prefetching of [16] to prefetch into L2 without

disrupting L1. I discuss the prefetcher implementation details in Section 4.3.

2.4  Control-flow Independence

There have been several results on the potential of exploiting control-flow indepen-

dence [38]. Many previous ideas to handle difficult branches, amount to executing both the

taken and not-taken paths, using varying degrees of ISA support for predication. Proposals

such as Multipath [52], Polypath [22,23], dual pipelines [24] and instruction windows

[11], and Dynamic Hammock Predication [21] explicitly follows this approach. ISA sup-

port for predicated execution removes difficult branches, but at the cost of executing

instructions from both the taken and not-taken paths [28,3].

Researchers [38] have proposed selective recovery of control-flow independent

instructions after a misprediction, but they point out in a later paper that the scheme is hard

to implement [39]. Selective squashing may require expanding/contracting the instruction

window at multiple, arbitrary points because the incorrect and correct path instructions are

intertwined in the instruction window. Out-of-order pipelines usually track data dependen-

cies through register rename map tables at the granularity of a block of instructions (typi-

cally between successive branches), and not individual instructions. This coarse

granularity reduces the number of map tables and makes misprediction handling fast and
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efficient, but disallows fast extraction of selective information about individual instruc-

tions. For a realistic selective recovery [39], they propose using Trace processors’ hierar-

chical organization, a solution not applicable to superscalars (Although Pentium IV has a

trace cache, it is not a trace processor). Instruction Reuse [41] is a general technique which

can recover values of control-flow independent instructions after a misprediction. But

instruction reuse also squashes all instructions following a misprediction. Multiscalar [42]

and Dynamic Mutithreading [1] uses hardware or compiler to demarcate threads, which

may choose control-flow independent threads to shield intra-thread mispredictions from

squashing other threads.



 15
3  SKIPPER MICROARCHITECTURE

In this section, I discuss how Skipper is mapped to a superscalar microarchitecture at a

high level.

Figure 2 illustrates the differences between correct prediction, misprediction, and

skipping. Figure 2 (a) identifies the control-flow dependent (segments A and B) and con-

trol-flow independent, post-reconvergent (segment C) computations in a program seg-

ment, as defined in Section 1. Figure 2 (b) shows the time lines of correct and incorrect

predictions. Correct prediction leads to execution overlap among the instructions before

the branch, and the instructions from the predicted path (A and C segments). A mispredic-

tion usually leads to squashing of all instructions after the branch, irrespective of whether

they are control-flow dependent or independent (both B and C segments).

Figure 2 (b) shows Skipper's time line. Skipper overlaps the computation before the

difficult branch (and resolution of the branch), with the post-reconvergent instructions that

are data independent of the skipped instructions (data independent instructions from seg-

ment C). On resolving the difficult branch, Skipper suspends execution of the post-recon-

vergent instructions. Skipper then executes the correct path in the skipped computation

(segment A), allowing the post-reconvergent instructions that are data dependent on the

skipped instructions to proceed (rest of segment C). After fetching all the skipped instruc-

tions till the reconvergence point, Skipper continues with the suspended post-reconvergent

computation.

Despite its advantages, skipping is not always beneficial. Skipping branches that

would be correctly predicted may cause performance loss, while not skipping branches

that would be incorrectly predicted results in lost opportunity. Comparing correct predic-

tion and skipped time lines in Figure 2 (b) reveals this point. The performance loss is
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incurred because conventional superscalars do not delay any of the instructions following

a correctly predicted branch, but Skipper unnecessarily delays the skipped instructions and

the post-reconvergent data-dependent instructions (from C), until the difficult branch is

resolved.

3.1  Overview

I describe Skipper in the context of an out-of-order pipeline that uses rename tables for

register renaming and an instruction window for out-of-order issue. Skipper employs JRS

scheme [17] to identify branches that are repeatedly mispredicted. Basically JRS monitors

the prediction accuracy of prior instances of branches and isolates branches with low accu-

racy. If a branch is identified as hard-to-predict, Skipper uses a heuristic to determine the

branch’s reconvergence PC, and maintains the PC in the Skipped Computation Informa-

Figure 2: Exploiting control-flow independence.
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tion Table (SCIT). Subsequent instances of the branch obtain the reconvergence PC from

the SCIT.

In the following cycles, Skipper fetches the post-reconvergence instructions and places

them in the instruction window. Skipper creates a contiguous gap, large enough to hold all

the skipped instructions, in both taken and non-taken paths, in the instruction window, and

places the post-reconvergence instructions after the gap, similar to [43]. Skipper learns the

likely maximum gap length by counting number of instructions in skipped computation,

from both taken and non-taken paths, in prior execution of the branch. After the skipped

branch resolves, Skipper fetches skipped instructions in the correct path (taken or not

taken), and places them in the gap. Instructions in the instruction window remain in pro-

gram order, and Skipper maintains precise interrupts despite out-of-order fetching.

3.1.1  Maintaining Data Dependence

Using the fact that conventional superscalar fetches instructions in program order, reg-

ister rename tables links register producers to consumers, and the load/store queue

deduces producer-consumer relationships for memory values. Because Skipper fetches

instructions out-of-order, the post-reconvergence instructions before the skipped instruc-

tions, the rename tables cannot establish correct data dependencies among the skipped

instructions and the post-reconvergence instructions. Previous schemes that fetch instruc-

tions out of order face similar problems: The Multiscalar architecture uses the compiler to

specify register dependencies [7]. The Dynamic Multithreading architecture employs

value speculation and intricate recovery [1].

In conventional out-of-order pipelines’ rename stage, instructions map their architec-

ture destination register to a new physical register, and place the new architectural-to-

physical mapping in the master rename table. Out-of-order fetch presents two issues for

Skipper’s register renaming. First, Skipper has to ensure that rename maps for the skipped

instructions’ source register are not clobbered by the post-reconvergent instructions. Sec-

ond, Skipper has to ensure that the post-reconvergent consumer instructions obtain the

correct rename maps corresponding to the skipped producer instructions. To handle these
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issues, Skipper learns the set of architectural source registers, the inputreg set, and destina-

tion registers, the outputreg set, for the skipped instructions (both taken and not taken) in

prior dynamic instances. The SCIT holds the inputreg and outputreg sets. The outputreg

set is similar to Multiscalar’s create mask, except Multiscalar uses the compiler to deter-

mine this information [51], and Skipper uses hardware.

For the first issue, Skipper copies the master rename table to a backup rename table, at

the time of skipping a branch. To conserve bandwidth, Skipper only copies rename table

entries that correspond to the union of inputreg set and outputreg set. At this point, the

master table reflects the register state of the program at the difficult branch. Post-reconver-

gent instructions modify the master table, and not the backup table. Later, when the

skipped instructions are fetched, they use the maps in the backup table.

For the second issue, Skipper forces the data-dependent, post-reconvergence instruc-

tions to wait until the yet-to-be-fetched skipped instructions execute. The outputreg set

gives Skipper a priori, albeit approximate, knowledge of the destination registers for

which the yet-to-be-fetched skipped instructions. At the time of skipping, Skipper preallo-

cates and preassigns physical register, one for each architectural register in outputreg set,

and marks the physical registers busy. Much like a data-dependent instruction in out-of-

order superscalars, all post-reconvergent instructions that are possibly data-dependent on a

skipped instruction waits until the corresponding physical register is ready or bypassed.

When the skipped instruction eventually completes execution, its preassigned physical

register gets the value, allowing all waiting post-reconvergent instructions to proceed.

Data-independent, post-reconvergence instructions proceed without waiting, much as in

superscalars. Because several skipped computations could be in-flight, Skipper uses multi-

ple backup and preassign tables, much as superscalars use a backup rename table for each

unresolved branch in flight.

For memory dependencies, Skipper faces the same problem of maintaining program

order in the load/store queue, as in the instruction window. Skipper creates an appropri-

ately-sized gap in the load/store queue in parallel with the instruction window, and main-

tains the load/store queue gap length information also in the SCIT. Skipper uses
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conventional load/store queue’s ability to allow loads to proceed without knowing all pre-

vious store addresses, letting post-reconvergent loads to proceed even though the skipped

stores have not even been fetched. Conventional load/store queues check if later loads

complete prematurely before an earlier store to the same address, and enforce store-load

program order via squash and rollback. Skipper can avoid such squashes using well-

known memory dependence synchronization techniques [31]. Thus, Skipper’s loads and

stores remain in program order and in correct data dependencies in the load/store queue,

despite out-of-order fetch.

3.2  Supporting control-flow independence in Skipper

Before I describe the details of how the required information is gathered in SCIT

(Skipped Computation Information Table), I explain how I use the SCIT information.

The Skipper pipeline treats instructions that are not skipped as well as branches that

are not difficult much like a conventional superscalar pipeline. The cases where Skipper’s

action are different from those of a conventional pipelines are (1) when Skipper identifies

a branch to be difficult, (2) when Skipper resolves a difficult branch, (3) when Skipper

fetches and executes a skipped computation, and (4) when Skipper fetches the last instruc-

tions from a skipped computation. The post-reconvergence instructions flow through the

pipeline without any special actions. Figure 3 shows an out-of-order pipeline extended

with Skipper. I do now show post-reconvergence instructions.

3.2.1  Fetching a difficult branch

Using the predicted PC, the front-end of the Skipper pipeline probes the JRS structure

and the SCIT, in addition to the usual branch prediction tables. If the JRS structure identi-

fies a branch to be difficult, the fetch stage fetches from the reconvergence PC provided by

the SCIT. If the SCIT does not have an entry for this branch or if the instruction window

gap length as provided by the SCIT entry is larger than the gap-length-threshold, then

Skipper defaults to branch prediction, overruling the JRS’s recommendation. Gap-length-

threshold ensures that Skipper does not create inordinately large gaps in the instruction

window, under utilizing the instruction window. Skipper obtains the reconvergence PC in
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parallel with the fetching of the difficult branch, much like a branch target address from

the BTB in conventional pipelines, Thus, Skipper fetches the post-reconvergent instruc-

tions in the immediately following cycle after the difficult branch fetch cycle, without

inserting any bubbles in the pipeline

Skipper allocates an entry in the Skipped Instruction Status Table (SIST) for every

skipped branch to hold information required by various pipeline stages for the skipped

computation and the post-reconvergent computation. There could be multiple difficult

branches in flight in the pipeline, and the SIST holds an entry for every difficult branch in

flight. However, Skipper does not perform nested skipping (i.e., skipping within a skipped

computation), and so the SIST entries are in program order. Every instruction carries its

SIST entry number so that the instruction can be associated with its SIST entry in later

stages of the pipeline.

Conventional pipelines allocate a history rename table when a branch enters the

rename stage. Subsequent instructions copy the previous rename map of their destination

registers from the master table to the history table, before placing their new rename map in

the master table. This procedure essentially checkpoints the rename maps, thus allowing

fast recovery of the maps on mispredictions. The copying is done at a rate matching the

issue width. For instance, in a four-issue machine, the rename table allows, in one cycle,

eight reads for the sources, and four reads and eight writes to checkpoint the old maps and

update the new maps for the destinations. Rename table bandwidth is a critical resource,

and as such the entire table (e.g., for 64 architectural registers and 512 physical registers,

the table has 576 bits) cannot be backed-up en masse, in one cycle. In [52], this point was

noted in the Mapping Synchronization Bus description.

When the difficult branch reaches the rename stage, Skipper modifies the rename

tables as per the inputreg and outputreg sets. To that end, Skipper first allocates a backup

rename table and copies the rename maps for the skipped instructions’ inputreg and outpu-

treg sets into the backup table. In Section 3.1, I explained why the backup table holds the

inputreg maps, but the reason for copying the outputreg maps will become clear in
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Section 3.2.3. This copying proceeds at the bandwidth provided by the backup table and

may stall the rename stage for as many cycles as needed for the copying.

Skipper then preallocates and preassigns new physical registers to the skipped instruc-

tions’ outputreg set. Skipper updates the master table with the preassigned physical regis-

ter rename maps, and marks the preassigned physical registers as busy. Additionally,

Skipper allocates another preassign rename table and updates the table with the outputreg

set’s preassigned physical register rename maps. The updating of the master and preassign

tables too proceed at the bandwidth provided. Skipper places pointers to the backup and

preassign tables in the difficult branch’s SIST entry so that when the skipped instructions

are fetched, the pipeline knows which rename table to use.

In the out-of-order issue (OoO issue) stage, Skipper uses the difficult branch’s instruc-

tion window and load/store queue gap length information from the SCIT to create a gap in

the instruction window and load/store queue. Skipper puts pointers to the instruction win-

dow and load/store queue gaps in the difficult branch’s SIST entry so that on fetching the

skipped instructions, the pipeline knows where to place them.

3.2.2  Resolving a difficult branch

Till Skipper resolves the difficult branch, execution proceeds with the post-reconver-

gent instructions much like conventional pipelines, and the pipeline front-end predicts

branches. The post-reconvergent instructions modify the master table, as usual. If JRS

identifies a subsequent branch to be difficult, Skipper continues at the branch’s reconver-

gence points, allowing multiple skipped branches in flight.

Upon resolving a difficult branch, the fetch stage is diverted to fetch from the correct

path of the skipped computation, temporarily suspending fetching from the post-reconver-

gent computation. Skipper provides the correct branch target to the fetch stage along with

the branch’s SIST entry number so that the skipped instructions are associated with the

correct SIST entry. Skipper holds the PC up to which the post-reconvergent instructions

have been fetched in the difficult branch’s SIST entry, so that after the skipped instructions

are all fetched, the fetch stage can revert back to fetching the post-reconvergent
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instructions starting from that PC. The skipped instructions from the correct path enter the

pipeline starting from the cycle following the branch resolution. This change of fetch

stream does not entail any pipeline bubbles because the post-reconvergent instructions

flow through the pipeline, as before.

If the post-reconvergent instructions fill up the instruction window (except for the gap)

and the front-end pipeline stages from OoO issue all the way back to fetch, Skipper may

deadlock. Basically the skipped instructions cannot get into the pipeline even though there

are instruction window slots set aside for them. Skipper avoids such deadlocks by squash-

ing the instructions in the stages from OoO issue back to fetch, freeing up the front-end

stages so that the skipped instructions can get into the instruction window.

3.2.3  Fetching and executing skipped instructions

The skipped instructions, carrying the SIST entry numbers provided by the difficult

branch, pass through the pipeline. Skipper places the skipped instructions in the instruc-

tion window, and loads and stores in the load/store queue using the SIST entry’s instruc-

tion window entry pointer and load/store queue entry pointer, respectively. The skipped

instructions use the rename tables identified by the backup and preassign table pointers,

stored in the SIST entry. The backup table contains both inputreg and outputreg registers’

rename maps corresponding to the register state of the program at the difficult branch.

The skipped instructions use the backup (and not master) table both to get their source

rename maps and to put their destination rename maps. If a skipped instruction’s source is

an inputreg register, the backup table provides the rename map for the register. There are

two issues with guaranteeing correctness with regard to the outputreg registers. First, mul-

tiple skipped instructions writing to the same architectural destination register pose a

problem because Skipper preassigns only one physical register per outputreg register. Sec-

ond, Skipper needs to identify when it is safe for the dependent post-reconvergent instruc-

tions waiting on the preassigned registers to use the values in the registers. Because

multiple skipped instructions may write to the same architectural register, it may not be

correct to allow a dependent instruction to read the register as soon as a write occurs.
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Skipper handles both issues using a simple approach. In the rename stage, the skipped

instructions do not use the preassigned physical registers as their destinations. Instead,

these instructions obtain newly allocated physical registers. As skipped instructions pass

through the rename stage, they update the backup table with the new physical register

maps. Subsequent skipped instructions obtain the correct rename maps for their source

registers from the backup table. At the end of the skipped computation, Skipper introduces

extra physical register move instructions called pmoves, similar to [21,42]. Pmoves

(described in Section 3.2.4) copy the latest outputreg value from the physical registers

given by the backup table maps to the preassigned registers given by the preassign table

maps.

Because the outputreg set is an estimate based on previous instances, an outputreg reg-

ister may not be written by the skipped instructions. In that case, the latest value for an

outputreg register comes from an instruction before the difficult branch. It is for this rea-

son Skipper copies the outputreg rename maps into the backup table when the difficult

branch is in the rename stage, as mentioned in Section 3.2.1. Consequently, the backup

table holds the latest rename map for the outputreg registers irrespective of whether the

skipped instructions actually write to the outputreg registers or not, and therefore, the

pmoves copy the correct values.

Conventional pipelines free the previous physical register mapped to the same archi-

tectural register as the committing instruction’s destination. Because Skipper commits

instructions in program order, this approach also works for Skipper. Clearly this approach

works for all instructions up to the first gap. At the gap, previous physical registers fall

into two categories: either they are mapped to outputreg registers or not. Those mapped to

outputreg registers are freed by writes in the gap, and the writes’ registers are freed by

pmoves; if there are no writes, pmoves directly free the previous registers. Those not

mapped to outputreg registers are freed by post-gap instructions, as usual.

It is possible that an architecture register not in the outputreg set is written to in the

skipped computation. A dependent post-reconvergent instruction may incorrectly use a

stale value assuming that the register would not be written by the skipped instructions. A
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similar situation is possible for the inputreg set, where a skipped instruction needs to read

a register not in the inputreg set. These conditions are easily detected in the register

rename stage by comparing each skipped instruction’s destination (source) register against

the outputreg (inputreg) set of the instruction’s SIST entry. On detection, Skipper simply

squashes all post-reconvergent instructions and triggers recovery of the missing register’s

rename map, irrespective of whether or not an incorrect value or rename map was used.

While executing the skipped instructions, Skipper predicts the branches within the

skipped computation, as usual. Incorrect branch prediction within the skipped computa-

tion results in squashing all post-reconvergent instructions, nullifying Skipper's ability to

exploit control-flow independence. If JRS identifies a branch within skipped computation

to be difficult, Skipper suspends fetching from the branch till the branch is resolved and

reverts to fetching from the post-reconvergent stream, using the post reconvergent fetch

PC in the SIST entry. While this simple solution further delays the dependent post-recon-

vergent instructions, it avoids squashing post-reconvergent computation. Another solution

is to skip the difficult branches within the skipped computation but such nested skipping

may complicate implementation.

Out-of-order fetching may interact with branch prediction unfavorably because specu-

lative update of branch history [15] may be disrupted by the out-of-order fetch stream.

Because this is the first research on this approach, I avoid this issue by assuming that

branch prediction updates occur at commit point, although previous results have shown

speculative updates to perform better than commit updates.

3.2.4  Last instruction in the skipped computation

Each SIST entry holds the corresponding reconvergence PC to allow the fetch stage to

determine when a skipped instruction stream merges with its post-reconvergent computa-

tion and stop fetching more instructions from the skipped stream. Every cycle, the fetch

stage compares the next fetch PC with the reconvergence PCs held in the SIST entries, and

on a match stops fetching from the corresponding skipped computation further. Skipper

then inserts the extra pmoves into the instruction window, so that they execute as and when
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the value for the outputreg registers become available. On execution, the pmoves write to

the preassigned physical registers and mark them ready, allowing dependent, post-recon-

vergent instructions to proceed. The fetch stage then reverts to the post-reconvergent com-

putation by continuing from the PC at which the post-reconvergent stream was left off.

Because the instruction window and load/store queue gap lengths are estimates based

on previous instances, it is possible that the gaps in the instruction window and load/ store

queue fill up before all the skipped instructions are fetched. In that case, Skipper simply

squashes all the post-reconvergent instructions to make room for the rest of the skipped

instructions to be placed in the instruction window. If the reconvergence PC obtained by

the pattern-matching heuristic is incorrect, the effect of this incorrect information is that

the instruction window gap fills up before the skipped instruction stream merges with the

post-reconvergent computation, causing Skipper to squash all the post-reconvergent

instructions starting from the incorrect reconvergence PC.

3.3  Learning the SCIT information

Skipper learns all the required information about the skipped computation from previ-

ous instances and deposits them in the SCIT for subsequent instances. The information

collected in the SCIT are: identifying which branches are difficult, what the reconvergence

PC are, what the instruction window and load/store gap lengths should be, and the skipped

instructions’ inputreg/outputreg set.

3.3.1  JRS for Identifying the difficult branches to skip

Skipper uses JRS branch confidence estimation, previously proposed by [17], to iden-

tify difficult branches by accessing the JRS structure with every branch prediction. JRS

tracks number of times a branch has been mis-predicted using saturating counters much

like a branch predictor. The counters count up on incorrect predictions and count down on

correct predictions. JRS chooses appropriate values for both the up/down rates, and the

count threshold above which a branch is deemed difficult. Even if a branch is deemed dif-

ficult, JRS and branch continue to make predictions and update the tables. If a branch is

repeatedly predicted correctly, JRS stops marking the branch as difficult.



 27
The key aspect of JRS relevant to Skipper, is that skipping branches that would be cor-

rectly predicted may cause performance loss, while not skipping branches that would be

incorrectly predicted results in lost opportunity. The performance loss is incurred because

Skipper unnecessarily delays the skipped instructions and data-dependent instructions

located after the post-reconvergence point. Thus, there is a trade-off between JRS’s cover-

age and accuracy, and while lower coverage means lost opportunity; lower accuracy may

mean performance loss.

3.3.2  Heuristics for identifying reconvergence point

For if-then-else constructs in high-level languages, the compiler typically generates a

branch to determine whether the if clause or the else clause is to be executed. The com-

piler also generates a jump instruction to the reconvergence PC at the end of the if clause,

to elide the else clause. Therefore, the reconvergence PC can be determined if the jump

instruction is located. The target PC of the branch is the beginning of the else clause, and

the jump instructions is located immediately before the branch target. Skipper computes

the target of the difficult branch and uses the PC immediately before the branch target to

probe the i-cache and inspects the instruction there. If the instruction is a jump instruction,

then the target of the jump is the reconvergence PC.

If the instruction at the PC immediately before the difficult branch target is not a jump

instruction, then Skipper assumes that the difficult branch is from an if-then construct,

instead of an if-then-else construct. For if-then construct, the branch target is the reconver-

gence PC. If a difficult branch is a backward branch (indicated by a negative offset), then

Skipper assumes that difficult branch is a loop branch, which the loop iterations is hard to

predict, and assigns the immediate PC after the branch as reconvergence PC. Unlike previ-

ous work [38], I do not include the return PC of a function as the reconvergence PC of all

branches within the function body because of gap-length-threshold constraints.

Using only one probe into i-cache, Skipper’s heuristic determines the reconvergence

PC. Because the probe is done only for difficult branches and not for all branches, and that

too only if the SCIT does not have the reconvergence PC, this probe does not degrade
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i-cache bandwidth. Once the reconvergence PC is recorded in the SCIT, the heuristic is not

used until the SCIT replaces the branch’s entry due to conflict or capacity issues. Because

Skipper obtains the reconvergence PC from SCIT most of the time and not from the heu-

ristic, computing the difficult branch’s reconvergence PC can be slow. Consequently, this

computation is done over many pipeline stages instead of just decode, without affecting

the cycle time.

There are compiler optimizations that may confuse the heuristic. For instance, in code

layout optimization to improve i-cache performance, the compiler moves infrequent con-

trol-paths away from the sequential stream. Such code motion changes the code pattern

and renders the heuristic ineffective. However, this optimization may be applied to only

those branches that are biased towards one of the two paths; otherwise one path would not

be more frequent than the other. Therefore, such branches may not be difficult to predict

and may not need to be skipped. Other optimizations may cause exceeding of the gap-

length-threshold. An example is tail duplication of the post-reconvergence code into the if

and else path, which increases the gap length.

3.3.3  Estimating the gap length

After JRS identifies a difficult branch and the heuristic determines the reconvergence

PC, Skipper collects the instruction window and load/store queue gap length information

from subsequent instances of the branch. Upon committing the difficult branch, Skipper

creates a valid entry in the Gap Information Learning Buffer (GILB), and places the

reconvergence PC in the GILB entry. From the difficult branch onwards, every committing

instruction increments the instruction window gap length count of all valid GILB entries,

because each valid GILB entry represents a distinct difficult branch whose reconvergence

PC has not been committed. Also, Skipper matches the PC of the committing instruction

against the reconvergence PCs of all the valid GILB entries. A match indicates that the

corresponding difficult branch’s reconvergence PC has been reached. Skipper transfers the

information in the GILB entries to the SCIT, and relinquishes the GILB entry.
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Figure 4: Examples of Skipper’s Heuristic to determine reconvergent PC.
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To keep the SCIT information as accurate as possible, Skipper continues to collect the

information in subsequent instances of the difficult branch, irrespective of whether the

branch is predicted or skipped. If the instruction window (or load/store queue) gap length

count in any later instance is larger than the length recorded in the SCIT, Skipper updates

the SCIT entry with the larger count. If the count is smaller, it is discarded. This repeated

updating of the maximum length helps Skipper account for different control-flow path

lengths within the skipped computation.

If Skipper does not maintain the maximum gap length, Skipper would essentially have

to predict the skipped computation’s path length to estimate the gap length. Predicting the

path length may indirectly lead to predicting the difficult branch, defeating Skipper’s pur-

pose. Because the maximum gap length is longer than all but the longest path within the

skipped computation, Skipper is conservative in setting aside the instruction window gap.

Some of the instruction window slots remain empty if the actual path within the skipped

computation is not the longest. This conservative choice is better than predicting the diffi-

cult branch because the number of wasted slots is still much smaller than the slots spent on

numerous incorrect instructions in out-of-order superscalars and other approaches.

3.3.4  Determining inputreg and outputreg set

Along with the gap lengths, the GILB also tracks the outputreg sets and inputreg set of

the skipped computation using a bit-vector field in the GILB entries. From the difficult

branch onward, every committing instruction’s destination (source) register is added to the

outputreg (inputreg) bit-vector of all valid GILB entries. Because Skipper collects outpu-

treg and inputreg information at commit point, incorrect predictions within the skipped

computation do not adversely affect the accuracy of the information. When the gap length

information is transferred to the SCIT from the GILB, the GILB entry’s bit-vectors are

OR’ed with the SCIT entry’s corresponding bit-vector. The OR’ing accounts for differ-

ence outputreg and inputreg sets along different control-flow paths within skipped compu-

tation. The outputreg and inputreg sets are conservative union over all control-flow paths

within the skipped computation. Not considering all the paths would cause Skipper to pre-

dicting the difficult branch indirectly, as argues above.
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4  METHODOLOGY

I modified simplescalar [8], an execution-driven, cycle accurate simulator for my eval-

uation of trace cache, value prediction and prefetching in the context of SMT. My simula-

tor carefully models SMT pipeline details, including out-of-order issue, memory-bus

occupancy, multiple contexts, virtual-to-physical address translation, per-thread load/store

queues and active lists, and shared physical register file and issue queue. The simulator

models a pipeline that supports thread-level squashing on branch misprediction. To

improve instruction throughput in SMT, I apply squashing on L2 misses [47], except for

special cases that I will mention later. Because the L1 caches are virtually indexed, I use

address offsetting described in [27] to spread out accesses of different threads in the cache.

I also use the Bin-Hop page allocation policy to spread out accesses in the L2 cache [27].

My simulator runs Alpha binaries that are compiled with peak setting. I fast-forward

the first two billion instructions of each thread. The fast-forwarding warms up branch pre-

dictor, the L2 and L1 caches, but do not gather statistics. I then simulate until one of the

threads reaches 100 million instructions. For four or eight threads this method simulates

more than 100 million instructions. Therefore, my results are unlikely to be biased by indi-

vidual programs. Recently [46] proposes clustering phases to reduce simulation time

while minimizing errors for simulating single program. However, clustering for a multi-

programmed workload is more complicated and involves mixing phases of several pro-

grams. Because [46] does not show clustering for SMT simulations, I do not use such

approach.

Multi-programmed workload is one of the most important workloads for SMT. To sim-

ulate real-world workloads, I choose sixteen benchmarks from SPEC2000 to compose
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workloads that have two, four and eight threads. Out of these sixteen benchmarks, eight

achieve the highest IPCs (shown in bold) and the other eight have the most L2 cache

misses per instruction (shown in italics). I mixed these benchmarks to create three repre-

sentative workloads of different ILP and memory demand. Table 2 lists the SPEC2000

benchmarks and multi-programmed workloads I use in this study. The first set, called ILP,

consists of the high-ILP programs; the second set, called MEM, consists of the high-miss-

rate programs; and the third set, called MIX, combines programs from both ILP and MEM.

Within a set, there are four groups (1 thread, 2 threads, 4 threads and 8 threads) and each

group indicates the workloads for a given number of threads. I use the ref input for all

benchmarks.

Table 3 lists the configuration for the basic SMT in my study. I carefully choose an

aggressive SMT core such that my results are representative of many different SMT con-

figurations in the foreseeable future; a less aggressive SMT would handicap the techniques

Table 2: Applications and multi-programmed workloads for SMT evaluation
Category Benchmarks

1T.ILP mesa, crafty, fma3d, eon,
facerec, equake, sixtrack, galgel

1T.MEM vpr, apsi, art, applu, swim, lucas, mcf, ammp
1T.MIX 1T.ILP + 1T.MEM
Workload Composition Workload Composition

2T.ILP.1 mesa, crafty 2T.MIX.1 vpr, mesa
2T.ILP.2 fma3d, eon 2T.MIX.2 apsi, crafty
2T.ILP.3 facerec, equake 2T.MIX.3 art, fma3d
2T.ILP.4 sixtrack, galgel 2T.MIX.4 applu, eon
2T.MEM.1 vpr, apsi 2T.MIX.5 swim, facerec
2T.MEM.2 art, applu 2T.MIX.6 lucas, equake
2T.MEM.3 swim, lucas 2T.MIX.7 mcf, sixtrack
2T.MEM.4 mcf, ammp 2T.MIX.8 ammp, galgel
4T.ILP.1 2T.ILP.{1,2} 4T.MIX.1 2T.MIX.{1,2}
4T.ILP.2 2T.ILP.{3,4} 4T.MIX.2 2T.MIX.{3,4}
4T.MEM.1 2T.MEM.{1,2} 4T.MIX.3 2T.MIX.{5,6}
4T.MEM.2 2T.MEM.{3,4} 4T.MIX.4 2T.MIX.{7,8}
8T.ILP.1 4T.ILP.{1,2} 8T.MIX.1 4T.MIX.{1,2}
8T.MEM.1 4T.MEM.{1,2} 8T.MIX.2 4T.MIX.{3,4}
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I study because of less headroom for improvements. I use an issue width of eight as other

SMT-related previous studies do [49,47,48], unless otherwise specified. For branch pre-

diction, I use a hybrid of local and gshare predictors. Each context uses a 128-entry return

address stack and maintains its own branch history for the gshare predictor. The SMT in

this study has two fetch ports and fills up fetch bandwidth from up to two threads. I use

ICOUNT as my SMT fetch policy as recommended in [48].

I will describe the implementation details of trace cache, value prediction and

prefetching and Skipper, in Section 4.1, Section 4.2, and Section 4.3, respectively.

4.1  Trace Cache Implementation

I implement the latest, most space-efficient block-based trace cache (TC) described in

[5]. The TC is implemented using a block cache and a trace table. Each block of a block

cache stores a small subtrace (e.g., a few consecutive basic blocks up to six instructions)

and the trace table stores pointers to the block cache. To provide high bandwidth, the block

cache is multi-ported (implemented via true ports and/or copies). The trace table provides

n pointers which are used to pull out n subtraces from the block cache, and the subtraces

together form the fetch unit of one trace. The subtraces are formed by observing past

Table 3: Base SMT configurations

Issue Width 8
L1 I-cache 64KB, 2-way, pipelined
L1 D-cache 64KB, 4-way, 3-cycle hit latency
L2 Cache 4MB, 8-way, 15-cycle hit latency
Memory 150 cycle latency, 4-cycle pipelined, split-

transaction bus
Branch Predictor 16k/16k/16k  spec-update, 8-cycle mispredic-

tion penalty
Physical Registers 100+T*32 INT , 100+T*32 FP for T threads
Active List 128/context
Load-Store Queue 64/context
Issue Queue 32 INT, 32 FP
MSHR 32
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instances of the instruction stream. The trace table is updated with pointers to the sub-

traces. Because the subtraces are small, there is less repetition than trace cache using full-

blown traces [37,35,36,13,34]. Furthermore, only the pointers to subtraces, but not sub-

traces themselves, are repeated in the full traces, achieving further compaction.

Because my results show that TC is ineffective for SMT, I make the following assump-

tions to ensure that my results are not due to insufficient resources or inefficient imple-

mentation: 1) My TC uses an ideal, sequential, atomic multiple-branch predictor that

accurately updates branch history even for branches predicted in the same cycle. In con-

trast, the base case SMT’s i-cache uses a conventional, speculatively-updated predictor

which predicts up to one taken branch or up to two branches per thread. The TC uses infi-

nite branch-prediction bandwidth, therefore the branch promotion optimization in [34] is

irrelevant. 2) The TC uses perfect target prediction for direct branches. 3) The TC has

zero-cycle fill latency.

I implement the following key optimizations from [5]: 1) For termination, a subtrace

ends upon encountering a branch, a jump, a call or a return instruction near the end of the

subtrace. 2) My TC employs partial matching which allows a substring of a trace, instead

of restricting to complete traces, to be supplied. 3) I use a two-way associative “rename

table” to map PCs to trace pointers. The table determines whether a trace is present in the

block cache on every TC access and handles replacement in the block cache. The table’s

associativity effectively makes each copy of block cache two-way associative. 4) On fetch-

ing, the processor sends a request to both TC and i-cache simultaneously. If the request

misses in the TC but hits in the i-cache, there is a one-cycle penalty, as in

[37,35,36,34,13,5]. 5) To compensate for block-level fragmentation, the TC provides more

instructions than the processor’s front-end width. The front end picks the number of

instructions requested to send into the pipeline and buffers any excess instructions to be

combined with the next trace. My TC has a six-instruction block size, as recommended in

[5]. 6) I update the block cache speculatively on misses, as opposed to updating at commit.

Other simulations (not shown) reveal that speculative update performs better.
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When using the TC in SMT, I do the following to ensure that my SMT adaptation of

the scheme is not disadvantaged by easily solvable problems: 1) I employ address offset-

ting in the TC and its accompanying i-cache. 2) Each cycle, two threads access the TC and

each thread gets half the TC bandwidth. My simulations (not shown) reveal that this policy

achieves better performance than giving the full TC’s bandwidth to only one thread.

4.2  Value Prediction Implementation

I implement the latest, best-performing selective value predictor (VP) described in [9].

The value predictor uses a confidence predictor to select when to predict and a hybrid of

stride and context predictors to predict values. Because my results show that VP is ineffec-

tive for SMT, I make the following assumption to ensure that my results are not due to

inefficient implementation: I assume that VP’s value history is updated correctly by an

oracle in the decode stage.

I implement the following key optimizations described in [9]: 1) To minimize mispre-

dictions, I implement a history-based confidence predictor. 2) I employ warm-up counters

so that instructions with insufficient history do not update predictors. 3) To reduce mispre-

dictions and maximize the benefit, I allow the predicted value to be used only for load

instructions that incur L1 misses. According to my evaluations, this scheme has better per-

formance than one that predicts all instructions. While I use the predictions only on

misses, I predict and update on all loads regardless of a hit or a miss to accelerate the pre-

dictor’s warm-up. 4) Instructions that directly or indirectly consume predicted values are

assigned lower priority and can execute only on otherwise-idle execution units. These

instructions resume their normal priority when the prediction outcome is known. When a

misprediction is detected, the pipeline squashes the thread’s instructions that are subse-

quent to the producer. To avoid unnecessary squashing, squash does not happen if the

mispredicted value has not been consumed.

When using VP in SMT, I do the following to ensure that my SMT adaptation of the

scheme is not disadvantaged by easily solvable problems: 1) Because VP benefits mostly

from L2 misses, SMT’s squashing on L2 misses would nullify much of the benefit of VP.

Therefore, I modify the squashing policy on L2 misses in SMT. If an L2-missing load is
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value-predicted, I do not squash the pipeline. This mechanism allows dependent instruc-

tions to consume predicted values and later release issue queue entries. When a thread fills

up its active list or load/store queue on an value-predicted L2 miss, I squash the thread’s

instructions only in the front end and stall fetching from the thread until the miss returns.

Otherwise, fetched instructions from the thread would clog the front end preventing other

threads from making progress. This squashing of the front end is not extra because the

base case already squashes the pipeline on all L2 misses, regardless of whether resources

fill up. 2) To reduce aliasing in prediction tables, I add tags to all prediction table entries.

3) To avoid inter-thread interference in the prediction tables, I use per-thread prediction

tables.

4.3  Prefetching Implementation

I implement the latest, best-performing tag-correlating prefetching (PF) [16]. The

prefetcher decides what to prefetch by using the L1 miss stream as history to predict the

next miss. The predictor is a two-level scheme, where the first level stores per-set miss

stream history, and the second level stores the tag of next-misses. Upon an L1 miss, the

prefetcher triggers prefetch to the predicted next miss. Instead of using dead-time predic-

tion to trigger prefetches, this simplified prefetcher uses L1 misses as the triggers.

Because my results show that PF is effective for SMT, I do not give any undue advan-

tage to the prefetcher to ensure that my results are not due to unjustifiable implementation

assumptions. Specifically, because PF uses additional space for prediction tables, I com-

pensate the base case by running it with a larger L2. Because the largest predictor size I

use is 498KB (in an eight-thread SMT), I use a 4.5 MB L2 for all base case runs, while

using only a 4MB L2 for all the PF runs. I enlarge the base case’s L2 with no penalty to

the L2 hit latency.

I implement the following key optimizations in the two-level predictor: 1) The predic-

tor uses eleven bits of the L1 tag and one bit of the L1 index from the previous three

misses, together with the full L1 tag from the previous miss, to form indexes into the sec-

ond-level table as in [16]. 2) The first level uses per-set history as recommended in [55]. 3)

The prefetcher uses 32 extra MSHRs to hold in-flight prefetch status and a 128-entry

prefetch queue to hold pending prefetch requests, as recommended in [55].



 37
When using PF in SMT, I do the following to ensure that my SMT adaptation of the

scheme is not disadvantaged by easily solvable problems: 1) While [55] prefetches data

into L1, [16] argues that prefetching into L1 is difficult due to L1 contention. [16] shows

that prefetching data only into L2 achieves most of the benefit of prefetching into L1 while

entirely eliminating dead-block prediction. This effect is seen because L1 miss latency can

be overlapped easily with ILP. While prefetching into L2 in SMT introduces the issue

queue clogging described in Section 1, I could reduce prefetch coverage to balance

prefetching and issue queue clogging and improve overall throughput. Therefore, I evalu-

ate prefetching into L2. 2) The second-level table is accessed with the previous L1 miss

and history, that is also made of L1 misses. Because the L1 is physically tagged, the L1

miss stream has physical addresses which are already randomized by bin-hopping

(Section 4). Consequently, the second-level table does not need any offsetting to reduce

conflicts. 3) Each level of prediction tables may be configured to be shared across threads

or to be private to each thread. Because there is not much difference between shared or pri-

vate for the second level, I use a shared second-level table. I show both private and shared

configurations for the first-level table. 4) I increase the second-level shared table size with

the number of threads (the table size is T * 120KB for T threads, except for eight-thread

SMT I use T=4 to keep the size under 512KB). I increase the size with no change in the

associativity, keeping the implementation reasonable. Although the table is shared among

threads, no major conflicts among the threads occur because the table is accessed using

physical addresses, which are unique across the threads.

4.4  Skipper Implementation

For Skipper, I modified the Simplescalar simulator [8] to model Skipper. Table 4 pre-

sents the SPECint95 benchmarks and their inputs used in this study. I run the benchmarks

to completion. I assume a hybrid predictor and 9-cycle misprediction penalty. Table 5

shows the base system configuration parameters used throughout the experiments for

Skipper, unless I specify otherwise. I assume generous branch prediction tables each of

which has 8K entries to allow as high prediction accuracy as possible, but a modest SCIT

size of about 3KB. I use a bimodal JRS with 4K, 4-bit entries for a total of 2KB. I model
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the return address stack (RAS), and account for RAS and BTB mispredictions which are

not addressed by Skipper. I accurately model the extra rename bandwidth to handle inpu-

treg and outputreg sets, and the extra pmoves at the end of skipped computation. I do not

include any memory dependence synchronization mechanisms, but account for memory

dependence squashes. Because Skipper’s key advantage is in conserving i-cache band-

width, I carefully model i-cache bandwidth.

Table 4.  Skipper experimental benchmarks and parameters.

Benchmark Input Number of Instruc-

tions

cc1 cccp.i(test) 1.3 Billions

go 2stone9 548 Millions

li test.lsp 957 Millions

perl jumble 2.4 Billions

compress train 36 Millions

ijpeg vigo 1.5 Billions

m88ksim ctl.in(test) 490 Millions

vortex train 2.5 Billions
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Table 5.  Skipper’s base configurations.

Component Description
Processor 8-way out-of-order issue,128-entry reorder

buffer, 43-entry load/store queue

Branch
prediction

hybrid 8K-entry bimodal, 8K-entry gshare, 8K 2-
bit selector (total about 6KB)
128-entry RAS, 4-way 4K BTB (9-cycle mispre-
diction penalty)

JRS 4K 4-bit bimodal, with threshold of 15(total
2KB); gap-length-threshold 48

L1 I-cache 64KB, 32-byte blocks, 2-way, pipelined, 2-cycle
hit, lock-up free

L1 D-cache 64KB, 64-byte blocks, 2-way, pipelined, 2-cycle
hit, lock-up free

L2 unified cache 2 Mbytes, 64-byte blocks, 8-way, 12-cycle hit,
pipelined

Memory Bus Split transaction, 32 bytes per bus cycle transfer

Main memory Infinite capacity, 100cycle latency

SCIT 128 entries each 199-bit wide , 4-way (total size
about 3KB): (21-bit tag, 32-bit reconvergence
PC, 67-bit outputreg set mask, 67-bit inputreg set
mask, 6-bit reorder buffer gap length, 6-bit load/
store queue gap length)

SIST 36 entries each 192-bit wide (total about 864
bytes): (reorder buffer pointer 7 bits, load/store
queue pointer 7 bits, fetch PC so far 32 bits, RAS
pointer 7 bits, rename table pointer 5 bits, 67-bit
outputreg set mask)

GILB 36 entries each similar to a SCIT entry (total
about 896 bytes)
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5  RESULTS

I present my results for trace cache, value prediction, and prefetching in Section 5.1,

Section 5.2, and Section 5.3, respectively. As stated in Section 1, because SMT’s goal is to

improve throughput, which is also an important performance metric for server-class

machines which increasingly use SMT, I evaluate these techniques in terms of instruction

throughput. I present my results for the Skipper architecture in Section 5.4.

I find that (1) given similar size for the duo of trace cache and backup i-cache as the

conventional i-cache, trace cache degrades SMT throughput compared to the conventional

i-cache; (2) given a typical number of physical registers, value prediction degrades

throughput; (3) prefetching improves throughput for memory-intensive workloads but

degrades throughput for workloads with mixed memory demand. (4) Skipper performs

10% and 8% better than superscalar and Polypath for SPECint95, respectively, when the

three architectures have equal i-cache bandwidth and hardware resources.

5.1  Trace Cache Results

Recall from Section 1 that TC trades off space for bandwidth and that the sharing of

instruction storage among SMT’s threads impacts this trade-off. In this section, I evaluate

this trade-off in SMT. Because I found that TC benefits little with an 8-issue pipeline even

for single-thread workloads (not shown), I use 16-issue width for the TC as in

[37,35,36,34,13,5]. Accordingly, I also double the pipeline resources listed in Table 3,

such as rename registers, issue queue, active list, load-store queue, and execution units.

Figure 5 shows the throughput improvements of TC over the base case, which has

64KB i-cache and no TC. I show three sets of workloads: ILP, MEM, and MIX, as defined

in Section 4. For each set, there are four groups of bars (1 thread, 2 threads, 4 threads and
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8 threads) varying the number of threads as one, two, four, and eight. Each bar indicates

the geometric mean of throughput improvements for the workloads in the set.

Because I are interested in TC’s space-for-bandwidth trade-off, I vary TC size. Within

each group of bars for a given number of threads, the first bar shows a 48K TC using two

copies of dual-ported block cache backed up by a dual-ported 32K i-cache, for a total size

of 80K, compared to the base case of a dual-ported 64K i-cache. Thus, the first bar repre-

sents my comparison using a similar total size. The next three bars from left to right show

a 64K i-cache combined with TC of 48K, 96K, and 192K (1-cycle latency). These bars

represent the cases where the TC configurations use extra space compared to the base case

of a 64K i-cache.

To examine the upper limit of improvement through enhancing TC, by increasing size/

associativity or using per-thread TC, I simulate Ideal TC which is an oracle configuration

that has infinite size and always supplies as many instructions as the fetch bandwidth from

two threads every cycle. Ideal TC does not suffer from fetch fragmentation or capacity/

conflict miss, and subsumes enhancements. Ideal TC uses the same ideal multiple branch

predictor as other TCs mentioned in Section 4.1. The last bar shows Ideal TC’s throughput

improvement.

Figure 5 shows two clear trends. First, TC benefits ILP and MIX but not MEM. While

ILP and MIX have enough parallelism that fetch bandwidth is important for performance,

MEM is dominated by data cache misses that fetch bandwidth is not important. Second,

for similar-size configurations, TC offers no benefit to SMT, and can lead to throughput

degradation as the number of threads increases. This similar-size comparison is important

because increasing the size of the level-1 instruction storage is difficult due to latency,

area, and power considerations, as mention in Section 1. When I add an extra TC to the

base 64K i-cache, TC is effective for single threads. This result agrees with previous

papers [37,35,36,34,13,5] ([5] also gives extra space to TC), indicating that my TC imple-

mentation is correct. For two threads, TC improves SMT throughput; this results agrees

with the two-threaded Pentium IV’s use of a trace cache. However, when threads increase

to more than two, TC’s advantage rapidly diminishes. The base case throughput, shown in
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the first row of Table 6, continues to improve as I increase the number of threads to eight,

showing that TC’s diminishing returns are not due to pipeline saturation. Even with a

large, 192K TC with single-cycle latency, TC shows only modest improvement over the

base case for four or more threads. These results are no surprise when we look at the last

bar, which shows the throughput improvement with an ideal TC. The last bar clearly

shows that TC’s potential drops rapidly as thread increases. Thus, we see that SMT’s shar-

ing of instruction storage makes TC’s space-for-bandwidth trade-off unprofitable.

In SMT, applying a technique may impact low-IPC threads and high-IPC threads dif-

ferently. With the goal of maximizing throughput, SMT distributes resources (fetch and

front-end bandwidth, issue queue slots, etc.) among threads proportional to each thread’s

individual IPC (e.g., using ICOUNT). However, applying a technique may improve a low-

IPC thread, fooling SMT into allocating more resources to the improved-but-still-low-IPC

thread at the cost of other high-IPC threads, reducing overall throughput. That is, one

thread may improve but the overall throughput may reduce. To capture such cases, [47]

introduces weighted speedup, which is the geometric mean of IPC improvements of each

thread. If the weighted speedup is more than throughput improvement, then the technique

impacts (positively or negatively) low-IPC threads more than high-IPC threads; if the

weighted speedup is less than throughput improvement, then the reverse is true. If the two

metrics are similar, then the impact on low- and high-IPC threads are similar. Although

my goal is to evaluate processor throughput, I show weighted speedup for 48K TC with

64K i-cache in the second row in Table 6. We see that weighted speedup follows the same

trend as throughput, confirming that TC’s advantage diminishes as threads increase.

To explain TC’s downward trend with an increasing number of threads, I compare base

case i-cache miss rates with TC miss rates. The third row in Table 6 shows the i-cache

miss rate in the base case, and the fourth and fifth rows show the miss rates for the 48K

and 192K TCs, respectively. The significantly-higher TC miss rates show that the effi-

ciency of the TC rapidly decreases as the number of threads increases.

Table 6 also shows the average number of instructions supplied by a 64K i-cache (64K

IC avg insts), a 48K TC with its accompanying 64K i-cache (48K TC avg insts), and an
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Table 6: Trace cache statistics
ILP workload

1 thread 2 threads 4 threads 8 threads
Base case throughput (IPC) 4.3 6.9 8.2 9.2
Weighted Speedup (%) 28.5 5.2 -2.3 -12.7
64K IC miss rate (%) 0.1 0.0 0.2 0.2
48K TC miss rate (%) 10.5 20.1 31.2 41.9
192K TC miss rate (%) 1.2 4.2 10.8 19.7
64K IC avg Insts 5.2 8.5 9.4 9.8
48K TC avg insts 8.5 9.2 9.0 8.4
Ideal TC avg insts 8.7 10.8 11.3 10.9

MEM workload
1 thread 2 threads 4 threads 8 threads

Base case throughput (IPC) 1.4 2.0 3.1 3.5
Weighted Speedup (%) 4.3 6.1 4.4 0.0
64K IC miss rate (%) 0.0 0.0 0.0 0.0
48K TC miss rate (%) 0.2 0.8 2.5 6.8
192K TC miss rate (%) 0.0 0.1 0.3 0.7
64K IC avg Insts 1.6 2.9 4.8 5.3
48K TC avg insts 2.0 3.5 5.1 5.4
Ideal TC avg insts 2.0 3.5 5.1 5.4

MIX workload
1 thread 2 threads 4 threads 8 threads

Base case throughput (IPC) 2.6 4.8 6.9 7.6
Weighted Speedup (%) 15.7 13.6 4.2 -1.2
64K IC miss rate (%) 0.0 0.1 0.1 0.2
48K TC miss rate (%) 5.2 8.6 17.2 29.0
192K TC miss rate (%) 0.6 1.0 4.2 10.0
64K IC avg Insts 3.1 6.2 8.8 9.2
48K TC avg insts 4.4 7.9 9.3 8.9
Ideal TC avg insts 4.4 8.5 10.4 10.6
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ideal TC (Ideal TC avg insts) to the pipeline. On average, TC can supply 8.5 instructions

per cycle in a single thread, which is 63% more than an i-cache can supply. When multiple

threads are available, SMT uses the second fetch port to fetch from another thread. There-

fore, SMT sustains high instruction throughput without the complication of a TC. With

eight threads, the base i-cache with two ports achieves 9.8 IPC, which is higher than TC‘s.

The base case’s higher bandwidth combined with the large, diverging gap between the

base case’s and TC’s miss rates as the number of threads increases, clearly shows that

TC’s space-for-bandwidth trade-off is not effective in SMT.

There is an interesting observation in Figure 5: MIX gets more benefit from TC than

ILP and MEM as threads increase. As expected, ILP gets the most benefit of TC in single-

thread runs. As threads increase, the pressure on the TC greatly increases and the miss rate

in the TC increases quickly. When I put ILP and MEM together (MIX), the ILP threads

experience less pressure in the TC compared to the ILP threads in the ILP workload

because ILP threads in MIX take up the slack of the TC space created by MEM threads in

MIX. This argument is supported by TC’s miss rate shown in Table 6. For instance, TC’s

miss rate for eight threads in MIX is similar or lower than TC’s miss rate for four threads

in ILP.

Because my experiments show negative results for TC, I ensure that the negative

results are not caused by the utilization for the SMT base case that is overly high such that

it leaves no headroom for TC to improve. To that end, , I measure the utilizations for the

16-issue SMT base case. The utilization is defined as the number of instructions fetched,

regardless of whether it is committed or squashed later in the pipeline, divided by the exe-

cution time. The utilizations for the 16-issue SMT base case used in the TC experiments

with eight threads are 9.7, 3.9 and 8.1 for ILP, MEM and MIX workloads, recpectively.

Some processors use TC to hold pre-decoded instructions (e.g. Pentium IV). If such a

cache holds merely decoded individual instructions but not traces spanning multiple

branches, I consider such a cache to be an i-cache and not a TC, and my results are not

applicable to it. In an SMT that already includes TC, the OS and hardware can turn off TC

by simply aligning instructions in the TC as they would be in an IC and allow accesses to
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start in the middle of cache blocks. The latter is difficult for TC because the PC of an

instructions inside a cache line, other than the first instruction, is unknown and cannot be

easily obtained.

My experiments favor TC by giving it unrealistic advantages and an aggressive, 16-

issue processor which gives TC much headroom for improvement. Nevertheless, I find

that TC degrades SMT throughput. Using miss latencies longer than my numbers to model

future technology will shift the performance bottleneck to the back-end and reduce oppor-

tunity for the front-end, further discouraging the use of TC. I also show that an ideal TC

only marginally improves throughput. Therefore, my results unequivocally prove that TC

hurts SMT running more than two threads, and there is no need to vary other parameters.

Figure 6 through Figure 21 shows PF’s speedup and IPC for each workload, as well as

the speedup and IPC component in the multi-programmed workloads. These graphs were

summarized and shown in Figure 5. In each figure, the top graph shows the speedup of

each thread in a workload and the bottom graph shows the IPC of each thread in a work-

load. The sum of IPCs of these thread in a workload forms the total throughput of the

workload.
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Figure 6: Detailed IPC and speedup of TC for 1T.ILP
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Figure 7: Detailed IPC and speedup of TC for 2T.ILP
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Figure 8: Detailed IPC and speedup of TC for 4T.ILP
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Figure 9: Detailed IPC and speedup of TC for 8T.ILP
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Figure 10: Detailed IPC and speedup of TC for 1T.MEM
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Figure 11: Detailed IPC and speedup of TC for 2T.MEM
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Figure 12: Detailed IPC and speedup of TC for 4T.MEM
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Figure 13: Detailed IPC and speedup of TC for 8T.MEM
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Figure 14: Detailed IPC and speedup of TC for 1T.MIX (part I)
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Figure 15: Detailed IPC and speedup of TC for 2T.MIX.{1,2,3,4}
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Figure 16: Detailed IPC and speedup of TC for 4T.MIX.{1,2}
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Figure 17: Detailed IPC and speedup of TC for 8T.MIX.1
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Figure 18: Detailed IPC and speedup of TC for 1T.MIX (part II)
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Figure 19: Detailed IPC and speedup of TC for 2T.MIX.{5,6,7,8}
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Figure 20: Detailed IPC and speedup of TC for 4T.MIX.{3,4}
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Figure 21: Detailed IPC and speedup of TC for 8T.MIX.2
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5.2  Value Prediction Results

Recall from Section 1 that value-predicting a long-latency operation causes hold-up of

registers until the operation completes and the prediction is confirmed. This hold-up

occurs even with correct value prediction. In contrast, SMT simply squashes the thread

containing the operation, releasing the resources held by the thread and allowing other

threads to progress. Thus, there is a choice of value-predicting and holding up registers,

versus squashing and overlapping the latency with other threads. SMT’s sharing of regis-

ters among its threads impacts this choice. In this section, I evaluate this choice in SMT.

Each thread has two four-way, 8K-entry tables, one each for stride prediction and con-

text prediction. To minimize mispredictions, each of these table also has its own 2KB con-

fidence tables. The total size of the VP tables in an eight-thread SMT is a generous 5MB,

ensuring that my results are not limited by small tables.

Figure 22 shows VP’s throughput improvements compared to an SMT without VP.

Similar to Section 5.1, Figure 22 shows three sets of workloads, ILP, MEM, and MIX, and

varies the number of threads as one, two, four, and eight. Each bar indicates the geometric

mean of throughput improvements for the workloads in the set.

Because I am interested in register pressure in the presence of VP, I show two configu-

rations with different number of physical registers. One configuration, called VP-finite,

contains (100 + T * 32) integer registers and (100 + T * 32) floating-point registers, where

T is the number of threads. The number 32 in this expression is the minimum number

required for per-thread architectural registers, and 100 is the number of registers for

renaming. This configuration represents a realistic number of registers, and it has also

been used in [48]. The other configuration, called VP-infinite, has infinite physical regis-

ters. To examine if VP can benefit SMT by overlapping only L1 misses, I show a configu-

ration called VP-squash. VP-squash uses VP if a load misses in L1 but squashes

(mentioned in Section 4) if the load also misses in L2. VP-squash has the same number of

physical registers as VP-finite.
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Figure 22 shows a group of five bars for a given number of threads. The first bar shows

VP-finite. The second bar shows VP-finite with perfect confidence prediction. The third

and fourth bars show VP-infinite without and with perfect confidence prediction, respec-

tively, quantifying VP’s potential if register pressure were absent. The base case for the

first and second bars is an SMT with as many physical registers as VP-finite. The base case

for the third and fourth bars is an SMT with an infinite number of physical registers. The

last bar shows VP-squash normalized to the base case for VP-finite.

Figure 22 shows that VP benefits MEM and MIX but not ILP. This result is hardly sur-

prising because VP is triggered only for L1 misses, and ILP has low L1 miss rates. On the

other hand, VP hides the penalties of the misses present in MEM and MIX. Looking at

MEM and MIX, this figure shows a interesting trend: VP significantly improves single-

thread performance, especially for MEM. This result agrees with the results from previous

VP papers [30,2,40,32,9], indicating that my value predictor is implemented correctly.

However, VP-finite’s throughput improvements decrease significantly and become nega-

tive as the number of threads increases in both MEM and MIX. Note that the base case

throughput, shown in the first row of Table 7, continues to improve as I increase the num-

ber of threads to eight, showing that VP’s diminishing returns are not due to pipeline satu-

ration. VP-finite with perfect confidence (second bar) shows the same trend, showing that

the degradation exists even when VP is 100% accurate (albeit at non-perfect coverage).

Thus, the second bars rule out mispredictions as the cause of the degradation trend.

Two reasons contribute to VP’s degradation with multiple threads, even with large VP

tables. First, VP’s holding up of registers degrades throughput with two or more threads.

Figure 22 support this observation by showing that VP-finite’s degradation largely disap-

pears when infinite registers are available, as shown by VP-infinite (third and fourth bars).

Second, SMT’s latency tolerance reduces VP’s opportunity. Figure 22 supports this argu-

ment by showing that even using VP-infinite with perfect confidence, VP’s opportunity

diminishes and eventually disappears, as the number of threads increases. Near-zero

opportunity combined with register pressure forces VP-finite to incur degradation at more
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than two threads. The near-zero opportunity also shows that VP’s benefit would be mar-

ginal, even if the VP implements selective recovery (mentioned in Section 2.2) to reduce

misprediction penalty.

The four-thread VP-infinite bars for MIX show a small degradation despite having infi-

nite registers. Because MIX has high-ILP and low-ILP threads, VP’s impact is not uniform

(this point is also made in Section 5.1). VP helps low-ILP threads more than high-ILP

threads to the point that SMT allocates resources to the improved-but-still-low-ILP

threads at the cost of the high-ILP threads. Such allocation causes a slight overall through-

put degradation. VP-squash improves two-thread MEM by 6%, but improves little for

other workloads (0-3%). This result shows that implementing VP to overlap only L1

misses is not profitable for SMT

Table 7 shows important statistics for VP. Coverage is the ratio of the number of pre-

dictions over the number of L1 load misses. Squash Rate is the ratio of the number of

squashes caused by value mispredictions over the number of predictions. We see that cov-

erage and squash rate are fairly stable across threads, and the squash rate is low. The sta-

bility of these metrics clearly indicates that VP’s degradation with two or more threads is

not due to worse coverage or more value mispredictions.

The fourth, fifth and sixth rows show the weighted speedup (explained in Section 5.1)

for VP-finite, VP-infinite and VP-squash. VP-finite’s weighted speedups are positive for

two or more MEM and MIX threads while the overall throughput degrades. Because there

is a large variance in the individual predictability and IPCs of these MEM and MIX

threads, VP’s impact is uneven among the threads, causing weighted speedup to deviate

from overall throughput (as explained in Section 5.1). VP fools SMT into allocating more

registers to the improved-but-still-low-ILP threads which hold up the registers from the

high-ILP threads, degrading overall throughput. Because SMT’s goal is to improve pro-

cessor throughput, techniques which improve individual threads while degrading proces-

sor throughput defeat SMT’s purpose. In fact, SMT does the reverse: SMT employs

several optimizations which improve processor throughput at the cost of individual

threads. For example, (1) because the SMT pipeline is typically deeper than a superscalar
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pipeline [49], single-thread performance slightly worsens on SMT. (2) SMT’s ICOUNT,

which optimizes processor throughput, may worsen a low-IPC thread by fetching more

often from higher-IPC threads [48]. (3) Squashing a thread on L2 misses improves proces-

sor throughput while slightly worsening the thread’s IPC [47].

Similar to previous section, because my experiments show negative results for VP, I

ensure that the negative results are not caused by the utilization for the SMT base case that

is overly high such that it leaves no headroom for VP to improve. To that end, , I measure

the utilizations for the eight-issue SMT base case. The utilization is defined as the number

of instructions fetched, regardless of whether it is committed or squashed later in the pipe-

line, divided by the execution time. The utilizations for the eight-issue SMT base case

used in the VP experiments with eight threads are 5.6, 4.2 and 5.5 for ILP, MEM and MIX

workloads, recpectively.

Table 7: Value prediction statistics
ILP workload

1 thread 2 threads 4 threads 8 threads
Base case throughput (IPC) 3.5 4.6 5.1 5.3
Coverage(%) 15.0 22.6 27.9 42.2
Squash Rate(%) 0.3 0.2 0.2 0.2
VP-finite Weighted Speedup (%) 0.5 -1.5 -1.6 -0.9
VP-infinite Weighted Speedup (%) 0.5 -0.4 -0.2 -0.4
VP-squash Weighted Speedup (%) 0.5 -0.4 -0.3 -0.4

MEM workload
1 thread 2 threads 4 threads 8 threads

Base case throughput (IPC) 1.1 1.8 2.9 3.9
Coverage(%) 34.4 28.4 24.0 31.0
Squash Rate(%) 0.6 0.5 0.4 0.4
VP-finite Weighted Speedup (%) 23 8.8 8.5 7.5
VP-infinite Weighted Speedup (%) 26.0 18.2 19.3 14.7
VP-squash Weighted Speedup (%) 23 12.2 4.4 2.9

MIX workload
1 thread 2 threads 4 threads 8 threads

Base case throughput (IPC) 2.1 3.8 4.7 5.2
Coverage(%) 24.3 30.6 28.7 31.3
Squash Rate(%) 0.4 0.3 0.2 0.2
VP-finite Weighted Speedup (%) 11.2 6.0 0.7 1.6
VP-infinite Weighted Speedup (%) 12.5 10.6 7.1 6.9
VP-squash Weighted Speedup (%) 11.3 4.5 2.3 0.9
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My experiments favor VP by giving it unrealistic advantages and an aggressive proces-

sor which gives VP much headroom for improvement. Still, VP degrades SMT through-

put. Because VP holds up physical registers during an L2 miss, using longer miss latencies

to model future technology will further degrade throughput. I also show that VP does not

improve throughput even with infinite registers. Therefore, my results unequivocally prove

that VP hurts SMT and there is no need to vary other parameters.

Figure 23 through Figure 38 shows PF’s speedup and IPC for each workload, as well

as the speedup and IPC component in the multi-programmed workloads. These graphs

were summarized and shown in Figure 22. In each figure, the top graph shows the speedup

of each thread in a workload and the bottom graph shows the IPC of each thread in a work-

load. The sum of IPCs of these thread in a workload forms the total throughput of the

workload.



 69
mesa crafty fma3d eon facerec equake sixtrack galgel
0
1
2
3
4
5
6
7
8

IP
C

(100+T*32)*2 registers

(100+T*32)*2 registers

and perfect confidence
base case

infinite registers

infinite registers

and perfect confidence

(100+T*32)*2 registers

and squash-on-L2-miss

Figure 23: Detailed IPC and speedup of VP for 1T.ILP
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Figure 24: Detailed IPC and speedup of VP for 2T.ILP
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Figure 25: Detailed IPC and speedup of VP for 4T.ILP
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Figure 26: Detailed IPC and speedup of VP for 8T.ILP
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Figure 27: Detailed IPC and speedup of VP for 1T.MEM
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Figure 28: Detailed IPC and speedup of VP for 2T.MEM
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Figure 29: Detailed IPC and speedup of VP for 4T.MEM
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Figure 30: Detailed IPC and speedup of VP for 8T.MEM
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Figure 31: Detailed IPC and speedup of VP for 1T.MIX (part I)
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Figure 32: Detailed IPC and speedup of VP for 2T.MIX.{1,2,3,4}
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Figure 33: Detailed IPC and speedup of VP for 4T.MIX.{1,2}
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Figure 34: Detailed IPC and speedup of VP for 8T.MIX.1
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Figure 35: Detailed IPC and speedup of VP for 1T.MIX (part II)
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Figure 36: Detailed IPC and speedup of VP for 2T.MIX.{5,6,7,8}
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Figure 37: Detailed IPC and speedup of VP for 4T.MIX.{3,4}

swim facerec lucas equake mcf sixtrack ammp galgel
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80
90

100

sp
ee

du
p 

(%
)

4T.MIX.44T.MIX.3

swim facerec lucas equake mcf sixtrack ammp galgel
0
1
2
3
4
5
6
7
8

IP
C

(100+T*32)*2 registers

(100+T*32)*2 registers

and perfect confidence
base case

infinite registers

infinite registers

and perfect confidence

(100+T*32)*2 registers

and squash-on-L2-miss

4T.MIX.44T.MIX.3

(100+T*32)*2 registers

(100+T*32)*2 registers

and perfect confidence

infinite registers

infinite registers

and perfect confidence

(100+T*32)*2 registers

and squash-on-L2-miss



 84
Figure 38: Detailed IPC and speedup of VP for 8T.MIX.2
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5.3  Prefetching Results

Recall from Section 1 that because SMT tolerates latency but at the same time

increases pressure on the memory hierarchy by overlapping multiple threads, the opportu-

nity for PF is unknown. While PF reduces memory latency, prefetching into L2 encour-

ages L1 misses in fewer cycles, which causes clogging of the issue queue and slows down

the other threads. Ironically, only correct prefetches cause this clogging. Thus, SMT’s

sharing of the issue queue across multiple threads impacts PF’s effectiveness. In this sec-

tion, I evaluate these opposing effects of PF in SMT.

While I showed that TC and VP do not improve SMT throughput; in this section, I will

show that PF improves throughput for MEM, but has limited opportunity for MIX.

Figure 39 shows PF’s throughput improvements compared to the SMT without PF. As

before, Figure 39 shows the three sets of workloads, ILP, MEM, and MIX, and varies the

number of threads as one, two, four, and eight. Each bar indicates the geometric mean of

throughput improvements for the workloads in the set. Note that the Y-axis scale has

changed from the previous graphs.

Because prefetching into L2 causes the issue queue clogging problem, I studied ways

to reduce this clogging. First, I experimented with prefetching into L1. Unlike prefetching

into L2, prefetching into L1 cannot use L1 misses as triggers (prefetched block will dis-

place useful data) and needs dead-block prediction [55]. I found that because of high pres-

sure on L1 in SMT, the dead time is shorter in SMT than that in a single thread. The

shorter dead time makes dead block prediction harder. Second, I resumed prefetching into

L2 and tried to avoid clogging by preventing instructions which are past an L1 miss that

hits in a prefetched L2 block from entering the pipeline. To this end, I used an L1 miss

predictor which stops fetching past a predicted L1 miss. The predictor essentially needs to

balance accuracy (avoid incorrectly stopping fetch due to mispredictions) and coverage

(identify all the misses). Unfortunately, achieving this balance proved to be difficult.

Therefore, I looked into other ways to reduce the clogging. Taking a hint from VP, which

reduces coverage to reduce mispredictions, I tried to reduce prefetch coverage to prevent
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Figure 39: Prefetching throughput improvements.
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too many L2 misses from being converted to L1 misses, which cause clogging. Reasoning

that a shared first-level history would have less coverage than a private first-level history

due to inter-thread interference, I experimented with these two configurations. I found that

the shared first-level history works better and achieves throughput improvements. Because

PF already shows throughput improvement for MEM and little opportunity for MIX, fur-

ther enhancements through either prefetching into L1 or using a better L1 miss predictor

will improve MEM’s throughput more and will not improve MIX. Any such further

enhancement will only reinforce my conclusions.

Figure 39 shows a group of four bars for a given number of threads. The first bar

shows PF-private, which uses a private first-level history. The second bar shows PF-

shared, which uses a shared first-level history. To confirm that the absence of dead-block

prediction does not affect PF (as previously shown in [16]), the third bar, PF-shared-pre-

fect-DBP, shows PF with perfect L2-dead-block prediction. To show the potential of PF,

the last bar shows Ideal L1, which lets every access from the processor hit in L1.

From Figure 39, we see that PF does not benefit ILP much with multiple threads,

because ILP has low L1 miss rates. Looking at MEM, PF significantly improves single-

thread performance. This result agrees with the results from previous PF papers [55,16],

indicating that my prefetcher is implemented correctly. With multiple threads, we see that

while PF-private degrades throughput, PF-shared improves throughput. PF-private’s

poor performance is due to issue queue clogging, as can be seen in the second and third

rows in Table 8 by the larger fraction of time the issue queue stays clogged (issueQ clog

frac.) with PF-private than with PF-shared. Note that the base case throughput, shown in

the first row of Table 8, continues to improve as I increase the number of threads to eight,

showing that PF-private’s diminishing returns are not due to pipeline saturation. Thus we

see that SMT’s sharing of the issue queue among its threads accounts for the difference

between PF-private’s failure and PF-shared’s success.

We can also see that PF-shared-perfect-DBP is marginally better than PF-shared,

showing that using L1 misses as triggers is a good dead-block predictor, as also claimed

by [16]. Ideal L1 shows that though the opportunity reduces with more threads, there is



 88
still substantial opportunity even with eight threads. PF-shared captures some of this

opportunity, achieving 7% improvement with four threads and 9% with eight threads.

These results show that when memory latency is a major bottleneck, even multiple threads

cannot tolerate all L2 misses, and PF is effective.

For MIX, PF-shared suffers 6% and 4% degradation with two and four threads,

respectively. Despite using a shared configuration, this workload causes issue queue clog-

ging, resulting in slight throughput degradation. This result is not surprising when we look

at Ideal L1, which shows little opportunity for PF with increasing threads. This limited

opportunity combined with issue queue clogging forces PF-shared to degrade with two or

more threads.

Table 8 presents important statistics for PF. The fourth, fifth, and sixth rows show the

L2 miss rates in the base case and PF-private and PF-shared, respectively. These miss

rates confirm that PF is effective in reducing L2 misses. PF-private’s miss rates are lower

than those of PF-shared, indicating that PF-private has higher coverage than PF-shared.

This higher coverage causes clogging problems that result in throughput degradation. The

next two rows show that the accuracy of PF-private and PF-shared behave similarly to

coverage and have the same effect. Finally, I show weighted speedup for PF-private and

PF-shared. PF-private has positive weighted speedups for MEM and MIX while it

degrades throughput, showing that PF-private improves low-IPC threads with high miss

rates at the cost of overall throughput. PF-shared has positive weighted speedups but

lower than those of PF-private due to lower coverage. For MEM, PF-shared has both pos-

itive weighted speedups and improved throughput, indicating that PF-shared improves

low-IPC threads without hurting the other threads.

Similar to previous section, because some of my experiments show negative results for

PF, I ensure that the negative results are not caused by the utilization for the SMT base

case that is overly high such that it leaves no headroom for PF to improve. To that end, , I

measure the utilizations for the eight-issue SMT base case. The utilization is defined as the

number of instructions fetched, regardless of whether it is committed or squashed later in

the pipeline, divided by the execution time. The utilizations for the eight-issue SMT base
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Table 8: Prefetching statistics
ILP workload

1 thread 2 threads 4 threads 8 threads
Base case throughput (IPC) 3.5 4.6 5.1 5.3
PF-private issueQ clog frac. (%) 2.5 1.0 0.3 0.3
PF-shared issueQ clog frac. (%) 2.5 1.0 0.5 0.4
Base case L2 miss rate (%) 9.8 7.5 9.1 4.8
PF-private L2 miss rate (%) 7.9 5.0 4.9 3.4
PF-shared L2 miss rate (%) 7.9 5.0 7.5 4.6
PF-private Accuracy (%) 22.7 24.6 46.6 68.2
PF-shared Accuracy (%) 22.7 24.0 34.7 30.5
PF-private Weighted Speedup (%) 2.0 1.2 0.5 0.3
PF-shared Weighted Speedup (%) 2.0 1.0 0.2 0.0

MEM workload
1 thread 2 threads 4 threads 8 threads

Base case throughput (IPC) 1.2 1.8 3.1 4.0
PF-private issueQ clog frac. (%) 37.7 25.2 36.8 18.2
PF-shared issueQ clog frac. (%) 37.7 24.8 11.5 6.1
Base case L2 miss rate (%) 26.8 25.3 26.7 32.6
PF-private L2 miss rate (%) 12.2 9.1 12.0 15.8
PF-shared L2 miss rate (%) 12.2 16.9 19.9 26.5
PF-private Accuracy (%) 66.1 85.1 83.7 86.9
PF-shared Accuracy (%) 66.1 73.6 67.6 62.2
PF-private Weighted Speedup (%) 30.7 53.0 22.3 20.9
PF-shared Weighted Speedup (%) 30.7 21.7 14.7 10.7

MIX workload
1 thread 2 threads 4 threads 8 threads

Base case throughput (IPC) 2.1 3.8 4.7 5.2
PF-private issueQ clog frac. (%) 18.8 10.3 7.2 1.7
PF-shared issueQ clog frac. (%) 18.8 9.6 3.9 1.1
Base case L2 miss rate (%) 18.0 24.8 21.9 21.9
PF-private L2 miss rate (%) 10.0 11.1 9.5 10.8
PF-shared L2 miss rate (%) 10.0 12.4 17.1 18.6
PF-private Accuracy (%) 42.7 63.2 81.3 80.5
PF-shared Accuracy (%) 42.7 59.3 66.5 55.9
PF-private Weighted Speedup (%) 15.5 19.7 26.0 12.4
PF-shared Weighted Speedup (%) 15.5 16.7 7.2 2.4
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case used in the PF experiments with eight threads are 5.6, 4.4 and 5.5 for ILP, MEM and

MIX workloads, recpectively.

My experiments do not give PF any undue advantage and yet show that PF improves

SMT throughput for MEM. Because PF hides L2-miss latencies, using longer latencies

will further improve throughput. For MIX workload, I showed that PF does not improve

even with an ideal L1. Therefore, my results unequivocally prove that PF improves MEM

and does not improve MIX, and there is no need to vary other parameters.

Figure 40 through Figure 55 shows PF’s speedup and IPC for each workload, as well

as the speedup and IPC components in the multi-programmed workloads. These graphs

were summarized and shown in Figure 39. In each figure, the top graph shows the speedup

of each thread in a workload and the bottom graph shows the IPC of each thread in a work-

load. The sum of IPCs of these thread in a workload forms the total throughput of the

workload.
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Figure 40: Detailed IPC and speedup of PF for 1T.ILP
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Figure 41: Detailed IPC and speedup of PF for 2T.ILP
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Figure 42: Detailed IPC and speedup of PF for 4T.ILP

mesa crafty fma3d eon facerec equake sixtrack galgel
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80
90

100
sp

ee
du

p 
(%

)

4T.ILP.24T.ILP.1

mesa crafty fma3d eon facerec equake sixtrack galgel
0
1
2
3
4
5
6
7
8

IP
C

PF-private PF-sharedbase case PF-shared-perfect-DBP Ideal L1

4T.ILP.24T.ILP.1

PF-private PF-shared PF-shared-perfect-DBP Ideal L1



 94
Figure 43: Detailed IPC and speedup of PF for 8T.ILP
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Figure 44: Detailed IPC and speedup of PF for 1T.MEM
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Figure 45: Detailed IPC and speedup of PF for 2T.MEM
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Figure 46: Detailed IPC and speedup of PF for 4T.MEM

vpr apsi art applu swim lucas mcf ammp
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80
90

100
sp

ee
du

p 
(%

)

4T.MEM.24T.MEM.1

vpr apsi art applu swim lucas mcf ammp
0
1
2
3
4
5
6
7
8

IP
C

PF-private PF-sharedbase case PF-shared-perfect-DBP Ideal L1

4T.MEM.24T.MEM.1

PF-private PF-shared PF-shared-perfect-DBP Ideal L1

-77

109 182 928 267 237



 98
Figure 47: Detailed IPC and speedup of PF for 8T.MEM
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Figure 48: Detailed IPC and speedup of PF for 1T.MIX (part I)
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Figure 49: Detailed IPC and speedup of PF for 2T.MIX.{1,2,3,4}
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Figure 50: Detailed IPC and speedup of PF for 4T.MIX.{1,2}
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Figure 51: Detailed IPC and speedup of PF for 8T.MIX.1
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Figure 52: Detailed IPC and speedup of PF for 1T.MIX (part II)
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Figure 53: Detailed IPC and speedup of PF for 2T.MIX.{5,6,7,8}

swim facerec lucas equake mcf sixtrack ammp galgel
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80
90

100
sp

ee
du

p 
(%

)

2T.MIX.6 2T.MIX.7 2T.MIX.82T.MIX.5

swim facerec lucas equake mcf sixtrack ammp galgel
0
1
2
3
4
5
6
7
8

IP
C

PF-private PF-sharedbase case PF-shared-perfect-DBP Ideal L1

2T.MIX.6 2T.MIX.7 2T.MIX.82T.MIX.5

PF-private PF-shared PF-shared-perfect-DBP Ideal L1
479 111

424
326

340
180

-76
-58

-61



 105
Figure 54: Detailed IPC and speedup of PF for 4T.MIX.{3,4}
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Figure 55: Detailed IPC and speedup of PF for 8T.MIX.2
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5.4  Skipper Results

5.4.1  Performance of Skipper

In this section, I present the base performance of Skipper, compared to an out-of-order

superscalar with branch prediction. In the two left bars, I vary the instruction window size

from 128 to 256 entries. The speedups are normalized against an out-of-order superscalar

with the same instruction window size. The numbers above the bars are the speedups for a

128-entry superscalar with perfect branch prediction, to serve as an idealized reference.

Because Skipper uses extra storage for SCIT and JRS (about 6KB) compared to a super-

scalar, I also show Skipper’s speedups normalized with respect to a “large superscalar”

using an extra 6KB in larger prediction tables (16K entries each table, total size 12KB) in

the two right bars. For both Skipper and superscalar, I use one port for the 128-entry

instruction window and two ports (and double front-end width for decode and rename

stages) for the 256-entry instruction window. Each cycle only one block can be fetched

through one port and the entire block may not be useful due to branches and jumps within

the block. For the 256-entry Skipper and superscalar, I assume aggressive front-ends that

can obtain two fetch PCs from the branch predictor and use both the ports for fetching.

From the first two bars in Figure 56, I can see that for a 128-entry instruction window,

Skipper achieves a wide range of speedups up to 15% for ijpeg, 14% for li, 9% for go, and

8% for m88ksim, all the way down to small slowdowns for perl and compress. These

speedups indicate that Skipper successfully skips around difficult branches and overlaps

branch resolution with control-flow independent instructions. With a 256-entry instruction

window, Skipper achieves higher speedups, resulting in up to 22% speedups for ijpeg and

li, 16% for m88ksim, and small speedups for compress. Increasing the instruction window

size improves speedups because Skipper uses the extra entries better than a conventional

superscalar. While Skipper brings more useful instructions into the extra entries in the

instruction window, conventional superscalar is limited by mispredictions and squanders

the extra entries on incorrect instructions.

The two right bars show Skipper’s speedups normalized against the “large supersca-

lar”. Comparing the left bars with the right bars for the same instruction window size, we
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see that the change in Skipper’s speedups is less than 3% in all cases. These results indi-

cate that the extra prediction storage does not give superscalar much performance advan-

tage and is better used by Skipper.

5.4.2  Effectiveness of Skipper’s mechanisms

Skipper’s speedups widely vary across benchmarks and are still far lower than those

for perfect branch prediction; the measurements in Table 9 explain the reasons. JRS cover-

age (related to the metrics in [14]) is the ratio of the number of branches JRS identifies as

difficult to the total number of mispredicted branches. Heuristic accuracy is the ratio of

the number of branches with correctly-determined reconvergence PC to the total number

of branches with reconvergence PC within the gap-length-threshold. Actual coverage is

the ratio of the number of actually skipped branches to the total number of mispredicted

branches. Actual coverage measures the opportunity exploited by Skipper. JRS coverage

attenuates to actual coverage due to both mispredicted branches having reconvergence

PCs beyond the gap-length-threshold and the heuristic determining reconvergence PCs

incorrectly.

Overshoot is the ratio of the number of skipped branches which would have been cor-

rectly predicted in a superscalar to the total number of branches. Overshoot measures

unnecessary stalling. Reconvergence accuracy is the ratio of the number of successfully

skipped branches to the number of actually skipped branches. A successfully skipped

branch is one for which the reconvergence PC is reached within the instruction window

gap, and there are no squashes due to in-gap branch mispredictions (Section 3.2.3), incor-

rect outputreg set, or skipped stores (Section 3.2.1). Reconvergence accuracy measures the

accuracy of SCIT information learnt by Skipper. Skipper’s misprediction rate is the ratio

of the number of incorrectly predicted and unsuccessfully skipped branches to the total

number of branches.

We see that overshoot is mostly less than about 11% and reconvergence accuracy is

usually higher than 95%, but actual coverage is low. While JRS coverage is about 78%-

98%, actual coverage falls within a mere 17-58%. I experimented with JRS’s parameters
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but could not obtain significantly better JRS coverage for cc1, ijpeg, m88ksim, and vortex.

Actual coverage can fall far below JRS coverage due to either poor heuristic accuracy or

reconvergence PCs being farther than the gap-length-threshold. Heuristic accuracy is

75%-100%, which is too high to degrade actual coverage by a large margin, implying that

gap-length-threshold prevents a large fraction of difficult branches from being skipped. I

vary gap-length-threshold in Section 5.4.6, but found that many difficult branches have far

away reconvergence points (more than 200 instructions), requiring inordinate gap-length-

threshold values. Missed opportunity due to low actual coverage is the key reason for

Skipper lagging far behind perfect prediction.

cc1 and go incur many mispredictions both within and outside skipped computations

(gaps). These mispredictions are not caught by Skipper due to its low coverage and cause

squashing of post-reconvergent computation, nullifying Skipper’s advantage. compress

Figure 56: Base performance of Skipper using one i-cache port.
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Table 9.  (a) Measurements of Skipper’s mechanisms.

Benchmarks

JRS
coverage

(%)

Heuristic
accuracy

(%)

Actual
coverage

(%)

Overshoot
(%)

cc1 92 75 19 7

compress 98 100 25 9

go 98 87 20 11

ijpeg 90 96  58 8

li 96 77 17 6

m88ksim 78 90 32 11

perl 94 98 16 2

vortex 88 79 17 2

Table 9.  (b) Measurements of Skipper’s mechanisms (continue)

Benchmarks

Reconvergence
accuracy (%)

Skipper’s
misprediction

rate (%)

Superscalar
misprediction

rate (%)

cc1 92 8 10

compress 100 8 12

go 89 16 24

ijpeg 98 3 9

li 100 4 8

m88ksim 99 2 4

perl 100 3 4

vortex 98 1 1
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runs out of instruction window slots for a 128-entry instruction window, alleviated only

slightly by a 256-entry instruction window. In addition to mispredictions, go also incurs

many memory dependence squashes (go is the only benchmark with this problem). ijpeg

and m88ksim have higher coverages than the rest, translating to higher performance. In li,

Skipper skips entire short unpredictable loops (dynamic instructions in all iterations less

than 10). Because loop back branches within skipped loops in li are not predicted but sus-

pended till resolution, li avoids many mispredictions, achieving high speedups. li’s cover-

age is small because the coverage numbers do not include such suspended branches which

are not mispredicted but not skipped either. Perl has many non-return, indirect jump

mispredictions both within and outside skipped computations, which have the same effect

as cc1’s mispredictions. Vortex’s prediction accuracy is high, leaving little opportunity for

Skipper.

5.4.3  Characteristics of skipped computations

Table 10 shows the average number of actually skipped branches in flight (“#gap” col-

umn), inputreg and outputreg registers per difficult branch (“#in” and “#out” columns),

dynamic instructions per skipped computation (“#instr” column), and the average instruc-

tion window gap length, not including pmoves (“#slot” column). The benchmarks have

less than two difficult branches in flight, implying that only two skipped computations

Table 10.  Gap characteristics.

Benchmark #gaps outputreg #instrs #slots
cc1 1.4 4 7 14

compress95 1.5 3 4 10

go 1.4 5 10 21

ijpeg 2.0 4 5 13

li 1.2 3 9 16

m88ksim 2.1 2 5 9

perl 1.3 3 4 8

vortex 1.0 3 8 13
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need to be tracked in the GILB and SIST. The number of skipped instructions ranges

between four and ten, even though the gap-length-threshold is 48, implying that the

threshold is not hit often. The difference between the gap lengths and the number of

skipped instructions is about seven, implying that Skipper wastes only a few instruction

window slots. The number of outputreg registers being about four means that Skipper

inserts around four extra pmoves, which could execute together in one cycle on a 4-way

issue machine. The number of inputreg and outputreg registers together is about ten

implying that Skipper needs to handle only ten rename maps per skipped branch. In com-

parison, rename tables in a 4-way issue machine handle 12 registers (8 sources and 4 des-

tinations) every cycle, suggesting that Skipper incurs low rename bandwidth overhead.

5.4.4  Comparison between Skipper and Polypath

In this section, I compare Skipper against the previously-proposed Polypath architec-

ture [22,23]. In Figure 57, I vary the configuration from 128 instruction window entries

with one i-cache port (two left bars) to 256 entries with two i-cache ports (two right bars).

The speedups are all normalized to a superscalar with equal instruction window size and

equal number of i-cache ports.

For Polypath, I use the fetch policy and JRS parameters recommended in [22,23]. My

model of Polypath is different than those in [22,23] in two ways, which affect its speedups.

First, the Polypath papers compare a Polypath system using two i-cache ports and double

pipeline width for decode and rename stages, with a superscalar using one i-cache port.

However, such a comparison fails to isolate the impact of the architecture from the impact

of the fetch bandwidth. Therefore, I assume exactly equal fetch bandwidth for Skipper,

Polypath, and superscalar. Second, the Polypath papers do not charge any extra cycles to

copy the entire rename table (the equivalent of inputreg set) needed to execute both paths

of difficult branches. Because of the arguments given in [24] and in Section 3.1.1, I charge

cycles for this copying as per the bandwidth of the rename tables. This charging is done

for both Skipper and Polypath.
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As before, for the 256-entry case, I assume an aggressive superscalar that can obtain

two fetch PCs from the predictor and use both the i-cache ports. If there are no difficult

branches in flight, both Skipper and Polypath use the ports exactly the way superscalar

does. Polypath fetches both paths of difficult branches. Skipper fetches the post-reconver-

gent stream and the control-flow dependent instructions if there are any resolved skipped

branches, and defaults to superscalar mode, if none of the skipped branches are resolved. I

also compare a two-port Polypath without charging cycles for rename table copying,

against a one port superscalar and show the numbers above the bars.

From the left two bars in Figure 57, we see that for the 128-entry case, Skipper outper-

forms Polypath significantly for ijpeg, m88ksim, li, and go, and modestly or not at all for

the other benchmarks. Polypath achieves no speedups mainly because with only one i-

cache port, there is not enough bandwidth to fetch down both taken and not-taken paths on

difficult branches. This experiment clearly shows that Skipper achieves speedups because

Figure 57: Comparison between Skipper and Multipath.
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of much more efficient use of i-cache bandwidth than Polypath. From the two right bars,

we see that for the 256-entry, two i-cache port case, Skipper outperforms Polypath signifi-

cantly for go, ijpeg, m88ksim, and li, similar to the 128-entry case. In the case of compress,

Polypath performs better than Skipper by 3%. Further investigation reveals that compress

has dense data dependencies, disallowing any overlap of post-reconvergent instructions.

Because Polypath executes the skipped instructions without any delay unlike Skipper,

compress benefits from Polypath.

Compared to the 128-entry, one-port case, Skipper achieves even higher speedups

using 256 entries and two ports, with the exception of vortex, indicating that Skipper can

better use higher i-cache bandwidths than a superscalar. Also, a two-port Polypath with no

rename table copy overhead achieves speedups compared to a one-port superscalar, as

shown in previous papers [22,23].

Table 11 lists the instructions per cycle (IPC) for the base cases for Figure 57 (also

used for Figure 56 and later graphs). The first column lists the IPC for the base cases with

128-entry instruction window with one i-cache port, which the base case is used for the

first and second bars in Figure 57. Similarly, the second column lists the IPC for the base

Table 11.  base case’s IPC.

Benchmark base 128 base 256 base 256 with
one-port

cc1 1.85 1.87 1.85

compress95 2.40 2.46 2.42

go 1.51 1.55 1.51

ijpeg 3.58 3.82 3.60

li 2.10 2.14 2.14

m88ksim 2.82 3.42 2.82

perl 2.39 2.56 2.57

vortex 3.00 3.18 3.16
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cases with 256-entry instruction window with two i-cache ports, which the base case is

used for the third and fourth bars. The third column lists the IPC of base cases with 256-

entry instruction window with only one i-cache port, which the base cases is used for the

speedups shown in text above each benchmark in Figure 57. The IPC for these bench-

marks are fairly high for a eight-issue superscalar, showing that my methodology does not

artificially suppress the base cases’ performance to allow more potential improvement.

Comparing second and third column, I also notice that base cases with two i-cache ports

have much higher IPCs than one. This shows that the base cases can take advantage of the

second i-cache ports, reducing Polypath’s opportunity and thus explaining why the

speedup for the Polypath is low in my evaluation (fourth bar) than in [23] (text above

bars). For 256-entry instruction window, Perl’s IPC for slightly lower for base cases with

two ports than with one, because of slight higher branch misprediction ratio in the former

case.

Figure 58: Effect of Skipper’s misprediction penalty.
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5.4.5  Misprediction Penalty

To see the effect of deepening pipelines, I varied misprediction penalty as 6, 9, and 12

cycles in Figure 58. On one hand, a longer misprediction penalty gives Skipper the oppor-

tunity to achieve higher speedups by eliminating the more-expensive mispredictions. On

the other hand, a longer misprediction penalty forces Skipper to find more data indepen-

dent, post-reconvergent instructions to execute before the difficult branch can fill the pipe-

line with the correct control-flow dependent instructions. Thus, it is a conflict between

opportunity and data independence. We see two trends in speedups on increasing penalty:

One in which Skipper’s speedups for ijpeg, li, and compress indicating that opportunity

overcomes dependencies in these benchmarks. And the other in which Skipper’s speedups

for the rest of the benchmarks reduce due to dependencies offsetting opportunity. Skip-

per’s low coverage restricts opportunity to avoid mispredictions.

Figure 59: Effect of Skipper’s gap-length-threshold.
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5.4.6  Effect of gap-length-threshold

Because the analysis in Section 5.4.3 indicates that gap-length-threshold impacts cov-

erage, I varied the gap-length-threshold as 24, 48, and 72 in Figure 59. While a larger

threshold allows better actual coverage, larger threshold also allows branches with larger

gap lengths to be skipped, incurring wasted instruction window and load/store queue slots.

Thus, it is a trade-off between coverage and instruction window utilization. Increasing the

threshold from 24 to 48 improves coverage for all the benchmarks by about 1%-6% reach-

ing the values shown in Table 9. I found that except for go, the rest of the benchmarks are

not affected by increasing the gap-length-threshold beyond 48. Increasing the threshold

from 48 to 72, go’s speedup improves from 8% to about 11%. This experiment shows that

Skipper’s actual coverage is limited not by the threshold setting but by long gaps inherent

in programs. I also varied the SCIT size as 32, 128, and 512 entries and found that increas-

ing the SCIT size beyond 128 entries does not improve speedups. Because the base predic-

tion accuracy is high, only a few (static) branches are identified as difficult and they fit

within 128 entries.
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6  CONCLUSIONS

In this dissertation, I evaluated trace cache, value prediction and prefetching in SMT. I

found that SMT’s sharing of the instruction storage (i.e., trace cache or i-cache), physical

registers, and issue queue impacts the effectiveness of trace cache, value prediction, and

prefetching, respectively. Also, in order to reduce branch misprediction penalty on super-

scalar, I propose a novel architecture, called Skipper, to handle difficult branches. Skipper

is the first proposal to exploit control-flow independence by skipping over control-flow

dependent computation in the context of a superscalar pipeline.

I found that: (1) Trace cache introduces multiple copies of the same instructions in dif-

ferent traces, trading off space for bandwidth. However, SMT needs a large instruction

storage because multiple threads share the storage. Furthermore, trace cache’s benefit of

supplying many instructions in one fetch diminishes in SMT because SMT can do the

same with conventional instruction cache by fetching from multiple threads. My simula-

tions showed that when compared to a similar-sized i-cache, trace cache’s space-for-band-

width trade-off degrades SMT throughput. For two threads, trace cache improves

throughput. thus supporting Intel’s decision to use a trace cache in the two-threaded Pen-

tium IV. (2) Value prediction causes hold-up of physical registers and cannot release them

until after the predicted instruction completes and commits. Because SMT’s multiple

threads share physical registers, this hold-up stalls progress in other threads. Thus, unlike

superscalar, SMT incurs throughput degradation even with correct value predictions. My

simulations showed that with a typical number of physical registers, value prediction

degrades SMT throughput; and with unlimited registers, value prediction’s benefit disap-

pears with an increasing number of threads. (3) Prefetching into L2 converts slow L2

misses into fast L2 hits. However, the L2 hits still miss in L1, resulting in the same L1

misses occurring in fewer cycles. Because instructions dependent on the L1 misses clog
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the issue queue and because SMT’s multiple threads share the issue queue, this clogging

stalls progress in other threads. With prefetching, L1 misses occur in fewer cycles, clog-

ging the issue queue more often. Thus, unlike superscalar, SMT incurs throughput degra-

dation even with correct prefetches. Therefore, SMT needs to balance prefetching and

issue queue clogging. My simulations showed that prefetch coverage can be reduced to

achieve such balance, improving throughput for memory-intensive workloads. However,

for workloads with mixed memory demand (high-ILP and memory-intensive threads),

prefetching has little opportunity and slightly degrades throughput.

Because trace cache and value prediction hurt SMT throughput, I recommend that

these techniques to be excluded for future SMT designs when multi-programmed work-

loads are the common case and throughput is the main goal. For SMT designs where both

single-threaded and multi-programmed workloads are common, my results introduce a

challenging design dilemma for SMT designers: on one hand, the techniques are ineffec-

tive for multi-programmed workloads and in many cases hurt throughput; on the other

hand, the techniques significantly improve single-thread performance, and disabling them

to improve multi-programmed throughput would hurt single-thread performance.

My findings also create a new responsibility for the OS: Because these techniques

improve single-thread performance, I recommend that the OS disable the techniques when

running multi-programmed workload and enable them for single-threaded workload. In

the environment where threads have different priorities, because the techniques may

improve low priority threads while hurting higher priority threads, I recommend that the

OS should selectively enable the techniques only for high priority threads.

Skipper exploits control-flow independence by skipping over control-flow dependent

computation of frequently mispredicted branches, in the context of a superscalar pipeline.

Skipper fetches the skipped control-flow dependent instructions after the post-reconver-

gent instructions, out of program order. I describe key mechanisms to implement Skipper

without unduly complicating the pipeline despite out-of-order fetch, including (1) identi-

fying difficult branches using the previously-proposed JRS scheme, (2) determining the

difficult branch’s reconvergence point without scanning, (3) handling out-of-order



 120
fetching of the skipped instructions but maintaining program order in the instruction win-

dow, and (4) handling data dependencies among the skipped instructions and the yet-to-be

fetched post-reconvergent instructions using the existing register rename tables and load/

store queue. SPECint95 simulations show that Skipper performs 10% and 8% better than

superscalar and the previously-proposed Polypath, respectively, when all three microarchi-

tectures use a 256-entry instruction window and two i-cache ports.
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