Efficient Error Estimating Coding: Feasibility and Applications

Sigcomm '10 (Best Paper)

BinBin Chen, Ziling Zhou, Yuda Zhao, Haifeng Yu National University of Singapore

Outline

- Wireless Networking Background
- Motivation : Benefit of BER estimating
- EEC design
 - How to estimate BER with low computational overhead and redundancy?
 - Complexity and Redundancy
- Conclusion

Trends in Wireless Networking

- Application/ Network use or relay correct packet
- Not correct : Request retransmission

Trends in Wireless Networking

- Many designs to support partially correct packet with Error Correction Coding
 - Ex) Incremental Redundancy ARQ
- Well-suited to delay-sensitive applications.

Benefits of BER at Relaying Node

- BER-aware packet retranmission
 - Add maximum BER that Error-Correction Code can tolerate
- BER-aware packet scheduling
 - Prioritize the fowarding of packets with lower BER
- BER-aware packet forwarding
 - Decode-and-Forward vs Amplify-and-Forward

Benefits of BER at **Sender**

- Rate adaptation
 - Better adapt its rate by a feedback based on BER.
- BER-aware routing
 - Instead of optimizing for minimizing the expected number of transmission, we can optimize for maximizing the goodput of end-to-end route.

- How to make structure to estimate BER?
 - 1. Naive sampling with known pilot

- How to make structure to estimate BER?
 - 2. Sample a group of data bits with a single bit
 - Assume each bit has a probability of error p.

- How to make structure to estimate BER?
 - 2. Sample a group of data bits with a single bit

Parity information is sufficient, when p is small enough

- How to make structure to estimate BER?
 - 2. Sample a group of data bits with a single bit

Sum of odd terms and even terms are comparable, when p is not small enough

EEC Design: Brief Summary

- How to make structure to estimate BER?
 - 2. Sample a group of data bits with a single bit

```
\phi(g+1,p) : sum of the odd terms
```

- when p is small enough, parity information is sufficient and $\phi(g+1,p)$ smaller
- when p is not small enough, $\phi(g+1,p)$ and sum of even terms are **comparable**

Single-level EEC

- How to know sum of odd terms $\phi(g+1,p)$?
 - When s is large, the fraction of #1 parities ~ $\phi(g+1,p)$

Multi-level EEC

- How to estimate BER for [1/n, 1/4]?
 - Total $\lfloor \log_2 n \rfloor$ levels each with 2 $^{\rm i}$ group size

Multi-level EEC

- How to estimate BER for [1/n, 1/4] ?
 - Find the suitable constants c_1 and c_2 such that there always exists some level i such that $\phi(2^i, p)$ falls within (c_1, c_2) for all p in [1/n, 1/4]

 $\phi(2,p) < c_2$ for all $p \leq 1/4$ guarantees $\phi(2^i,p) < c_2$ at least at the first level $\phi(2^{\lfloor \log_2 n \rfloor},p) > c_1$ for all $p \geq 1/n$ guarantees $\phi(2^i,p) > c_1$ at least at the last level $\phi(2^{j+1},p) < c_2$, where j is the largest i such that $\phi(2^i,p) \leq c_1$

$$c_1 < 0.3, c_2 > 0.375$$
, and $c_2 > 2c_1(1 - c_1)$

$\phi(2^i, p)$	i = 1	2	3	4	5	6
p = 0.25	0.38	0.47	0.50	0.50	0.50	0.50
p = 0.05	0.095	0.17	0.28	0.40	0.48	0.50
p = 0.25 p = 0.05 p = 0.01	0.020	0.039	0.075	0.14	0.24	0.36

Multi-level EEC

- How to estimate BER for [1/n, 1/4] ?
 - Since such sum of odd terms within (c_1, c_2) ~ expected number of errors per group,

$$\hat{p} = \phi(2^i, p)/2^i$$

EEC Redundancy and Computational Overhead

Redundancy

- O(logn) levels with O(1) parity bits per level ~ O(logn)
- For BER range [1/1000 , 0.15]
 - 9 EEC levels, 32 parity bits per level.
 - Relative redundancy to 1500-byte packet = 2.4%

Computation Overhead

THEOREM 2. The EEC encoding, decoding, and estimating time complexity are all O(n).

Conclusion

- Benefit of BER estimating in different scenarios
- Design criteria for Error-Estimation code
 - Estimation quality, Low redundancy and computational overhead
- Structure of EEC
 - The property of sum of odd terms with a single parity, when BER is small